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Abstract: The primary goal of this study is to create and characterise solitary wave solutions for the
conformable Fractional Coupled Boussinesq-Whitham-Broer-Kaup Equations (FCBWBKEs), a model
that governs shallow water waves. Through wave transformations and the chain rule, the authors
used the modified Extended Direct Algebraic Method (mEDAM) for transforming FCBWBKEs into
a more manageable Nonlinear Ordinary Differential Equation (NODE). This accomplishment is
particularly noteworthy because it surpasses the drawbacks linked to both the Caputo and Rie-
mann-Liouville definitions in complying to the chain rule. The study uses visual representations
such as 3D, 2D, and contour graphs to demonstrate the dynamic nature of solitary wave solutions.
Furthermore, the investigation of diverse wave phenomena such as kinks, shock waves, periodic
waves, and bell-shaped kink waves highlights the range of knowledge obtained in the study of
shallow water wave behavior. Overall, this study introduces novel methodologies that produce
valuable and consistent results for the problem under consideration.

Keywords: nonlinear fractional partial differential equations; fractional Boussinesq-Whitham-Broer-Kaup
equation; mEDAM; wave transformation; conformable fractional derivatives; solitary waves; shallow
water wave

1. Introduction

Nonlinear Fractional Partial Differential Equations (NFPDEs) are an assortment of
mathematical models that are significant in many disciplines of science and engineer-
ing because of their capacity to represent complicated events using fractional derivatives
and nonlinear components [1-3]. These equations are significant because they represent
complicated behaviors that are not captured by standard integer-order Nonlinear Par-
tial Differential Equation (NPDEs). For example, in fluid dynamics, the Navier—Stokes
equations expanded to include fractional derivatives that can more properly represent
non-Newtonian fluid flow [4]. In biology, fractional FPDEs have been used to simulate
the spread of illnesses with abnormal diffusion patterns [5]. Furthermore, NFPDEs have
applications in finance for modeling price variations as well as image processing for edge
identification and picture denoising [6,7]. The importance of nonlinear FPDEs stems from
their ability to provide a more complete framework for modeling real-world processes,
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with more accuracy and predictive power than integer-order equivalents. These equa-
tions require researchers to devise novel numerical methods and analytical approaches
in order to solve them, making them an important topic of study in modern mathematics
and science.

Due to the fact that numerical methods such as the Finite Element Method (FEM) [8],
Numerical Laplace inversion technique [9], Finite Difference Method (FDM) [10], and
many more [11-13] have inherent errors, complicated computational prerequisites, and a
heavy reliance on computer resources, researchers frequently opt for analytical solutions
when handling NFPDEs. Analytical solutions give closed-form formulations that provide a
thorough insight into the system’s underlying dynamics without the need for considerable
computing labour. Analytical approaches such as the fractional transform method [14],
homotopy perturbation method [15], and natural transform method [16] have emerged
as useful tools in this setting. These approaches allow researchers to obtain insights into
the complicated behavior of NFPDEs, allowing for a more detailed investigation and
understanding of the mathematical models they represent. Researchers may investigate
NFPDEs with accuracy by using analytical tools, giving insight into the basic principles
driving complicated processes while avoiding the restrictions and constraints associated
with numerical approaches.

The investigation of solitary wave solutions for NFPDEs has long piqued the curiosity
of physicists and applied mathematicians. To construct solitary wave solutions for NFPDEs,
a variety of analytical methodologies, including the tan-function method [17], the Sardar
sub-equation method [18], the sub-equation method [19], the Kudryashov method [20], the
Khater method [21], the exp-function method [22], and the mEDAM method [23], among
others, have been proposed.

Among these analytical strategies for obtaining solitary wave solutions, mEDAM [24,25] is
a cutting-edge method that may be applied to both NPDEs and NFPDEs. This technique
employs a transformational procedure to turn NFPDEs or NPDEs into NODEs, which
are then addressed using series-based solutions. The resultant NODE is then utilized to
create a set of algebraic equations that, when solved, yield solitary wave solutions for the
FPDE. mEDAM stands out for its amazing effectiveness in creating a larger range of solitary
wave solutions’ families. For example, Sayed et al. successfully used mEDAM to build
multiple solitary wave solutions’ families for three different types of Tzitzeica-type PDEs
found in nonlinear optics [26]. Similarly, Yasmin et al. investigated 32 distinct families of
symmetric solitary wave solutions for the fractional coupled Konno-Onno system [25], as
well as 33 distinct families containing 131 optical solitary wave solutions for the fractionally
perturbed Radhakrishnan-Kundu-Lakshmanan model [24], all accomplished through the
expert use of mMEDAM.

We employ mEDAM in conjunction with conformable fractional derivatives to discover
solitary wave solutions for FCBWBKEs in this study. In 1872, Boussinesq laid out a set of
equations for evaluating the propagation of small and large waves in water [27]. In 1965,
Whitham used a Lagrangian approach for detecting both linear and nonlinear dispersive
waves, and with Lighthill in 1967, he developed a theory applicable to slowly evolving
wave trains [28,29]. CBWBKEs are generalized into NFPDEs using conformable fractional
derivatives as follows [30]:

Dfw + D,éz + waw =0,

1)
%2 + Df (wz) + DE(DE (DEw)) = 0, (

where w = w(x, t) is the velocity, z = z(x, t) is the free wave surface height for fluid in

the trough, and the operators D (-) and Db () denote the conformable fractional partial
derivatives. Prior to this research work, many researchers have addressed this model
with different strategies. For instance, the auxiliary equation method was employed by
Atilgan et al. to construct travelling wave solutions for FCBWBKEs with conformable
derivatives [30]. Similarly, Jin and Kim have addressed FCBWBKESs with variable coeffi-
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cients for constructing travelling wave solutions [31]. Finally, Yu’s research employs the
Lie symmetry analysis technique for transforming the FCBWBKEs into a more manageable
system of fractional ODEs [32]. The study includes novel contributions such as a conser-
vation theorem and the generalization of Noether operators, both of which are required
for the construction of conservation laws. These analytical tools provide a comprehensive
approach to solving equations, significantly contributing to physics” broader knowledge.
Influenced by the existing literature, this study aims to establish the efficacy of mEDAM
for producing solitary wave solutions for FCBWBKEs with conformable derivatives. The
method involves transforming FCBWBKEs into a NODE, which afterwards transforms into
a set of nonlinear algebraic equations. Solving these equations yields various families of
solitary wave solutions, including kinks, shock waves, periodic waves, and bell-shaped
kink solitary wave solutions.

