
Citation: Feng, W.; Wang, Q.; Liu, H.;

Ren, Y.; Zhang, J.; Zhang, S.; Qian, K.;

Wen, H. Exploiting Newly Designed

Fractional-Order 3D Lorenz Chaotic

System and 2D Discrete Polynomial

Hyper-Chaotic Map for

High-Performance Multi-Image

Encryption. Fractal Fract. 2023, 7, 887.

https://doi.org/10.3390/

fractalfract7120887

Academic Editors: Ravi P. Agarwal

and Maria Alessandra Ragusa

Received: 14 November 2023

Revised: 7 December 2023

Accepted: 12 December 2023

Published: 16 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Exploiting Newly Designed Fractional-Order 3D Lorenz Chaotic
System and 2D Discrete Polynomial Hyper-Chaotic Map for
High-Performance Multi-Image Encryption
Wei Feng 1 , Quanwen Wang 1, Hui Liu 1, Yu Ren 1, Junhao Zhang 1, Shubo Zhang 1, Kun Qian 2,3,*
and Heping Wen 4

1 School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China;
fengwei@pzhu.edu.cn (W.F.); quanwenwang@pzhu.edu.cn (Q.W.); liuhhh2002@126.com (H.L.);
renyu2002@126.com (Y.R.); zhangjunhao1618@126.com (J.Z.); 13467266166@163.com (S.Z.)

2 Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications,
Hunan Institute of Science and Technology, Yueyang 414006, China

3 College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, China
4 School of Electronic Information, University of Electronic Science and Technology of China,

Zhongshan Institute, Zhongshan 528402, China; wenheping@uestc.edu.cn
* Correspondence: tsienkun@hnist.edu.cn

Abstract: Chaos-based image encryption has become a prominent area of research in recent years.
In comparison to ordinary chaotic systems, fractional-order chaotic systems tend to have a greater
number of control parameters and more complex dynamical characteristics. Thus, an increasing
number of researchers are introducing fractional-order chaotic systems to enhance the security
of chaos-based image encryption. However, their suggested algorithms still suffer from some
security, practicality, and efficiency problems. To address these problems, we first constructed
a new fractional-order 3D Lorenz chaotic system and a 2D sinusoidally constrained polynomial
hyper-chaotic map (2D-SCPM). Then, we elaborately developed a multi-image encryption algorithm
based on the new fractional-order 3D Lorenz chaotic system and 2D-SCPM (MIEA-FCSM). The
introduction of the fractional-order 3D Lorenz chaotic system with the fourth parameter not only
enables MIEA-FCSM to have a significantly large key space but also enhances its overall security.
Compared with recent alternatives, the structure of 2D-SCPM is simpler and more conducive to
application implementation. In our proposed MIEA-FCSM, multi-channel fusion initially reduces
the number of pixels to one-sixth of the original. Next, after two rounds of plaintext-related chaotic
random substitution, dynamic diffusion, and fast scrambling, the fused 2D pixel matrix is eventually
encrypted into the ciphertext one. According to numerous experiments and analyses, MIEA-FCSM
obtained excellent scores for key space (2541), correlation coefficients (<0.004), information entropy
(7.9994), NPCR (99.6098%), and UACI (33.4659%). Significantly, MIEA-FCSM also attained an average
encryption rate as high as 168.5608 Mbps. Due to the superiority of the new fractional-order chaotic
system, 2D-SCPM, and targeted designs, MIEA-FCSM outperforms many recently reported leading
image encryption algorithms.

Keywords: chaotic system; fractional order; hyper-chaotic map; image encryption; multi-channel
fusion; security analysis

1. Introduction

In today’s highly informationalized and digitalized era, the application of digital
images is omnipresent. Compared to text or other carriers, digital images can transmit
information promptly and vividly, and they have been integrated into all aspects of so-
ciety [1,2]. Significantly, the extensive utilization of digital images also incurs a slew of
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privacy and security challenges. Hence, there is an urgent need for more secure and effi-
cient methods to safeguard image data. As we know, in contrast to other methods, image
encryption is a relatively simple yet effective method to secure image data [3].

In fact, a large number of image encryption algorithms have already been proposed [4].
Unlike traditional encryption algorithms such as data encryption standard (DES), these
algorithms are based on novel techniques and methods, such as chaotic maps [5–8], neu-
ral networks [9,10], compressive sensing [10,11], deoxyribonucleic acid (DNA) comput-
ing [12,13], and quantum computing [14,15].

Notably, chaotic systems possess multiple unique properties that are suitable for con-
structing cryptographic systems, including unpredictability and randomness. Therefore,
a majority of the existing image encryption algorithms are built upon various chaotic
systems [16]. Here, we can provide several examples of recent advancements. By exploiting
a cellular neural network, Wang et al. [10] presented an encryption algorithm based on
compressive sensing to protect image data in an embedded manner. Their algorithm first
utilized the wavelet transform to sparsify the input image, and then performed subsequent
encryption processing using binary patterns and compressive sensing. In [17], an image
encryption algorithm relying on several chaotic maps and optimization algorithms was
suggested. This algorithm employed optimization algorithms to modify encryption pa-
rameters and ultimately produced the final ciphertext image by performing confusion and
diffusion operations. In [18], an encryption algorithm utilizing DNA computing and chaotic
systems was introduced by Yu et al. Their algorithm directly utilizes the hash value of the
input image to produce chaotic sequences, which are then used for encrypting the image
data. In [19], Nan et al. first constructed a hyper-chaotic map called the logistic coupling
cubic chaotic map (LCCCM). Then, they suggested an image encryption algorithm using
compressive sensing and S-boxes. Benefiting from the randomness of chaotic sequences,
this algorithm achieved a satisfactory encryption effect. However, the structure of the
chaotic map it adopted is relatively complex, and the encryption efficiency is relatively
low. Additionally, their algorithm is also a lossy one, which makes it actually not suitable
for encrypting images containing rich details. Employing a 2D logistic map, Liu et al. [20]
devised an encryption algorithm based on DNA sequence operations to encrypt images.
In their algorithm, plaintext-related information was directly used to generate chaotic
sequences. This design requires the algorithm to regenerate the chaotic sequences when
encrypting different images. Consequently, its encryption efficiency cannot actually meet
the needs of practical applications. By exploiting the Mersenne twister, Masood et al. [21]
suggested an image encryption algorithm based on DNA encoding and chaotic sequencing.
According to previous studies in cryptanalysis [22–24], although this algorithm passed
certain statistical tests, it is unable to effectively withstand plaintext attacks due to the
absence of any diffusion operation.

As mentioned above, although many existing encryption algorithms are specially
developed for images, these algorithms still have shortcomings in practicality, security, and
efficiency, and cannot well meet the needs of practical applications [4,22–24]. Therefore,
while ensuring security, in order to further enhance the practicability and efficiency of
chaotic image encryption, we first constructed a new fractional-order 3D Lorenz chaotic
system and a 2D sinusoidally constrained polynomial hyper-chaotic map (2D-SCPM). Then,
we further devised a multi-image encryption algorithm based on the new fractional-order
3D Lorenz chaotic system and 2D-SCPM (MIEA-FCSM). In our proposed MIEA-FCSM, the
input images are first reshaped and fused into a 2D pixel matrix. Since the pixel number of
the fused pixel matrix is reduced to one-sixth of the original number, there is a considerable
decrease in the computational amount required for the subsequent encryption steps. Next,
two rounds of plaintext-related chaotic random substitution, dynamic diffusion, and fast
scrambling are performed to encrypt the fused matrix into the final ciphertext matrix.
Overall, the work presented in this paper has the following contributions and innovations:

• A new fractional-order 3D Lorenz chaotic system with the fourth parameter was
constructed to enhance the security of chaos-based image encryption.
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• A hyper-chaotic map named 2D-SCPM was proposed. Because of its simple structure
and superior chaotic performance, 2D-SCPM is highly appropriate for image encryption.