The remainder of the paper is organized as follows: Section 2 describes the mEDAM
materials and approach. Section 3 gives FCBWBKEs's solitary wave solutions. Section 4
includes a discussion and several graphics, and Section 5 ends our research.

2. Methodology and Materials
2.1. Conformable Fractional Derivative

We may derive solitary wave solutions for NFPDEs using the superiority of con-
formable fractional derivative over alternative fractional derivative operators. The solitary
wave solutions of FCBWBKESs presented in (1), for example, cannot be achieved using
alternative fractional derivative formulations due to the fact that they do not obey the chain
rule [33,34]. As a result, we have defined the fractional derivatives used in (1) in the sense
of conformable fractional derivatives. This derivative operator of order « is described as
stated in [35]:

w(yx! ™" +x) — w(x)

« Yy
Diw(x) = }rlir(l) p , a€(0,1]. ()

In this investigation, the following properties of this derivative are utilized:

D;’éxr — rX?’*lX’ (3)
D% (r1p(x) £r21(x)) = riD5(o(x)) £ r2D5(n(x)), (4)
DyelC(X)] = 97 (C(x)) DL (X), (5)

where p(x), 71(x), ¢(x), and {()x) are arbitrary differentiable functions, whereas r, r; and
1 signify constants.

2.2. The Working Procedure of mEDAM

This section provides an overview of the mEDAM method. Consider the FPDE in the
following form:

E(v,af‘v,aglv,agzv, vaglv,. .)=0, 0<apB,7<1, (6)

where v = v(t,01,02,03,...,04).

The procedures below are employed to address Equation (6):

1. Equation (6) is initially subjected to a variable transformation of the type
v(t,01,02,03,,0n) = V(x), where yx signifies a function of t, 01, 02, 03, ;0 and can be written
in several ways. As a result of this transformation, Equation (6) is transformed into a NODE
having the following structure:

F(V,V,VV,...) =0, )

In Equation (7), the variable V has derivatives with respect to x. Equation (7) may be
integrated one or more times to determine the constant(s) of integration.
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2. Following that, we assume the following closed form series solution to Equation (7):

j
Vix)= ) EU®X), ®)
s=—]
In this case, Fs (withs = —j,...,0,1,2,...,]) represents the parameters that must be driven.
In addition, U () fulfils another NODE of the form:
U'(x) = In(p)(d + e (x) + f(U(x))?), ©)

where y # 0,1 and d, ¢, f are constants.

3. We acquire a positive integer j (shown in Equation (8)) by looking for the homo-
geneous balance between the predominant nonlinear component and the largest order
derivative in Equation (7).

4. We next substitute (8) into (7) or the equation obtained by integrating (7), and
lastly we arrange all the terms of U(x) in the same order, yielding a polynomial in U().
When the coefficients of the resulting polynomial are all set to zero, a system of algebraic
equations is created for Fs(s = —j,...,0,1,2,...,j) and additional parameters.

5. To solve this set of nonlinear algebraic equations, we use the Maple-13 tool.

6. The solitary wave solutions to Equation (6) are determined by determining the
unknown parameters and plugging them into Equation (8) together with the corresponding
solution U() from Equation (9). Using the generic solution of Equation (9), we may obtain
the families of solitary wave solutions given below.

Family. 1: For ¢y < 0and f # 0,

37 .
U (x) = —% = \/T"’JCOtV(Zlf/Z V=x)
Us(x) = _§ i \/TI/J(tany(\/:/sz)fi (secu(v/=9x)))
__ & V=9 (coty (v/=9x) £ (escu(v/=Px)))
Us(x) = 77 )
and
Us(x) = _% L Vo p(tanu(1/4 mi(; — coty (1/4v=9x))

Family. 2: For ¢ > Oand f # 0,
e /¢tanh,(1/2/P))

Us(x) = “oF 2f
Uy(x) = —% - WCOthﬂz(;/z VPX)
e Vi (tanhy (v/Px) £ i(sech, (\/Px)))
Us(x) = 2f 2F
e Vi (cothy (v/Px) % (eschy(v/Px)))
Us(x) = 2f 2F
and
e Vi (tanh, (1/4 \/Px) — coth, (1/4/Pyx))
Uro(x) =

2f 4f
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Family. 3: Fordf > 0and e =0,

Uy (x) = ﬁ tan,, (\/@c)

U2 (x) = —ﬁCOtu (WX)
d
Usz(x) = \/; (tany (2 \/EX) + (SECF‘ (2 \/EX) ))
Uia(x) = — ﬂ(COtH (2 \/EX) + (CSCI‘ (2 WX) ))

and
Uis(x) = ;\/E(tany (1/2 \/ﬁx) — coty, (1/2 WX))

Family. 4: Fordf < 0ande =0,

Uis(x) = —\/jtanh (\/7)()
Uz (x) = —ﬁcothy(\/—idfx)

Uis(x) = — _;( hy(z\/—idf)()j:(isechy(Z\/—idf)(»)

tho(x) = —\/—»C( w(2V/=dFx) = (eschy (2 /= dfx) ) )

and

Uno(x) = ;\/T’f (tanhy, (1/2 /=dfx) + cothy (1/2 /=dfx) )

Family. 5: For f =dand e =0,

Up1 (x) = tany (dx)

U (x) = — coty(dx)
Upz(x) = tany, (2dx) + (sec,(2dy))
Ups(x) = — coty (2dx) & (cscu(2dx))

and )
Uxs(x) = 5 tan, (1/2dx) —1/2 cot,(1/2ax)
Family. 6: For f = —dand e =0,

U26( ): —tanh, d )

(
Uy(){) = - COthy(d )
Ups(x) = —tanhy, (2dyx) £ (isechy, (2dy))
Upg(x) = — cothy (2dyx) = (cschy(2dx))
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and
1
Uz (x) = —3 tanh, (1/2dx) —1/2 coth,(1/2dx)
Family. 7: For ¢ =0,
d(exInr +2)
u =-2—-—-——"
31(x) ZxInr
Family. 8: Fore = 7,d = pt (withn # 0),and f =0,
Usp(x) = r'X —p
Family. 9: Fore = f =0,
Uss(x) = dxInr

Family. 10: Fore =d =0,
1

Use(x) = ~fxinr
Family. 11: Ford = 0,e # 0, and f # 0,
e

f (coshy,(ex) — sinhy, (ex) + 1)