• To address the shortcomings of existing image encryption algorithms, a multi-image
encryption algorithm based on the new fractional-order 3D Lorenz chaotic system and
2D-SCPM was developed.

• Due to the excellent chaotic performance of the fractional-order 3D Lorenz chaotic
system and 2D-SCPM, the innovative efficiency advantage of multi-channel fusion,
and well-designed full vector-level encryption operations, MIEA-FCSM not only
possesses excellent practicability, but also exhibits extremely high security and encryp-
tion efficiency.

• Extensive experiments and analyses were performed to demonstrate the superiority
of the fractional-order 3D Lorenz chaotic system, 2D-SCPM, and MIEA-FCSM.

The following is the organization of the remaining sections: Section 2 describes the
construction of a new fractional-order 3D Lorenz chaotic system. Section 3 presents the
proposed 2D-SCPM, evaluates its performance, and compares it to other chaotic maps.
Section 4 offers a comprehensive overview of MIEA-FCSM, along with a detailed expla-
nation of each encryption step involved. Section 5 tests and analyzes the security and
efficiency of MIEA-FCSM. Finally, the conclusions are given in Section 6.

2. Fractional-Order Chaotic System

The classical 3D Lorenz system is widely applied in the field of chaotic image encryp-
tion due to its simple structure and complex dynamical characteristics [1]. The Lorenz
system has three control parameters, σ, ρ, and β, which represent the Prandtl number,
the Rayleigh number, and the geometric ratio, respectively. This system is chaotic while
the control parameters satisfy the conditions σ ∈ [9, 10], ρ ∈ [25, 30], and β ∈ [2, 3]. To
expand the key space of our proposed image encryption algorithm and enhance its security,
the fourth parameter α is introduced to the 3D Lorenz system through fractional calculus.
According to Caputo’s definition of fractional derivatives, the proposed 3D fractional-order
Lorenz system can be depicted as follows:

Dαx = σ(y − x),
Dαy = ρx − y − xz,
Dαz = xy − βz,

(1)

where Dα is Caputo’s differential operator with fractional-order α, α ∈ (0, 1]. According to
Caputo’s definition of fractional derivatives, the α-order derivative of the function x(t) can
be expressed as follows:

Dαx(t) =
1

Γ(1 − α)

∫ t

0
(t − τ)−αx′(τ)dτ, (2)

where Γ(•) is the gamma function. The prediction–correction method of Adams–Bashforth–
Moulton (ABM) was utilized to obtain a numerical solution for this fractional-order sys-
tem [25]. Since the ABM method has an error roughly proportional to h2, the step-size h
was set to 0.001 to obtain an error of 10−6.

Figure 1 shows the phase trajectories of this system when the initial states {x0, y0, z0}
were set to {0.3, 0.3, 0.3}, {0.4, 0.4, 0.4}, {0.2, 0.2, 0.2}, and {0.35, 0.35, 0.35}, respectively.
At this point, the system parameters {σ, ρ, β} were set to {10, 28, 8/3}. By observing the
phase trajectory diagrams, one can find that the system starts from similar initial states and
eventually evolves into different orbits.
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(a) (b)

(c) (d)

Figure 1. Phase trajectories of the fractional-order 3D Lorenz system with different initial states while
the parameters {σ, ρ, β, α} = {10, 28, 8/3, 0.995}: (a) x-y plane; (b) x-z plane; (c) y-z plane; (d) 3D plot.

In addition, the chaotic behavior of the fractional-order system was also analyzed
through its Lyapunov exponent spectrums against different parameters, which were cal-
culated through the Benettin–Wolf algorithm [26], as shown in Figure 2. According to
Lyapunov exponent spectrums, one can find that the fractional-order 3D Lorenz system has
a positive LE, while σ ∈ [5.81, 17.5], ρ ∈ [24, 70], β ∈ [1, 3.3], and α ∈ [0.92, 1]. Compared
to the integer-order 3D Lorenz system, the fractional-order 3D Lorenz system possesses
more control parameters and wider chaotic parameter ranges. Therefore, we can employ
the fractional-order 3D Lorenz chaotic system to enhance the security of image encryption.

(a) (b)

(c) (d)

Figure 2. Lyapunov exponent spectrums of the fractional-order 3D Lorenz system: (a) Sweep parameter
σ while {ρ, β, α} = {28, 8/3, 0.99}; (b) sweep parameter ρ while {σ, β, α} = {10, 8/3, 0.99}; (c) sweep
parameter β while {σ, ρ, α} = {10, 28, 0.99}; (d) sweep parameter α while {σ, ρ, β} = {10, 28, 8/3}.
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3. Proposed 2D-SCPM

To facilitate the efficiency and security of image encryption, we proposed a 2D hyper-
chaotic map characterized by its straightforward structure and outstanding chaotic per-
formance. This section introduces this new map and evaluates its performance with the
Lyapunov exponent (LE), bifurcation diagram, Kolmogorov entropy (KE), and the NIST
SP800-22 test suite.

3.1. Construction of 2D-SCPM

Currently, chaotic maps find extensive utilization in image encryption. For encrypt-
ing images, the structural simplicity and chaotic performance of chaotic maps and their
efficiency in generating chaotic sequences are of utmost importance. Put simply, when
developing an image encryption algorithm, the chaotic map utilized should possess a
straightforward structure and excellent chaotic behaviors. It is widely known that classical
maps, such as the tent map, possess straightforward structures; however, their chaotic
performances are relatively poor. With the recognition that hyper-chaotic maps generally
exhibit superior chaotic behaviors compared to 1D chaotic maps, there has been an increas-
ing number of proposed 2D chaotic maps in recent years [11,19,27–29]. Notably, although
these newly proposed hyper-chaotic maps exhibit relatively good chaotic performance,
their structures are rather complex, as demonstrated in Table 1. This is obviously not
conducive to encryption efficiency or software and hardware implementations.

Table 1. Definitions of five recent chaotic maps.

Ref. Name Definition

[27] SCMCI (2021)
{

xi+1 = r sin(π((yi + h)k sin(aπ/xi))),
yi+1 = r sin(kxi+1 + h) sin(aπ/xi))).

[28] LSM (2021)
{

xi+1 = cos(4axi(1 − xi) + b sin(πyi) + 1),
yi+1 = cos(4ayi(1 − yi) + b sin(πxi) + 1).

[29] STLFM (2022)
{

xi+1 = sin(π(4p1xi(1 − xi) + 1/(y2
i + 0.1)− p2yi)),

yi+1 = sin(π(4p1yi(1 − yi) + 1/(x2
i + 0.1)− p2xi)).

[11] FOCM (2022)


xi+1 = xi + (hv/(Γ(1 + v))) cos(2πxi/
(2µx4

i − 1)− yi),
yi+1 = yi + (hv/(Γ(1 + v))) cos(µπ
xi+1 + yi).

[19] LCCCM (2022)


xi+1 = cos(π2(4µxi(1 − xi) + pyi(1−
y2

i )) + π/2),
yi+1 = cos(π2(4µyi(1 − yi) + pxi(1−
x2

i+1)) + π/2).

Therefore, to enhance the security and efficiency of image encryption, we constructed
the following hyper-chaotic map, called 2D-SCPM:{

xi+1 = sin(10axiyi + 10byi),

yi+1 = sin(10bxiyi + 10axi).
(3)

In Equation (3), (xi, yi) serve as the input states for the i-th iteration of 2D-SCPM, while
(xi+1, yi+1) are the resulting output states. Additionally, a and b function as control param-
eters. In 2D-SCPM, two exponential parameters enable the trajectory to diverge quickly,
while the sine function can constrain the trajectory within a specific range. When compared
to many newly proposed chaotic maps, 2D-SCPM exhibits better chaotic performance while
featuring a simpler construction.

3.2. LE

The divergence velocity between the trajectories approaching each other in phase
space can be characterized by LE, which is a reliable metric extensively employed to judge
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if a dynamical system is chaotic. In particular, if a dynamical system features one LE
greater than 0, the system is considered chaotic. Furthermore, if there are multiple positive
LEs, then it is classified as hyper-chaotic. For a system S(x, y), such as 2D-SCPM, one can
calculate its LEs through

LEk = lim
q→∞

1
q ∑q

j=1 ln
∣∣λk(J(xj, yj))

∣∣. (4)

In Equation (4), LEk indicates the two exponents LE1 and LE2 to be calculated, q is the
quantity of iterations that S(x, y) goes through, and λk(J(xj, yj)) represents each eigenvalue
of the system’s Jacobian matrix J(xj, yj).

Figure 3 depicts the LE representations obtained for 2D-SCPM. It is evident that within
the continuous interval where a, b ∈ [1, 12], both LE1 and LE2 are always positive. This
suggests that 2D-SCPM is in a hyper-chaotic state. As the values of a and b increase, these
two exponents will grow rapidly, eventually reaching their maximum values of 27.5045 and
26.9717, respectively.

(a) LE1 (b) LE2

Figure 3. 3D LE presentations for 2D-SCPM.

To further confirm the superiority of 2D-SCPM, additional comparative experiments
were carried out. In Table 2, a list of the parameter configurations used in our experiments
is provided. Note that the specific values adopted are the ones suggested by the pertinent
references [11,19,27–29]. As indicated in Figure 4 and Table 2, SCMCI, FOCM, and LCCM
exhibit apparent periodic windows, which are not undesirable for image encryption. LSM
also features unstable points where the LE value drops sharply. Although the LE values of
STLFM are relatively stable, their values are small, resulting in a relatively low trajectory
divergence velocity. In contrast, throughout the entire parameter range, the LE values
of 2D-SCPM are not only the most stable but also remarkably high. This suggests that
2D-SCPM possesses the highest state value sensitivity and trajectory divergence velocity,
making it more suitable for image encryption.

Table 2. Configurations and results of LE comparative experiments for 2D-SCPM.

Name
Configuration LE1 LE2

Invariable Variable Average Std. Dev. Average Std. Dev.

SCMCI [27] k = 1, h = 2, r = 1 a 4.7720 0.7903 −0.2738 0.0520
LSM [28] b = 50 a 4.0835 0.0202 3.5923 0.0180

STLFM [29] p2 = 50 p1 4.6961 0.0230 4.0224 0.0301
FOCM [11] h = 0.5, v = 0.789 µ 1.6410 0.4487 0.0794 0.0625

LCCCM [19] p = 8.78 µ 6.7625 0.0119 2.6554 1.2474
2D-SCPM b = 12 a 27.0762 0.0010 26.1167 0.0040
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Figure 4. LE experiment results for 2D-SCPM and other five maps: the first column is the LE1 values
of six maps; the second column is the LE2 values.

3.3. Bifurcation Diagram

Bifurcation diagrams can offer visual representations of how parameters affect the
output distributions of chaotic systems. To meet the necessary requirements of image
encryption, it is crucial that the distribution of the adopted system’s output be uniform.
Failure to achieve uniform distribution may result in security vulnerabilities. The top
row of Figure 5 exhibits the bifurcation diagrams of LASM [30] and FOCM [11]. It is
clearly noticeable that the output distributions of these two recent maps are nonuniform.
This lack of uniformity presents limitations and disadvantages for potential applications
relying on these maps. Conversely, the output distribution of 2D-SCPM is highly uniform
across the entire continuum of (a, b) ∈ [1, 12], as demonstrated in the bottom row of
Figure 5. Consequently, regarding the output distribution, 2D-SCPM is better suited for
image encryption.

(a1) (a2) (b1) (b2)

(c1) (c2) (c3) (c4)

Figure 5. Bifurcation diagrams for three different maps: (a1,a2) are bifurcation diagrams for LASM;
(b1,b2) are two diagrams for FOCM (h = 0.5, v = 0.789); (c1–c4) are four diagrams for 2D-SCPM.



Fractal Fract. 2023, 7, 887 8 of 30

3.4. KE

As a frequently utilized indicator for evaluating chaos, KE can quantify the information
required to predict the future trajectory of a dynamical system based on its current state [31].
If the KE value of a dynamical system exceeds 0, it indicates that the system is in a state of
chaos. The chaotic dynamics of the system are further regarded as more complex when the
KE value is higher, making it more challenging to predict the trajectory of the system. After
dividing the q-dimensional space into infinitely small boxes (s1, s2, . . . , sq), one can provide
a mathematical definition of KE as

KE = − lim
d→0

lim
ε→0

lim
q→∞

d−1 ∑s1,s2,...,sq
ρ(s1, s2, . . . , sq) ln ρ(s1, s2, . . . , sq), (5)

where d stands for the delay, and ρ(s1, s2, . . . , sq) represents the probability that the tra-
jectory can be properly predicted. A series of experiments were carried out to assess the
unpredictability, randomness, and complexity of 2D-SCPM using the approach outlined
in [31]. For these experiments, we utilized the same setups as the LE experiments. From
Figure 6 and Table 3, it is evident that LSM, STLFM, and LCCCM all exhibit good KE
values. However, it is noteworthy that 2D-SCPM outperforms the rest in terms of both av-
erage value and stability. This demonstrates that 2D-SCPM offers the best unpredictability,
randomness, and complexity, making it better suited for image encryption.

Table 3. Configurations and results of KE comparative experiments for 2D-SCPM.

Name
Configuration KEx KEy

Invariable Variable Average Std. Dev. Average Std. Dev.

SCMCI [27] k = 1, h = 2, r = 1 a 2.1476 0.0785 1.8273 0.1467
LSM [28] b = 50 a 2.1210 0.0772 2.1169 0.0733

STLFM [29] p2 = 50 p1 2.1125 0.0929 2.1156 0.0591
FOCM [11] h = 0.5, v = 0.789 µ 0.3539 0.1332 0.8251 0.3020

LCCCM [19] p = 8.78 µ 2.1015 0.0810 2.1294 0.0737
2D-SCPM b = 12 a 2.2523 0.0466 2.2246 0.0572

Figure 6. KE experiment results for 2D-SCPM and other five maps: the first column is the KEx values
of six maps; the second column is the KEy values.