Uss(x) = —

and
e(coshy (ex) + sinhy (ex))

f (coshy,(ex) + sinhy, (ex) + 1)
Family. 12: Fore = 7, f = pt (with p # 0),and d =0,

Uss(x) = —

px
Usz(x) = T—prix

In above solutions, i = ¢?> — 4df and the generalized trigonometric and hyperbolic func-
tions are defined as follows:

sing(1) = I cos, ) = I,

tany (x) = :2’; ((i(c; coty (x) = :ﬁ: ((;f)) ,

sec,(x) = cosi()()’ ascy(x) = sin:()()'
Similarly,

sinh, (x) = M, coshy (x) = ‘ux—;i,

tanh, (x) = m, cothy (x) = m,

sechy, (x) = coshly(x)' eschy(x) = smhlﬂ(x)

3. Execution of mEDAM
Our goal in this section is to create solitary wave solutions for FCBWBKESs. To do this,
we begin the procedure with the wave transformation:

w(t,x) =W(x), z(tx)=Z(x), x= w“t"‘ + k;f,

(10)
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F,=0,F— (e+

Fo= (e—VP)k
-~ 27

which transforms (1) into the subsequent system of NODEs:

oW +kZ' + kKWW’ =0,

11
(UZ/ + k(WZ)/ + k3w/// — 0, ( )
where k symbolizes the wave’s number, w shows the velocity of the wave, and primes
denotes the derivatives of W and Z with respect to . Integrating both the equations in (11)
with respect to x and setting the constant of integration equal to zero yields:

kW2

wW +kZ + 0,

2 (12)
wZ +kWZ + KW' = 0.

The first equation in (12) implies:

w W2
Z= —?W — > (13)
Thus with (13), the system in (12) is reduced to the following single NODE:
20*W 4 3wkW? + K2W3 — 2k*W" = 0. (14)

Establishing the homogenous balance between W and W" yields j = 1. Substituting j = 1
in (8) suggests the following closed form solution for (14):

1
Vix)= Y EURX) =F1U(x)  +FR+FRUKx)" (15)

s=—1

We develop an expression in U(x) by inserting (15) into (14) and collecting all terms with
the same powers of U(). Equating all coefficients to zero results in a system of nonlinear
algebraic equations. Using Maple to solve the problem provides with the subsequent two
distinct sets of solutions:

Casel
In(p)k2 (ddef +2 fd\ /P — &> — ¢
V) In(p)k Fr = 2kIn(p) f, w = n(k( :2f+e\;¢\/¢2fde V) ke (16)
Case 2

—R’(“Adef +2fdVf+E —VF) | (—e+ VP 17)
842 f21n(u) T Afdin(p)

Taking into account case 1, and utilizing (10), (13), and (15) together with the corre-
sponding general solutions of (9), we obtain the following class of solitary wave solutions
for FCBWBK given in (1):

Family. 1.1: When ¢ <0 f #0,

wy(x, t) = ln(y)k<ﬂ+ v/~ tany (;M;O),
() = = (m00k(Va+ v=ptan (5v70x) ) ) s

2
7

JF=FFh=0w=

1

- 3 (meor(Va+ Vw50 ) )
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wras,8) = ~ Gk (— B+ /ooty (3 ) ).
z1p(x,t) = —% ( - ln(y)k<—ﬂ+ V= coty, (;H;O))

2
-5 (0o (—vir+ v=peon (3v=mr)) )
In(p)k (/o8 (v =Px) +V—Psing (V=) + VF)
cosu (V=)
Z(xw__w(nW)W@w%uF;U+¢lwmAV—xﬂ+¢—)
BT TR cosu (v =92
=t ()(ﬂCOSy(FXHWsmy(FXHF))
2 cos (v =9x)
In(p)k (=P siny (y/~Px) + v/~ cosu(y—Px) + V)
siny (V=9)
(- In )k (= /P siny (V=9x) + V= <08,(v =) + v=F)

w13 (x/ t) =

w1,4(xl t) =

| g

At == sin, (V=97

_1<_ ( ) ( WSlny(FX)+WCOS;,(Fx)+F)>
siny (/= 9x)

2

and

k(<2 VP = v+ 2= (cos(1vT)) )

/t - — 5
wy5(x, 1) > ¥

o) in(uk( -2 - v=7-+2 = (cos, (1vT)))

z15(x,t) = % 5 v

1 1ln(}i)k(—2\/¢‘¥—\/—71/J+2\/—71[J(COSV(}L\/TIIJX>)2> 2
_2<_2 ¥ )’

where ¥ = cosy (1v/=x) siny (1% ).
Family. 1.2: When¢ >0 f #0,

w1 6(x, t) k\/7( 1+tanhy(;\/¥)()>,
z16(x,t) = *% < - ln(ﬂ)k\/@(l + tanh,, (;ﬂX) ))

o)

wy 7(x,t) = kf( 1+cothy<;\/$x>>,
ajuj):-JZ(-hmmk¢$(—r+aﬂw(;vqw)>>

3 wones(-rvom (o).

)

“)

)

(19)

(20)

(21)

(22)

(23)

(24)
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(1 t) = _ln(y)k\/@(—coshy(\/@() + sinhy, (v/§x) + 1)
W coshy (v/ix) '
21800, t) = _% ( ~ In(ukyp(— Cosilgs(ﬁ\);)w;)smhy(\/fbx) +1) > 25)
(- In )k (— coshy, (/i) + sinh, () +1) )2
2 coshy, (v/Px) ’
wr(x, 1) = Uk (sinhy (V) — coshy (V)
e sinhy, (v/§x) '
219(x,t) = =5 <1n(ﬂ>k\/¢ (Sm:iﬁf\% ;)coshu(\/@c)) ) (26)
1 <1n(ﬂ>k\/¢ (sinhy, (v/$x) — coshy (v/$x)) >2
2 sinhy, (/§x) ’
and
(0.1 1 ln(‘u)k\/@<2 coshy, (%ﬂ){) sinhy, (%ﬁx) + 1)
wi,10(X, 1) = 5 ,
2 coshy (}1 WX) sinhy, (%ﬂx)
w /1 ln(y)k\/@(z coshy (%ﬁ){) sinh, (%\/@() + 1)
z110(x, t) = % <2 1 : 1 ) (27)
coshy, <4ﬁx> sinhy (4 \/@()
1 <1 In(p )k\/@(Z coshy, (‘11\/@)() sinhy, (%\/@() + 1) )2
2\2 coshy, (%\/fbx) sinh (%\/@()

Family. 1.3: When df > Oand e = 0,
Wi (x,£) = 2 In(u)k (/= Fd + /& tany (/Fdx)),
I(“‘ (V=7 + /aF rany (VF X))) (28)
_E(Zln k(v=rd +ftan,4<\fx)))
w1 12(x, £) = 2 In(p) (\/7 Vaf cot (Vfdx) ),
(1) = — ¢ (2In(uk(vV=fd - ffcotﬂ(ﬁx))) (29)

k
;(ZIny)k(F ﬁcoty(\/»)(»)
kin(u (FCOSH(Z\/»@+\/7siny(2\/7)()+\/d7),

2111 xt

wy13(x, t) =2

coss (2 /)
Zl,lg(x, f) = —% (2 kln(y)( \4 7fd COSy (2 \C/OZ)(Q j}ﬁf;; Sy, (2 \/ﬁX) + \/dT) ) (30)

(/T 0 T fsinu(Z\/ﬁxHﬁ))z
2 cosy (2 v/Fdx) '
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o K000 (/= Fsing (2 /Fix) = v/ cos, (2 /Fix) — /)

w1,14(x, 1) =
sin (2 v/fdx)
s t):w(Zkln(u)(WSIHV( VFax) - \/760%(2\/1‘7%)—\/@>
TR sinu (2 v/fdx)
1(2k1n(ﬂ)(x/781nu( VFix) - \/TCOSy(%/ﬁx)—ﬁ))z
2 sin (2.v/fdx) '

and

ln(y)k<2 V/—fdcos, (1/2\/fdyx) siny (%\/ﬁx> +\/df -2 \/W(cosy (%\/]Td)(»z)

wy15(x, 1) = Cosy<%mx> siny(lﬁx>
) w ( V/—fdcos,(1/2\/fdx) siny( f}() +\/df — 2\F<COS;¢( WX))Z))
z1,15(%, %

( cosu (3/Fix) sinu (5 /Fax)

(z V=P cos,(1/2/Fi) siny (b Fax) + V& =2 Vil (cosu (3/7n)) ) 2

( cosy (4 v/Fdx ) siny (4 /Fix ) ) |

Family. 1.4: When df > 0and e = 0,
w116(x,) = 2 In()k(—/~fd + /=df tanhy, (/= fdx ) ),
Z106(2 1) = = ( —2In(u)k(—+/=fd + v/=df tanh, (\/—de)))

(- 2mtok(-v e e (vTR) )

wy,17(x, t) = =2 1n(;4)k<—\/—7fd+ \/—fd cothy, (\/dex)),
z117(x,t) = —% ( -2 ln(y)k(—\/—ifd—b- /—fd cothy, (\/—7]%)())>

(- 2mtok(-v Ve, (Vi) )

N —

o k(= /= fdcoshy (2 /= fdx) + /—df sinby, (2./~ fdx) + v/~dfi)

R costy (2.~ 72)
Z1i1s(x, ) = L w < _y ln(V)k(_mcoshy(z vV —fdx) + \/Tfsinhy(z V—fdx) + ﬁz))
Tk coshy, (2 V—fdx)
B 1<_21n(;l)k(—\/—7ﬂicoshy(2 V—Ffdx) + \/Tfsinh (2 \/=fdx) + /—dfi) >2
? coshy (2./=Fx)
(5, 8) — 2 MUK/ siny (2.y/=Filx) = /= coshy (2 y/=Fidx) — /=)
o sinhy (2./=F) :

21 10(x, 1) = _w(z In(u)k(y/—fdsinhy (2 \/=fdx) — \/—df coshy, (2 \/—fdx) — \/—Tlf)>
T sinby (2/~fd)
— 1(2 In(p)k(y/—fdsinhy, (2\/—fdx) — /—df cosh, (2 \/—fdx) — /—df) >2
? sinhy, (2 /=) :

and

€]

(32)

(33)

(34)

(35)

(36)
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in(o)k(~2 /= +2 /= (coshy (3 =) ) = v/ )

w1 p0(x, ) = = A
e ln(y)k<—2«/—fdA +2 M—df(coshy (%\/—fd;())z - = f) -
z100(x, 1) = % ( - A >
1 ln(y)k(—Z —fdA+2 —df(coshy(% —fd)())z - —df) 2
T R )y
where A = coshy, (%«/—fd)() sinhy, (%w/—fd)().
Family. 1.5: When f =dande =0,
w121 (x, 1) =2 In(p)k(di + d tan, (dy)),
2 38
z101(x, 1) = —% (2 1n(y)k(di+dtany(d7())> - ;(2 ln(y)k(di+dtany(d)())> , (38)
w100(x, ) = =2 In(p)k(—di + d cot, (dy)),
2 39
z1 (X, t) = —% ( — 2 In(p)k(—di + dcotﬂd;c))) - % ( — 2 In(p)k(—di+ dcoty(d)())) , )
wyp3(x, ) =2 In(p )k (di cosy, (czoif()zzz)smu(z dx) +d) ,
_ w [ In(u)k(di cosy(2dx) + dsiny (2dx) + d)
21’23(3(, t) - _? (2 COSV (2 dX) ) (40)
1 zln(y)k(di cosy (2dx) + dsing (2dx) +d)\ >
B 2( cosy (2dy) ) ’
Oraa(,t) = 2 In(p)k(di sin, (Sziiic()z—d;)cosy(Z dx)—d) ,
_ w (, In(u)k(di sin, (2dx) — dcosy(2dx) — d)
Zl,24(x/ t) - _? (2 siny (2 dX) ) (41)
1/, In(p)k(di sin, (2dx) — d cosy (2dx) —d) \ >
B 2( siny, (2dy) ) ’
and
ln(‘u)k<2 di cos, (%d}() siny (%d}() +d —2d(cos,(1/2 d)())2>
/t =
w1255 ) cosy, (%d)() siny (%d)()
. 1 . 1 2
w ln(y)k(Zdz cos, (jd)() siny, (jd)() +d —2d(cos,(1/2dx)) )
z125(x, t) = _k( N el ) (42)
cosy, (ﬂl)() siny, (ﬂl){)
1 ln(y)k(2di cosy (%dx) siny, (%d}() +d— Zd(cos#(l/de))z) >2
- 2( cosy, (%d}() siny<%d)(> .
Family. 1.6: When f = —dand e =0,
w196 (x, t) = 2d1In(pu)k(1 + tanhy (dy)),
(43)

w

2
2106(x, 1) = — p (Zdln(y)k(l + tanh},(d)())) - % (Zdln(y)k(l + tanh;,(d)())) ,
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’(,U1/27(x, t) = 2dln(y)k(1 + COthy (d}()),
2 (44)
z107(x, 1) = —% <2dln(y)k(1 + Cothy(dx))> - % (Zdln(y)k(l + cothy(dx))) ,
) dIn(p)k(coshy (2dx) + sinhy (2dx) + i)
coshy (2dy) ’

t1as(0,8) = _w/(, dIn(p)k(coshy (2dx) + sinhy (2dx) + 1)
oA coshy (2dy)

wyp8(x,t) =

k

1 2dln(y)k(cosh;,(2d)()+sinhy(2d)()+i) 2
coshy, (2dy) ’