3.5. Randomness Test

As a widely recognized and well-known randomness test suite, NIST SP800-22 con-
tains 15 randomness test items that can comprehensively evaluate the randomness of
sequences. For an input data sequence of length 106, if the obtained test result (p value)
exceeds a given confidence probability (typically 0.01), then the sequence is regarded as
highly random. To further demonstrate the performance of 2D-SCPM, we employed the
suite to conduct exhaustive experiments on the sequences generated by it. The experiment
outcomes we obtained are listed in Table 4. As can be observed, the output p values are
considerably greater than the threshold of 0.01, whether they are x sequences or y sequences.
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Consequently, 2D-SCPM does possess excellent randomization performance and is ideal
for designing cryptosystems.

Table 4. NIST test outcomes for 2D-SCPM.

Item Name
p Value

Result
x Sequence y Sequence

Frequency (Monobit) 0.133171 0.536575 Random
Frequency (Block) 0.124135 0.517819 Random
Runs 0.452929 0.096436 Random
Longest Runs 0.638713 0.353124 Random
Matrix Rank 0.067070 0.872194 Random
Discrete Fourier Transform 0.393422 0.485537 Random
Non-Overlapping Template 0.441853 0.431362 Random
Overlapping Template 0.137611 0.062761 Random
Universal 0.777250 0.120874 Random
Linear Complexity 0.633858 0.953684 Random
Serial 1 0.695361 0.291362 Random
Serial 2 0.768519 0.382965 Random
Approximate Entropy 0.781378 0.229411 Random
Cumulative Sums (Forward) 0.164709 0.548417 Random
Cummulative Sums (Reverse) 0.145096 0.872657 Random
Random Excursions (x = −1) 0.311634 0.380218 Random
Random Excursions (x = +1) 0.162339 0.423355 Random
Random Excursions Variant (x = −1) 0.118109 0.562370 Random
Random Excursions Variant (x = +1) 0.177507 0.825329 Random

4. Proposed MIEA-FCSM

Based on the excellent chaotic performance of the fractional-order 3D Lorenz chaotic
system and 2D-SCPM, we further designed a highly efficient multi-image encryption
algorithm named MIEA-FCSM so as to achieve more secure and efficient image encryption.
As shown in Figure 7, MIEA-FCSM is mainly composed of four parts, namely the generation
of chaotic sequences, multi-channel fusion, generation of plaintext-related parameters, and
two rounds of plaintext-related substitution, diffusion, and scrambling.

Chaotic sequences

Multi-channel fusion

Plaintext-related

dynamic diffusion

Plaintext-related

fast scrambling

Plaintext-related

chaotic random substitution

Plaintext-related

dynamic diffusion

Plaintext-related

fast scrambling

Multiple grayscale or 

color images

Key streams

Plaintext-related

chaotic random substitution

Final ciphertext

matrix

Generation of plaintext-

related parameters

SHA-256

Fractional-Order 3D 

Lorenz Chaotic System

Fractional-Order 3D 

Lorenz Chaotic System

Fractional-Order 3D 

Lorenz Chaotic System

Secret key

2D-SCPM2D-SCPM2D-SCPM

Figure 7. Encryption process of MIEA-FCSM.
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4.1. Generation of Chaotic Sequences

In our proposed MIEA-FCSM, the chaotic sequences G(1) and G(2) used to encrypt
input images are generated by adopting the secret key

K = {x(1)0 , y(1)0 , z0, σ, ρ, β, α, x(2)0 , y(2)0 , a, b}.

Specifically, the first seven components {x(1)0 , y(1)0 , z0, σ, ρ, β, α} of K are input into the
fractional-order 3D Lorenz chaotic system, thereby generating the sequence G(1) compris-
ing 211 +

⌈
H̃/2

⌉
×

⌈
(W̃ × D̃)/3

⌉
elements. Here, H̃, W̃, and D̃ denote the size of the input

images with the largest number of pixels to be encrypted, respectively. And ⌈•⌉ returns
the smallest integer greater than or equal to the operand. In the first round of substitution,
diffusion, and scrambling of MIEA-FCSM, G(1) will further be converted into the key
streams used in these encryption steps.

Similarly, the last four components {x(2)0 , y(2)0 , a, b} of K are exploited to iterate 2D-
SCPM so as to generate the chaotic sequence G(2) with the same length as G(1). And
G(2) will be employed in the second round of substitution, diffusion, and scrambling of
MIEA-FCSM.

4.2. Multi-Channel Fusion

The proposed MIEA-FCSM can simultaneously encrypt D 8-bit grayscale images or
D/3 24-bit true-color images, where D is an integer divisible by 3. For the input images,
we can represent them as a 3D pixel matrix P of size H × W × D. Here, H is the number of
rows, W is the number of columns, and D represents the number of grayscale images or
channels of 24-bit true-color images. To achieve higher encryption efficiency, we perform
multi-channel fusion on the input P according to the following steps:

• Step 1 : Determine whether H/2 is an integer. If H/2 is not an integer, fill P with
zero-valued pixels, thereby letting H = H + 1.

• Step 2: Reshape P into a 3D matrix C(1) of size H′ × W ′ × 6, where H′ = H/2 and
W ′ = (W × D)/3.

• Step 3: Fuse C(1) into a 2D matrix C(2) of size H′ × W ′. Specifically, let

C(2)(i, j) =
6

∑
k=1

C(1)(i, j, k)× 2(6−k)×8, (6)

where i = 1, 2, . . . , H′, and j = 1, 2, . . . , W ′.

From the above steps, it can be seen that through multi-channel fusion, the number of
basic operations required for encrypting P is reduced to one-sixth of the original number,
thus contributing to achieving higher encryption efficiency. For example, if the size of
six input grayscale images is 512 × 512, then the size of the fused pixel matrix that needs to
be encrypted is 256 × 1024; if the size of two input color images is 1024 × 1024 × 3, then the
size of the fused pixel matrix is 512 × 2048.

4.3. Generation of Plaintext-Related Parameters

Due to its extreme sensitivity to input, SHA-256 has been widely employed in image
encryption to enhance the plaintext sensitivity of an image encryption algorithm [16]. In
MIEA-FCSM, we first use SHA-256 to obtain the 32-byte hash value h of C(2). Then, h is
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employed to generate two plaintext-related parameters, r(1) and r(2), for the subsequent
encryption steps. Specifically,

r(1) = (
32

∑
i=1

h(i)) mod 211,

r(2) = ((
5

∑
j=1

6×j

∑
k=6×j−5

h(k)× 2(6×j−k)) +
32

∑
l=27

h(l)× 2(32−l)) mod 248.