(45)

2

) dIn(p)k(coshy (2dx) + sinh, (2dx) + 1)
sinh, (2dx) ’

w (2 dIn(p)k(coshy (2dy) + sinhy, (2dy) + 1) >

2120(x, 1) = k sinh, (2dy)

1/, dIn(u)k(cosh, (2dx) + sinhy, (2dx) + 1)\ 2
— =2 - s
2 sinhy, (2dx)

wy9(x, 1) =

(46)

and
In(p)kd (2 coshy (3dx) sinhy, (1dx ) +2 (coshu(1/2dx))* ~ 1)
coshy (3dx) sinhy, (3dx)
In(p)kd (2 coshy (3dx) sinhy, (1dx ) +2 (coshy(1/2d))* - 1) ) W)
coshy (3dx) sinhy, (1dx)
1 <1n(y)kd (2 cosh,, (%dx) sinh,, (%dx) +2 (coshy, (1/2dx))* — 1) )2
coshy, (3dx) sinhy, (3dx) '

2
Family. 1.7: When ¢ = 0,

wy30(x,t) =

7

w

z130(x, t) = _k(

k(e®In(p)x — 4 fd(ex In(u) +2))

w31 (x, 1) = 2x /
k(€31 —4fd(ex 1 2
ra () = _cktJ( (¢ In(p)x e/;X(ex n(p) + ))) )
1/ k(S In(u)x —4 fd(ex In(p) +2))\?
2 ( ey ) ‘
Family. 1.8: Whend =0, f #0,and e # 0,
 eIn(u)k(coshy (ex) — sinhy (ex))
Wi f) =2 coshy (ex) —sinhy (ex) +1 ’
_ w [, eIn(p)k(coshy (ex) — sinhy(ex))
2122(xt) = Kk <2 coshy, (ex) — sinhy (ex) + 1 ) 49

1 (2 eln(p)k(coshy (ex) — sinhy (ex)) )2,

2 coshy, (ex) — sinhy, (ex) +1
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and

eln(p)k

coshy, (ex) + sinhy, (ex) +1’
_w eln(p)k

21,33(xrt) -k < Coshy (6)() + Sinhy (f?X) + 1>

1 eln(p)k

2
2 < coshy (ex) + sinhy, (ex) + 1) ’

Family. 1.9: Whene =v, f = pt(p #0),and d =0,

T In(p)k(1 — pp™ + pu™*
w134, 1) = —2 T £1+Zifx )

1 k(g — X 4 ppTX
zl,34<x,t>——‘;(_zf n() (q_l1fZ§fix pi >>

L 1(,TIn(ok(l = pptX 4+ ppr) \?
2 —1+4+putx '

w133(x, 1) =2

(50)

(51)

In()k? (4def+2fd\f—e3—ez ﬁ)
e2tey/p-2fd
14

b B
+ kL.

Taking into account case 2, and utilizing (10), (13), and (15) together with the corre-
sponding general solutions of (9), we obtain the following class of solitary wave solutions
for FCBWBK given in (1):

Family. 2.1: Whenyp <0 f #0,

FO(—\/w+ Htany(%mx))
—e + /= tan, (%NX) ’
1 (68) = _w(PO(_ﬂ+ Htam(%ﬁ)())) _1<F0(—\/¢+ Htam&%ﬁ;&) >2,
, k —e+ /¢ tan, (%\/Tqyx) 2 7e+\/j¢tany(%\/ij>

where x =

w31 (x/ t) =

(52)

Fo (v + v=Fcoty (1v/=¥x))
e+\/—7¢coty(%\/—7¢)() ’
w<Fo(ﬂ+W00fy(%WX))> _1<F0(W+Ncofu(%ﬂx)))2
EN ek vt (3v=ox) 2\ eyt (bvx)
a3, 1) — FLCENVI OV + Vsin (V=) + V=)
23\ —ecosy(v=Px) + /= Psing(vV—9x) + V-9
a(t) — (Fo(—\/@cosu(\/jlfx) + V= Psing (V=) + \/—7))
S K\ —ecos,(vV=9x) + V=9sin, (V=91 + V=
_1<Fo(\/@cosﬁ(x/T’XH\/Tbsiny(WxHN))z
2\ —ecos, (V=91) + Vs (V1) + V¢ /)’
Fo(v/sinu (v =Fx) + v =P cosu(V=Fx) + V=)
esiny (V=9x) + /=9 cosu(V=x) + /=9
il t) = _w(PoWsinyw—*m + V= cosy (v=9x) + FP))
R K\ esing(V=92) + V=Fcos,(V=91) + V=F
~ 1<Po<¢¢sinw—7x> + /= cosu(v=x) +v/=9) )2
2\ esinu(y/=9x) + vV cosu (V=) + V9 )’

WQ,Q(X, t) =

(53)

z0(x,t) = —

(54)

w2,4(x/ t) =

(55)
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and

Fo (2 vFcosu (bv=x) s (3v=7) — v+ 29 (cos (3v=7) )
zecosy(%\/j’bx) siny(%\/—fpx) - H+2H(C05y<}1mx)>2

o (2P (/) s (b =) - V92 s (1))

e nEA

1 (2 Feon (/) s (1) - VB 4 2B (om (1)) .

=l 2ecosy (h/=x) s (1 =x) = v+ 2079 (com (1) ) )

2
Family. 2.2: Whenyp >0 f #0,

wo5(x,t) =

(56)

Fov/§(1+ tanhy (3v/x) )
g+\/$tanhy(%\/¢?() ,
N (T NV )
22’6(x't):k( e+\/¢tanhy(%\/@f) >2< e+\/¢tanhy(%\/@() >,

wo6(x,t) =

(57)

FO\/¢<1 + cothy (%\/@())
e+\/¢cothy<%\/¢x) ’

w Foﬂ(1+cothy<%\/@()) 1 F0ﬂ<1+COth”(%\/¢X)) ’
22,7(x/t):_k< e+\/¢cothy(%\/¢x> >_2< e+\/¢cothy(%\/¢)() >,
Fo/ (coshy (v/@x) + sinhy, (v/§x) +1)

ecoshy, (\/Px) + /P sinhy, (\/Px) + /i’
2s(xt) = _w( For/§ (coshy, (v/Px) + sinhy (v/Px) + 1) )
28 k \ ecoshy (v/Px) + /P sinh, (/Px) + /i
(Pof(coshﬂ(fx ) + sinh, (f)()+l))
e coshy (V) + vsinh, (§X) + Vi

ZUZ,7(X, t) =

(58)

wog(x,t) =

(59)

Fo/ (sinhy, (v/§x) + coshy (vPx) +1)
esinhy, (\/Px) + /i coshy, (v/Px) + V§’
20(x,1) = _w(Poﬁ(sinhy(\/@()+coshy(\/¢x)+1)>
29X, k \ esinh, (v/Px) + /§ cosh, (v/Px) + /P
_ 1<F0\/¢(Sinhu(\/¢x) + coshy (vgx) +1) >z

2 \ esinhy, (v/Px) + /P coshy (ViPx) + /9 )~

w9 (x,t) =

(60)
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and

Fo\/@<2 coshy, (%ﬂx) sinhy, (}1\/@)() - 1)

) =— ,
w20l —2ecoshy, (}I\/@C) sinhy, (%\/@() +VP
(51) = w ( - F0ﬁ<2 cosh},(}ﬂ/@)o sinhy@\/@x) - 1)) 6D
210\t = =7 —Zecoshy(%\/w)() sinhy, (%ﬂx) +VP
1 < - Fo\/@(Z coshy, (}I\/@)c) sinh, (%\/@C) - 1) )2‘
2 —2ecoshy, (}Iﬁx) sinhy, (%\/@() +V9
Family. 2.3: Whendf > 0and e =0,
w (x t)__FO(i_tanH(\/ﬁX))
e (VA )
o1 (n8) = _w(_ P«i—taw(ﬁdx))) _ 1<_ FO(i_tanH(\/ﬁX))>2
ETORC e (i )2 e (V)
w120, £) = Fo(i + coty (\/fdx))
eV .
( t)—_‘U(FO(iJFCOtH(\/ﬁX)))_1<F0(i+C0tu(\/JTdX))>2
PR R (Vi) )2 (Vi) )
ors(n = P08, (2 V) sy (2. Fix) + 1)
w (sinu (2 V/fdx) +1)
w ((Fy(—icos,(2+/fdx) +sin, (2 /fdx) +1)
2213(x, 1) = _k( . (sin, (2 \/7)():_ 0 ) (64)
| (RlCison@/Tin) i, 07 1)
2 (sinu (2 /fdx) +1)
sy~ POl VT +cos, (2 TA) +1)
il /T

_1<Fo(isiny(2\/>)()+cosﬂ( \/>X)+1)>
2 (cosy (2 /fdx) +1)
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and

| F (Zicosﬂ (%\/]de) siny, (%\/fTi)() — 42 <cosy (%\/f»d)(>)2>

wy,15(x,t) =

w
z215(x, t) = — T

(FO (Zicos” (%\/de) siny (%\/ﬁx) — 42 (Cosy (%\/ﬁ){))z) )
(

1 <P0 (Zicosy (%\/fTix) siny, (%\/ﬁl)() —+2 (cosy (%\/ﬁx>)2> )2
2 (—1—!—2(005},(%@%))2) '
Family. 2.4: Whendf > 0ande =0,

w16, £) = Fo(1 + tanh, (\/—fdx))
2OV T anhy, (V—fdx)

) =~ (B 0) ) 1(Po<1+tanhy<mx>>)2
TR e (Vo)) 2N ek (Vfdy) )

Fo(1+ cothy (/=Fx))
ot ()
2p17(x, t) = _W(PO(1+C°thH(\/_7de>)> _ 1<F0<1+C°thﬂ(mX>>>2
HETET R cothy (V= fax) 2\ coth(v=fdx) )’
Fy(coshy, (2 \/—fdx) + sinhy (2 \/—fdx) —|—z)
sinhy, (2/—fdx) +1i
e (x t):_CU(FO(COShy( \/7X)+Slnh ( mx)+i)>
2,183 k sinhy, (2 /—fdx) + i
) (flst 2/ ) i3/ T 4
2 sinhy, (2/—fdx) +i
Fo(coshy (2 /~Fi) + sinhy (2 /) +1)
coshy, (2/—fdx) +1
o (o2 7 + (2 /=5y 1)
k coshy, (2\/—fdx) +1
B 1<F0(coshy(2 V/—fdx) +sinh, (2 \/—fdx) +l)>
2 coshy, (2/—fdx) +1

(67)

wy,17(x,t) =
(68)

wr18(x,t) =

(69)

wy19(x,t) =

2219(x, ) = — (70)

and
Fo (2 coshy, (4 /=fdx ) sinby (§ /= fdx) +2 (coshy (1/2 \/=fdx))* ~ 1)
TEENENE |
) _w(FO(Z coshy, (4 v/=Fdx) sinhy, (4 /=Fdx) +2 (coshy (1/2 \/Tﬁx)f—l))
e 2 com (v
1<F0<2 coshy, (4 /= Fdx) sinhy, (1 /= fdx) +2 (coshy (1/2 \/dex))z—l)>2.
: 2o (7))