(7)

4.4. Plaintext-Related Chaotic Random Substitution

To enhance the sensitivity of MIEA-FCSM to plaintext pixels and improve the random-
ness of ciphertext pixels, we arranged two rounds of plaintext-related chaotic random sub-
stitutions in MIEA-FCSM. Specifically, in the first round of plaintext-related chaotic random
substitution, a chaotic matrix B(1) is first formed by reshaping the H′ ×W ′ element of G(1):

B(1) = reshape(
⌊∣∣∣G(1)(r(1) + 1 : r(1) + H′ × W ′)

∣∣∣× 1015
⌋

mod 248, H′, W ′), (8)

where ⌊•⌋ returns the maximum integer that is less than or equal to the operand. Then, a
matrix XOR operation is applied to the input matrix C(2) to obtain the output matrix

C(3) = ((C(2) + r(2)) mod 248)⊕ B(1). (9)

Similarly, in the second round of plaintext-related chaotic random substitution, a chaotic
matrix B(2) is first formed by reshaping the H′ × W ′ element of G(2):

B(2) = reshape(
⌊∣∣∣G(2)(r(1) + 1 : r(1) + H′ × W ′)

∣∣∣× 1015
⌋

mod 248, H′, W ′). (10)

Then, a matrix modular addition operation is applied to the input matrix C(5) to obtain the
output matrix

C(6) = ((C(5) ⊕ r(2)) + B(2)) mod 248. (11)

4.5. Plaintext-Related Dynamic Diffusion

In order to enhance encryption efficiency while ensuring security, we introduced
two rounds of plaintext-related dynamic diffusions in MIEA-FCSM. Unlike typical pixel-
level diffusion methods adopted in many existing image encryption algorithms, MIEA-
FCSM’s diffusion operations are performed in the form of multiple rows (the first round)
and columns (the second round), thus leading to a significant improvement in encryption
efficiency. Furthermore, due to their dynamic nature depending on plaintext pixels, the
diffusion operations adopted by MIEA-FCSM also possess significant advantages in resist-
ing plaintext attacks. Specifically, the first round of plaintext-related dynamic diffusion is
performed as follows:

• Step 1: For the input matrix C(3) of size H′ × W ′, the diffusion operation is first
performed on the first four rows of C(3), so

C(4)(1 : 4, :) = (C(3)(1 : 4, :) + C(3)(H′ − 3 : H′, :)) mod 248. (12)

• Step 2: Let α = ⌈H′/4⌉ − 1.
• Step 3: When i = 2 to α, repeat the following operations:

Let β = (r(1) + B(1)(i, 1)) mod 2. If β = 1, then

C(4)(4i − 3 : 4i, :) = C(3)(4i − 3 : 4i, :)⊕ C(4)(4i − 7 : 4i − 4, :). (13)
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Otherwise,

C(4)(4i − 3 : 4i, :) = (C(3)(4i − 3 : 4i, :) + C(4)(4i − 7 : 4i − 4, :)) mod 248. (14)

• Step 4: Let µ = H′ mod 4, and perform the diffusion operation on the remaining µ

(when µ = 1, 2, 3) or µ + 4 (when µ = 0) rows of C(3):

C(4)(H′, :) = C(3)(H′, :)⊕ C(4)(H′ − 1, :) µ = 1,

C(4)(H′ − 1 : H′, :) = C(3)(H′ − 1 : H′, :)⊕ C(4)(H′ − 3 : H′ − 2, :) µ = 2,

C(4)(H′ − 2 : H′, :) = C(3)(H′ − 2 : H′, :)⊕ C(4)(H′ − 5 : H′ − 3, :) µ = 3,

C(4)(H′ − 3 : H′, :) = C(3)(H′ − 3 : H′, :)⊕ C(4)(H′ − 7 : H′ − 4, :) µ = 0.

(15)

Similarly, the second round of plaintext-related dynamic diffusion is performed
as follows:

• Step 1: For the input matrix C(6) of size H′ × W ′, the diffusion operation is first
performed on the first four columns of C(6), so

C(7)(:, 1 : 4) = (C(6)(:, 1 : 4) + C(6)(:, W ′ − 3 : W ′)) mod 248. (16)

• Step 2: Let α′ = ⌈W ′/4⌉ − 1.
• Step 3: When i = 2 to α′, repeat the following operations: Let β′ = (r(1)+B(2)(1, i)) mod

2. If β′ = 1, then

C(7)(:, 4i − 3 : 4i) = C(6)(:, 4i − 3 : 4i)⊕ C(7)(:, 4i − 7 : 4i − 4). (17)

Otherwise,

C(7)(:, 4i − 3 : 4i) = (C(6)(:, 4i − 3 : 4i) + C(7)(:, 4i − 7 : 4i − 4)) mod 248. (18)

• Step 4: Let µ′ = W ′ mod 4, and perform the diffusion operation on the remaining µ′

(when µ′ = 1, 2, 3) or µ′ + 4 (when µ′ = 0) columns of C(6):

C(7)(:, W ′) = C(6)(:, W ′)⊕ C(7)(:, W ′ − 1) µ′ = 1,

C(7)(:, W ′ − 1 : W ′) = C(6)(:, W ′ − 1 : W ′)⊕ C(7)(:, W ′ − 3 : W ′ − 2) µ′ = 2,

C(7)(:, W ′ − 2 : W ′) = C(6)(:, W ′ − 2 : W ′)⊕ C(7)(:, W ′ − 5 : W ′ − 3) µ′ = 3,

C(7)(:, W ′ − 3 : W ′) = C(6)(:, W ′ − 3 : W ′)⊕ C(7)(:, W ′ − 7 : W ′ − 4) µ′ = 0.

(19)

4.6. Plaintext-Related Fast Scrambling

Finally, to further enhance the security of MIEA-FCSM, we also incorporated one round
of fast scrambling after each round of dynamic diffusion. Specifically, the first round of
plaintext-related fast scrambling is executed in the following manner:

• Step 1: Let θ = (r(1) + r(2)) mod 210.
• Step 2: Sort G(1)(θ + 1 : θ + H′) in ascending order to obtain the row index vector

V̄(r) of length H′.
• Step 3: Sort G(1)(θ + H′ + 1 : θ + H′ + W ′) in ascending order to obtain the column

index vector V̄(c) of length W ′.
• Step 4: For each (i, j), where i = 1, 2, . . . , H′ and j = 1, 2, . . . , W ′, let

C(5)(i, j) = C(4)(V̄(r)(i), V̄(c)(j)). (20)

Similarly, the second round of plaintext-related fast scrambling is executed in the
following manner:
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• Step 1: Let θ′ = (r(1) × r(2)) mod 210.
• Step 2: Sort G(2)(θ′ + 1 : θ′ + H′) in ascending order to obtain the row index vector

V̄′(r) of length H′.
• Step 3: Sort G(2)(θ′ + H′ + 1 : θ′ + H′ + W ′) in ascending order to obtain the column

index vector V̄′(c) of length W ′.
• Step 4: For each (i, j), where i = 1, 2, . . . , H′ and j = 1, 2, . . . , W ′, let

C(i, j) = C(7)(V̄(r)(i), V̄(c)(j)). (21)

4.7. Complete Process of MIEA-FCSM

To provide a clearer demonstration of the proposed MIEA-FCSM, a comprehensive yet
concise description of its encryption and decryption processes is presented here. Suppose
the encrypting party (sender) is Alice and the decrypting party (receiver) is Bob. The size
of the 3D pixel matrix P to be encrypted and transmitted between them is H × W × D. By
exploiting the mutually agreed-upon secret key K = {x(1)0 , y(1)0 , z0, σ, ρ, β, α, x(2)0 , y(2)0 , a, b},
Alice will complete the encryption process through the following steps:

• Step 1: If K is being used for encryption for the first time, generate chaotic sequences
G(1) and G(2). Otherwise, proceed directly to Step 2. For specific details on the
generation of G(1) and G(2), please refer to Section 4.1.