wo0(x,t) =

1)
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Family. 2.5: When f =dande =0,
Fo(i — tan, (dx)
Wy (%, t) = — (dtan El )
#x) (72)
2o (1 8) = _w( FR(di-dtan(dy)\ 1/ F(di-dtn,(dy) 2
e k d tany, (dy) 2 dtany, (dy) ’
Fo (i 4 coty,(d
wom(x,t) = of o (;( v) ,
(%) (73)
2am(x,t) = w Fo (i + coty (dx)) 1 Fo (i + coty (dx)) 2
2R g coty (dx) 2 coty (dx) ’
Wazs(x,£) = Fo(icosy(2dx) +siny (2dx) +1)
2B siny (2dx) + 1 ’
w ((Fy(icos,(2dx) +sin,(2dx) +1
anlnt) = _k< e sing (2dy) 1 )) 74)
1 (F(icosu(2dx) +sinu(2dx) +1) 2
2 siny (2dx) +1 ’
Wrsa (2, 1) = Fy(isin, (2dx) + cosy(2dx) +1)
224 cosy (2dx) +1 ’
w [ Fo(isin,(2dx) + cos,(2dx) +1
226 t) = _k< ( : cosy (2dx) —T—l )) (75)
1 (Fo(ising(2dx) + cosu(2dx) +1)\?
2 cos,(2dx) +1 ’
and
2
Fo <2icosy (%d}() siny, (%d}() -2 (cosﬂ (%d;{)) )
Wo5(x, ) = 5 ,
—-1+2 (cosy (%dx))
2
F <2icosy (%d}() siny (%d}() -2 (cosy (%d}()) >
w
2225(3( t) = —( > (76)
, ’ k 1 2
-1+2 (cosy (jdx)
2
1 (Fo <2zcosy (%d)() siny (%d)() -2 (cosy (%d}()) ) )2
_ = 5 _
2 -1+2 (cosy(%d)())
Family. 2.6: When f = —dand e =0,
_ Fy(1—tanhy(dy))
w26(%,t) = — tanh, (dy) -
=2 Fo(1 —tanhy(dx))\ 1/ Fo(1—tanhu(dy))\?
226150 =" tanh,, (dy) 2 tanh,, (dy) ’
_ Fy(1— cothy(dy))
P27 =T ) (78)
(1) = ~w( F(l-cothy(dx))\ 1( F(1— cothy(dy)) 2
22758 = 7% cothy, (d) 2 coth, (dx) ’
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(x,6) = Fo(— coshy, (2dx) + sinhy, (2dx) + i)
w228\ 1) = sinhy, (2dy) +i ’
w [ Fo(—coshy (2dy) + sinh, (2dx) + i) )

z x,t) = —— - - 79
228(%,1) k ( sinhy, (2dy) + i @)
1 Fo(— coshy,(2dx) + sinhy, (2dx) + i) 2

2 sinhy, (2dy) + i /
(x,1) = Fo(—sinhy, (2dx) + coshy, (2dx) + 1)

@229\t = coshy, (2dy) +1 ’

w [ Fy(—sinhy,(2dx) + coshy (2dx) —l—l))

z x,t) = —— 80
229(%t) k ( coshy (2dx) +1 80)

1 (Fo(— sinhy, (2dy) + coshy (2dx) + 1) )2

2 coshy (2dx) +1

and
Fo <2 coshy (3dx) sinhy (3dx) —2 (coshy (%dx))z + 1)
2 (coshy (%dx)f -1
Fo (2 coshy (dx ) sinhy (3dx) -2 (coshy, (%d;())z + 1) > o
2 (cosh, (%dx))z -1
L, B (2 coshy (3dx ) sinhy (3dx) -2 (coshy (%dx))z + 1) 2
(- 2 (cosh, (3dx) ) - 1 )

Family. 2.7: When ¢ = 0,

w30(x, 1) = —

7

_1FR(Sx In(p) — 4 fd(ex In(p) +2))

wy31(x, 1) =

4 fd(ex In(p) +2) '
_w( 1FR(xIn(u) —4fd(ex In(p) +2))
et = =5 (=3 i 2 ) 2
_1 < _ 1R(€x In(u) — 4 fd(ex In(p) +2)) )2
2 4 fd(ex In(p) +2) '
—FOZ(—4def+2fd\/¢+e3—e2\/¢) . (et )
where y = 52 niy) ) 4! 4f;1rh1§;¢)1: 0)xF

4. Discussion and Graphs

This section examines the ensemble of solitary wave solutions derived from our
research of the FCBWBKEs. Using the unique mEDAM technique, we deduce these solitary
wave solutions, which allows us to obtain a complete grasp of the intricate dynamics of
the FCBWBKEs. Visual representations clearly demonstrate the spectrum of solitary wave
behavior, including kinks, shock waves, periodic waves, and bell-shaped kink waves.

Figure 1, the (a) three dimensional, (b) contour (c) two dimensional (when ¢t = 0) and
representations of the kink solitary wave solution wy 14 stated in Equation (33) are shown
with the parameters’ valuesd = —5,e = 0,f = 15,k =10,a = 1,8 = 1,4 = e. Figure 2,
the (a) 3D representation of kink wave solution z; ;7 stated in Equation (34) is shown with
the parameters’ valuesd = —1,e = 0,f = 9,k = 5,0 = 1, = 0.9, 4 = e. Simultaneously,
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the (b) two-dimensional graph is constructed for the scenario where ¢t = 100 and the same
values of parameters. Figure 3, the (a) 3D representation of w; 7 stated in Equation (44) is
shown with the parameters’ valuesd = 5,e = 0,f = -5,k = 11,a = 08, = 1L, u = e.
Simultaneously, the (b) two-dimensional graph is constructed for the scenario where t = 0
and the same values of parameters. Overall, the graph shows shock wave profile. Figure 4,
the (a) 2D representations of wj 31 and (b) z 31 stated in Equation (48) are shown with the
parameters’ valuesd = 4,e =4, f =1,k =2,a = 0.6, 4 = 2. Overall, the figure represents
shock wave profiles. Figure 5, the (a) 3D representation of shock solitary wave solution ws 9
stated in Equation (60) is shown with the parameters’ valuesd = l,e = 4,f =2, F = 2,
o« = 1,=1u = e. Simultaneously, (b) a two-dimensional graph is constructed for the
scenario where t = 1 and the same values of parameters. Figure 6, the (a) 3D representations
of shock wave solution w; 15, (b) the two-dimensional graphs are constructed for the scenario
where t = 1 and the same values of parameters and (c) periodic bell-shaped solitary wave
solution z; 15 stated in Equation (63) are shown with the parameters’ values d = —25,¢ = 0,
f=-1,F =5a =098 = 09,u = e. Simultaneously, (d) two-dimensional graphs are
constructed for the scenario where t = 1 and the same values of parameters. Figure 7, the
(a) 3D representation of kink wave solution w; 5y stated in Equation (71) is shown with the
parameters’ values d = —95,e = 0, f = 40,Fy = 200,« = 1, = 1,4 = e. Simultaneously,
(b) two-dimensional graph is constructed for the scenario where ¢ = 3 and the same values of
parameters. Figure 8, the (a) 2D representations of w; 31 and (b) z2 31 stated in Equation (82)
are shown with the parameters’ valuesd = 1,e = 1,f = 1/4, Ffy = 10,4 = 5 and different
values of a.