• Step 2: Fuse P through multi-channel fusion into a 2D matrix C(2) of size H′ ×W ′. For
specific details on multi-channel fusion, please refer to Section 4.2.

• Step 3: Employ SHA-256 to obtain the 32-byte hash value h of C(2). And then use h
to generate two plaintext-related parameters r(1) and r(2). For specific details on the
generation of these two plaintext-related parameters, please refer to Section 4.3.

• Step 4: Perform the first round of plaintext-related chaotic random substitution on
C(2) using r(1), r(2), and G(1) to obtain the substituted C(3). For specific details on
plaintext-related chaotic random substitution, please refer to Section 4.4.

• Step 5: Utilize r(1) and B(1) to carry out the first round of plaintext-related dynamic
diffusion on C(3) so as to obtain the diffused C(4). For specific details on plaintext-
related dynamic diffusion, please refer to Section 4.5.

• Step 6: Conduct the first round of plaintext-related fast scrambling on C(4) using r(1),
r(2), and G(1) to obtain the scrambled C(5). For specific details on plaintext-related
fast scrambling, please refer to Section 4.6.

• Step 7: Perform the second round of plaintext-related chaotic random substitution on
C(5) using r(1), r(2), and G(2) to obtain the substituted C(6).

• Step 8: Utilize r(1) and B(2) to carry out the second round of plaintext-related dynamic
diffusion on C(6) so as to obtain the diffused C(7).

• Step 9: Conduct the second round of plaintext-related fast scrambling on C(7) using
r(1), r(2), and G(2) to obtain the final ciphertext C.

After obtaining the final ciphertext C through encryption, Alice sends C and the 32-byte
hash value h to Bob through the public channel.

The decryption process of MIEA-FCSM is the reverse process of its encryption process,
as illustrated in Figure 8.
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Figure 8. Decryption process of MIEA-FCSM.

By exploiting the received C and h, Bob will complete the decryption process through
the following steps:

• Step 1: If K is being used for decryption for the first time, generate chaotic sequences
G(1) and G(2). Otherwise, proceed directly to Step 2.

• Step 2: Employ h to generate two plaintext-related parameters r(1) and r(2).
• Step 3: Using r(1), r(2), and G(2), conduct the reverse operations corresponding to the

second round of plaintext-related fast scrambling on C so as to obtain C(7).
• Step 4: Employ r(1) and B(2) to carry out the reverse operations corresponding to the

second round of plaintext-related dynamic diffusion on C(7) so as to obtain C(6).
• Step 5: Using r(1), r(2), and G(2), perform the reverse operations corresponding to

the second round of plaintext-related chaotic random substitution on C(6) so as to
obtain C(5).

• Step 6: Employing r(1), r(2), and G(1), conduct the reverse operations corresponding
to the first round of plaintext-related fast scrambling on C(5) so as to obtain C(4).

• Step 7: Utilize r(1) and B(1) to carry out the reverse operations corresponding to the
first round of plaintext-related dynamic diffusion on C(4) so as to obtain C(3).

• Step 8: Employing r(1), r(2), and G(1), perform the reverse operations corresponding
to the first round of plaintext-related chaotic random substitution on C(3) so as to
obtain C(2).

• Step 9: Conduct the reverse operations corresponding to multi-channel fusion on C(2)

so as to obtain the final decrypted 3D pixel matrix P.

To maintain brevity, the repetitive explanation of the reverse operations corresponding
to each encryption step is omitted here, as there is no substantial difference between them.
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5. Simulation Experiments

A series of experiments are presented in this section to validate the efficiency and
security superiority of MIEA-FCSM. In these experiments, many test images from the well-
known USC-SIPI database were employed. A microcomputer featuring MATLAB R2017a,
an Intel CPU E3-1231 v3, and 8 GB of RAM was utilized to carry out these experiments.
All experiments employed randomly generated secret keys to guarantee the objectivity
of performance evaluation. Furthermore, the final fused ciphertext pixels were divided
into 8-bit ciphertext pixels for ease of demonstration and comparison with other image
encryption algorithms.

5.1. Visual Effect

To guarantee effective protection for images, it is essential for a suggested image
encryption algorithm to have the ability to encrypt them into unrecognizable images
that resemble noise. Six grayscale images (5.2.08, 5.2.09, 5.2.10, boat.512, elaine.512, and
gray21.512) and two color images (4.2.06 and 4.2.07) were encrypted and then decrypted
using MIEA-FCSM. Six grayscale images were encrypted simultaneously in the first round,
while two color images were encrypted simultaneously in the second round. As can be
observed from Figure 9, after encryption by MIEA-FCSM, these images containing rich
details have all become indiscernible noise-like images. However, once decrypted, these
unrecognizable images are restored to their original state without any loss. This demon-
strates that MIEA-FCSM possesses exceptional encryption and decryption capabilities and
thus can provide effective protection for images.

(a) (b) (c) (d) (e) (f)

Figure 9. Visual effect experiment results for MIEA-FCSM: (a,d), six grayscale images and two color
images; (b,e), corresponding encrypted images; (c,f), corresponding decrypted images.

5.2. Key Space

As a straightforward and easily executable form of attack, brute-force attacks break
a cryptosystem by attempting all secret keys within the key space. Currently, it is widely
believed that the key space of a cryptosystem should be larger than 2128 [4]. Otherwise, it
would be challenging to withstand brute-force attacks. As mentioned in Section 4.1, MIEA-
FCSM’s secret key consists of eleven parts, namely {x(1)0 , y(1)0 , z0, σ, ρ, β, α, x(2)0 , y(2)0 , a, b}.



Fractal Fract. 2023, 7, 887 16 of 30

In MIEA-FCSM, we set the value ranges of these components as x(1)0 ∈ [−20, 20],

y(1)0 ∈ [−25, 25], z0 ∈ [0, 55], σ ∈ [5.81, 17.5], ρ ∈ [24, 70], β ∈ [1, 3.3], α ∈ [0.92, 1],

x(2)0 ∈ (0, 1), y(2)0 ∈ (0, 1), a ∈ [1, 12], and b ∈ [1, 12]. When the effective calculation preci-
sion of floating-point numbers is determined as 10−14, it is possible to determine the size
of MIEA-FCSM’s key space Ŝ(K) = 1.3169 × 10163 ≈ 2541. Given that 2541 is significantly
larger than 2128, our suggested MIEA-FCSM can effectively withstand brute-force attacks.

5.3. Key Sensitivity

Confusion is an essential principle in the design of cryptosystems, which requires the rela-
tionship between the secret key and the ciphertext to be highly complex [4]. Therefore, a qual-
ified image encryption algorithm should be highly sensitive to changes in the secret key. Even
with the smallest change to the secret key, the ciphertext should also undergo extremely large
changes. In order to demonstrate MIEA-FCSM’s sensitivity to the secret key, we encrypted
4.1.07 with a randomly generated key K̃ = {x̃(1)0 , ỹ(1)0 , z̃0, σ̃, ρ̃, β̃, α̃, x̃(2)0 , ỹ(2)0 , ã, b̃}, where

x̃(1)0 = 2.97059278176062,

ỹ(1)0 = 3.95716694824294,

z̃0 = 4.48537564872284,

σ̃ = 10.80028046888880,

ρ̃ = 28.14188633862721,

β̃ = 3.08842794929294,

α̃ = 0.96573552518906,

x̃(2)0 = 0.79220732955955,

ỹ(2)0 = 0.95949242639290,

ã = 8.65574069915658,

b̃ = 8.03571167857419.

(22)

Then, we obtained eleven new keys with only minimal differences from K̃ by modifying
one component of K̃ each time. After encrypting 4.1.07 with these eleven keys, we calcu-
lated the difference image between each ciphertext image and the original ciphertext image.
Figure 10 presents the experimental results obtained. Clearly, even though each component
of K̃ underwent only the smallest change of 10−14, the resulting ciphertext image was
completely changed. And each difference image between the changed ciphertext image and
the original one is extremely similar to a noisy image. Thus, MIEA-FCSM has an extremely
high key sensitivity.

5.4. Plaintext Sensitivity

Generally, differential attacks are regarded as the most menacing compared to other
types of attacks. Differential attacks involve the analysis of the mathematical connection
between modifications in plaintext pixels and the consequent changes in ciphertext pixels.
Consequently, a qualified image encryption algorithm must be extremely sensitive to
minimum changes in plaintext pixels. In other words, even if only one pixel bit is modified,
the ciphertext must be completely changed. To demonstrate the plaintext sensitivity of
MIEA-FCSM, we inverted the two pixel bits of 2.1.06, as depicted in Figure 11a2,a3. Then,
we encrypted the three plaintext images and calculated the related difference images. From
Figure 11b1,b2, one can find that each modified plaintext image has almost no difference
from 2.1.06. However, the corresponding ciphertext images are completely changed, and the
difference images between them and the original ciphertext image resemble random images,
as shown in Figure 11d1,d2. This reveals that MIEA-FCSM features an extraordinary level
of sensitivity to plaintext pixels.
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(a1) (a2)

(b1) (b2) (b3) (b4) (b5) (b6)

(b7) (b8) (b9) (b10) (b11)

(c1) (c2) (c3) (c4) (c5) (c6)

(c7) (c8) (c9) (c10) (c11)

Figure 10. Visual presentation of key sensitivity for MIEA-FCSM: (a1) 4.1.07; (a2) ciphertext of 4.1.07;

(b1) cihpertext obtained after x̃(1)0 = x̃(1)0 + 10−14; (b2) ỹ(1)0 = ỹ(1)0 + 10−14; (b3) z̃0 = z̃0 + 10−14;

(b4) σ̃ = σ̃ + 10−14; (b5) ρ̃ = ρ̃ + 10−14; (b6) β̃ = β̃ + 10−14; (b7) α̃ = α̃ + 10−14; (b8) x̃(2)0 =

x̃(2)0 + 10−14; (b9) ỹ(2)0 = ỹ(2)0 + 10−14; (b10) ã = ã + 10−14; (b11) b̃ = b̃ + 10−14; (c1) difference
between (b1) and (a2); (c2) between (b2) and (a2); (c3) between (b3) and (a2); (c4) between (b4) and
(a2); (c5) between (b5) and (a2); (c6) between (b6) and (a2); (c7) between (b7) and (a2); (c8) between
(b8) and (a2); (c9) between (b9) and (a2); (c10) between (b10) and (a2); (c11) between (b11) and (a2).

(a1) (a2) (a3) (b1) (b2)

(c1) (c2) (c3) (d1) (d2)

Figure 11. Visual presentation of plaintext sensitivity for MIEA-FCSM: (a1) 2.1.06; (a2) the lowest bit
of the first pixel on the red channel is negated; (a3) the lowest bit of the last pixel on the blue channel is
negated; (b1) difference between (a1) and (a2); (b2) difference between (a1) and (a3); (c1) ciphertext of
(a1); (c2) ciphertext of (a2); (c3) ciphertext of (a3); (d1) difference between (c1) and (c2); (d2) difference
between (c1) and (c3).

To further verify the superiority of MIEA-FCSM regarding plaintext sensitivity, we
conducted additional quantitative evaluations of MIEA-FCSM using the two commonly
used metrics: the number of pixels change rate (NPCR) and the unified average changing
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intensity (UACI). For two images A and B of size U × V, one can calculate their NPCR and
UACI values as follows:

NPCR(A, B) =
U

∑
u=1

V

∑
v=1

D(u, v)/(U × V)× 100%, (23)

UACI(A, B) =
U

∑
u=1

V

∑
v=1

|A(u, v)− B(u, v)|
255 × U × V

× 100%, (24)

where D(u, v) represents the difference between A(u, v) and B(u, v). If A(u, v) = B(u, v),
then D(u, v) = 0; otherwise, D(u, v) = 1. Through a large number of experiments, we
calculated the UPCR and UACI values between the ciphertext images obtained before and
after single minimum plaintext changes. By examining Tables 5 and 6, we can observe
that MIEA-FCSM attained the average values (99.6098, 33.4659) closest to the ideal values
(99.6094, 33.4635) and demonstrated the highest stability (0.0069, 0.0246). This indicates that
MIEA-FCSM exhibits an exceedingly high plaintext sensitivity and is capable of effectively
defending against diverse differential attacks.

Table 5. NPCR scores of six algorithms.

Size Name Channel MIEA-
FCSM [28] [32] [33] [34] [35]

512 × 512 2.1.01 Red 99.6089 99.6204 99.6166 99.6215 99.6092 99.6211
2.1.01 Green 99.6154 99.5853 99.6109 99.6015 99.6184 99.6197
2.1.01 Blue 99.5986 99.6052 99.6208 99.5973 99.6239 99.6212
2.1.02 Red 99.5887 99.6201 99.6246 99.6100 99.6052 99.6148
2.1.02 Green 99.6116 99.6506 99.5899 99.6054 99.5850 99.6115
2.1.02 Blue 99.6139 99.6414 99.5987 99.6057 99.5918 99.6141
2.1.05 Red 99.6143 99.6002 99.6067 99.5960 99.6387 99.6231
2.1.05 Green 99.6070 99.6109 99.5853 99.6037 99.6098 99.6165
2.1.05 Blue 99.6093 99.6216 99.5998 99.6154 99.5995 99.6232

1024× 1024 2.2.01 Red 99.6112 99.6277 99.6099 99.6166 99.6095 99.6122
2.2.01 Green 99.6144 99.5575 99.6076 99.6164 99.6026 99.6131
2.2.01 Blue 99.6146 99.6490 99.6110 99.6141 99.6006 99.5956
2.2.08 Red 99.6172 99.6155 99.6086 99.6169 99.6115 99.6021
2.2.08 Green 99.6109 99.5834 99.6081 99.6190 99.6103 99.5975
2.2.08 Blue 99.6150 99.6246 99.6113 99.6133 99.6055 99.5956
2.2.11 Red 99.6044 99.5834 99.6119 99.6209 99.6166 99.6002
2.2.11 Green 99.6092 99.6292 99.6135 99.6057 99.6044 99.6135
2.2.11 Blue 99.6125 99.6277 99.6158 99.6015 99.6137 99.5972

Average – 99.6098 99.6141 99.6084 99.6101 99.6087 99.6107
Std.
Dev. – 0.0069 0.0247 0.0098 0.0081 0.0119 0.0100

Table 6. UACI scores of six algorithms.