(@) (b)

Figure 1. The (a) three dimensional, (b) contour (c) two dimensional (when ¢ = 0) and representations
of the kink solitary wave solution wy 16 stated in Equation (33) are shown with the parameters’ values
d=-5e=0f=15k=10,a =1,=1u=e
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Figure 2. The (a) 3D representation of kink wave solution z1 ;7 stated in Equation (34) is shown with
the parameters’ valuesd = —1,e =0, f =9,k =5,a = 1, = 0.9, y = e. Simultaneously, the (b) two-
dimensional graph is constructed for the scenario where t = 100 and the same values of parameters.
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— 60000 |-

— 3000
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Figure 3. The (a) 3D representation of w; 57 stated in Equation (44) is shown with the parameters’ values
d=5e=0,f=-5k=11,a = 0.8, =1, u = e. Simultaneously, the (b) two-dimensional graph is
constructed for the scenario where ¢t = 0 and the same values of parameters. Overall, the graph shows
shock wave profile.
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Figure 4. The (a) 2D representations of wj 31 and (b) z1 31 stated in Equation (48) are shown with the
parameters’ values d = 4,e = 4,f = 1,k = 2,a = 0.6,y = 2. Overall, the figure represents shock
wave profiles.
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Figure 5. The (a) 3D representation of shock solitary wave solution w; g stated in Equation (60) is shown
with the parameters’ valuesd = 1,e = 4,f = 2,F) = 2,a = 1,8 = 1,4 = e. Simultaneously, (b) a
two-dimensional graph is constructed for the scenario where ¢ = 1 and the same values of parameters.
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Figure 6. The (a) 3D representations of shock wave solution w, 15, (b) the two-dimensional graphs are

constructed for the scenario where t = 1 and the same values of parameters and (c) periodic bell-shaped

solitary wave solution z; 1, stated in Equation (63) are shown with the parameters’ values d = —25,e = 0,

f=-1,F=5a=09,B=09,u = e Simultaneously, (d) two-dimensional graphs are constructed for

the scenario where ¢ = 1 and the same values of parameters.
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Figure 7. The (a) 3D representation of kink wave solution w; 9 stated in Equation (71) is shown with
the parameters’ values d = —95,e =0, f = 40,Fy =200,& = 1,8 = 1,4 = e. Simultaneously, (b) two-
dimensional graph is constructed for the scenario where ¢t = 3 and the same values of parameters.
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Figure 8. The (a) 2D representations of wy 31 and (b) z; 31 stated in Equation (82) are shown with the
parameters’ valuesd = 1,e =1, f = 1/4, Fy = 10, 4 = 5 and different values of .

A solitary wave is a single, sustainable wave disturbance that keeps its shape as it moves
through a medium, resulting from a delicate balance of nonlinearity and dispersion. It can take
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many forms, including solitons, kink, shock, and periodic. Different types of solitary waves
have distinct properties. Kinks, which are characterized by localized amplitude or phase
deviations, represent a change in the wave’s behavior. Shock solitary waves, also known
as shock waves, are abrupt changes in wave amplitude caused by nonlinear interactions.
Rogue solitary waves are uncommon, extreme events with unusually large amplitudes that
frequently appear unexpectedly in nonlinear systems. Periodic solitary waves are stable,
repetitive waves with regularly spaced crests and troughs that exhibit periodicity in their
oscillatory behavior. Each type of solitary wave reflects a distinct set of nonlinear dynamics in
a given medium.

In the context of shallow water waves, multiple fascinating phenomena appear. Singular
kinks are sudden variations in wave amplitude caused by rapid changes in water depth or
other contributing variables. Kinks, on the other hand, appear as smooth, localized aberrations
within wave patterns, and their presence is frequently ascribed to the complex interplay of
bathymetry and wave interactions. Periodic waves, caused by prolonged winds or other
steady driving factors, beautify shallow seas with their regular and repeating patterns. Shock
waves, on the other hand, appear as abrupt and steep wave fronts in shallow water habitats,
caused by occurrences such as undersea landslides, violent currents, or quick changes in
water depth. Bell-shaped waves arise when waves converge or interference patterns emerge
in shallow water and have centre peaks with slow amplitude reductions.

Some 2D, 3D, and contour plots are used to graphically depict the interdependence of
distinct solitary wave kinds, propagation patterns, and interactions. This graphical assessment
highlights the significance of our findings and justifies the mEDAM technique for untangling
complicated nonlinear systems. Finally, this graphical depiction demonstrates the mEDAM
approach’s groundbreaking contributions to resolving complex nonlinear events while also
expanding our understanding of solitonic behavior in the domain of FCBWBKEs. The sug-
gested mEDAM'’s effectiveness stems from its ability to generate a wide range of solitary wave
solutions, including hyperbolic, periodic, exponential, and rational functional solutions. These
solutions provide a more in-depth understanding of the specified model’s inherent behavior
in shallow water. Furthermore, by balancing linear and nonlinear terms, the proposed method
converts the NFPDE into a solvable system of nonlinear algebraic equations without the use
of linearization or other processes. Furthermore, imposing certain constraint conditions on the
mEDAM results for NFPDEs allows for the derivation of solutions obtained via alternative
methods such as the (G’/G)-expansion method and the tan-function method. This observation
suggests that the proposed approach functions as a generalization of the aforementioned
methods, with the latter regarded as specific instances of the former.

5. Conclusions

In conclusion, this study successfully developed and discovered solitary wave solu-
tions within the context of the FCBWBKE, a shallow water wave model. The mEDAM
was used to convert a complex NFPDE into a more manageable NODE, overcoming the
difficulties associated with fractional calculus definitions. In addition, the use of visual
representations such as 2D, 3D, and contour graphs has improved our understanding
of solitary wave dynamics in shallow water wave situations and provided a mechanism
for effectively expressing difficult mathematical ideas. Furthermore, the study of vari-
ous wave phenomena such as kinks, shock waves, periodic waves, and bell-shaped kink
waves demonstrates the breadth of knowledge gained in the study of shallow water wave
behavior. This research contributes a novel methodology and significant and consistent
discoveries, and it ultimately advances our comprehension of wave physics and mathemat-
ical procedures, making a major contribution to the field. Moreover, since the suggested
approach demonstrated its effectiveness in producing multiple families of solitary wave
solutions for FCBWBKESs, we intend to extend its application to other complex NFPDEs in
the future. We seek to investigate its effectiveness in dealing with NFPDEs with variable
coefficients in particular, marking a new frontier in mEDAM research. This extension has
the potential to usher in a new era of research in the field of mEDAM methodologies.
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