Size Name Channel MIEA-
FCSM [28] [32] [33] [34] [35]

512 × 512 2.1.01 Red 33.4941 33.4893 33.4753 33.5109 33.5007 33.4930
2.1.01 Green 33.4700 33.3720 33.4831 33.4686 33.4449 33.4849
2.1.01 Blue 33.4736 33.4910 33.5122 33.4622 33.4479 33.4929
2.1.02 Red 33.4623 33.4873 33.5137 33.4399 33.4839 33.4774
2.1.02 Green 33.4349 33.5392 33.4412 33.4847 33.4263 33.4671
2.1.02 Blue 33.4619 33.4500 33.3946 33.4360 33.4408 33.4752
2.1.05 Red 33.4699 33.5945 33.4818 33.3924 33.4269 33.4778
2.1.05 Green 33.4513 33.5220 33.4781 33.4470 33.4241 33.4634
2.1.05 Blue 33.4537 33.3360 33.5460 33.4353 33.5226 33.4777
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Table 6. Cont.

Size Name Channel MIEA-
FCSM [28] [32] [33] [34] [35]

1024× 1024 2.2.01 Red 33.4739 33.4782 33.4600 33.4887 33.4675 33.4286
2.2.01 Green 33.4236 33.4194 33.4957 33.4808 33.4682 33.4255
2.2.01 Blue 33.4628 33.6140 33.4181 33.5233 33.4399 33.4399
2.2.08 Red 33.4825 33.5349 33.4666 33.4685 33.4486 33.4211
2.2.08 Green 33.4789 33.4775 33.4720 33.4728 33.4585 33.4411
2.2.08 Blue 33.4588 33.6040 33.4713 33.4726 33.4943 33.4607
2.2.11 Red 33.5338 33.5236 33.4699 33.4547 33.4316 33.4004
2.2.11 Green 33.4674 33.5185 33.4829 33.4779 33.4459 33.5004
2.2.11 Blue 33.4330 33.5079 33.4347 33.5006 33.4450 33.4658

Average – 33.4659 33.4977 33.4721 33.4676 33.4565 33.4607
Std.
Dev. – 0.0246 0.0729 0.0353 0.0309 0.0279 0.0284

5.5. Pixel Distribution

The pixel distribution characteristics in natural images are highly significant, as clearly
illustrated in the first and third rows of Figure 12. Undoubtedly, a competent image
encryption algorithm must eliminate these characteristics to effectively defend against
various attacks based on pixel distribution. To validate MIEA-FCSM’s pixel distribution
performance, we encrypted two images, 2.1.01 and 2.1.07, and then plotted the pixel
distribution diagrams of the output images generated by MIEA-FCSM. It is evident that
the pixels, which were initially unevenly distributed for any one of the three channels (red,
green, and blue), became remarkably uniform after being encrypted by MIEA-FCSM. This
indicates that MIEA-FCSM possesses an exceptional ability to remove the pixel distribution
characteristics of the input, thus effectively defending against various attacks that exploit
such characteristics.

In addition to plotting histograms, we also conducted the chi-square test on the
ciphertext images generated by MIEA-FCSA [36]. For a ciphertext image, we can calculate
its chi-square value as follows:

χ2 = ∑m
k=1 (qk − H × W×ρ)2/(H × W × ρ), (25)

where qk denotes the count of pixels with a value of k − 1. m represents the maximum
number of potential pixel values (m = 256 for 8-bit pixel depth), and ρ = 1/m. H and W
correspond to the height and width of the ciphertext image, respectively. Afterwards, it
is possible to determine the critical value χ2

0.05(255) of the chi-square test at a significant
level of 0.05, which amounts to 293.2478. If the chi-square value of a cipher image is
below 293.2478, it can be considered to have passed the chi-square test successfully. This
means that the pixel distribution of the ciphertext image is statistically close to a uniform
distribution. Table 7 presents the results of our chi-square test on MIEA-FCSA. As can
be observed, all color channels of the six ciphertext images have successfully passed the
chi-square test. This demonstrates that the ciphertext images produced by MIEA-FCSM
indeed exhibit an extremely uniform pixel distribution.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Figure 12. Pixel distribution representations for MIEA-FCSM: (a1) 2.1.01; (b1,c1,d1) are pixel distribu-
tion diagrams for the red, green, and blue channels of (a1); (a2) ciphertext of (a1); (b2,c2,d2) are three
pixel distribution diagrams for (a2); (a3) 2.1.07; (b3,c3,d3) are three pixel distribution diagrams for
(a3); (a4) ciphertext of (a3); (b4,c4,d4) are three pixel distribution diagrams for (a4).

Table 7. Chi-square test results of MIEA-FCSM.

Size Channel Ciphertext
Chi-Square Value

Result
Ø0.05

2(255)=293.2478

512 × 512 2.1.01 Red 249.7539 Pass
2.1.01 Green 266.6308 Pass
2.1.01 Blue 247.2011 Pass
2.1.02 Red 259.5214 Pass
2.1.02 Green 246.7753 Pass
2.1.02 Blue 254.2734 Pass
2.1.05 Red 258.1542 Pass
2.1.05 Green 258.9863 Pass
2.1.05 Blue 265.4589 Pass

1024 × 1024 2.2.01 Red 264.2778 Pass
2.2.01 Green 261.9687 Pass
2.2.01 Blue 257.9526 Pass
2.2.08 Red 245.9931 Pass
2.2.08 Green 256.5932 Pass
2.2.08 Blue 260.8476 Pass
2.2.11 Red 243.3730 Pass
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Table 7. Cont.

Size Channel Ciphertext
Chi-Square Value

Result
Ø0.05

2(255)=293.2478

2.2.11 Green 268.8398 Pass
2.2.11 Blue 257.0625 Pass

5.6. Correlation Analysis

In natural images, significant correlations exist between adjacent pixels. Therefore,
to avoid any associated security loopholes, a sound image encryption algorithm should
effectively eliminate these correlations. With a randomly generated secret key, we encrypted
two images, 2.1.05 and 2.1.06, and then drew the correlation analysis diagrams for the
related images. Figure 13 presents the pixel correlations of the images prior to and following
encryption in the horizontal, vertical, and diagonal directions. Clearly, the pixel correlations
in all three directions are considerably significant for 2.1.05 and 2.1.06, reaching close to 1.
Nevertheless, the two encrypted images generated by MIEA-FCSM are in stark contrast
to them. MIEA-FCSM has effectively reduced these correlations, making it impossible to
observe any discernible features.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Figure 13. Adjacent pixel correlation representations: (a1) 2.1.05; (b1) correlation analysis diagram for
(a1) in the horizontal direction; (c1) diagram for (a1) in the vertical direction; (d1) diagram for (a1) in
the diagonal direction; (a2) ciphertext of 2.1.05; (b2,c2,d2) are correlation analysis diagrams for (a2);
(a3) 2.1.06; (b3,c3,d3) are correlation analysis diagrams for (a3); (a4) ciphertext of 2.1.06; (b4,c4,d4) are
correlation analysis diagrams for (a2).
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To more accurately evaluate the ability of MIEA-FCSM to reduce pixel correlations,
we employed the correlation coefficient (CC) for further quantitative analyses. Specifically,
we can determine CC as follows:

CC =
E((Au − E(Au))(Av − E(Av))√

D(Au)D(Av)
, (26)

where Au and Av are pixel values, E(Au) and E(Av) represent expectations, and D(Au)
and D(Av) denote variances. Table 8 lists the experimental results that were obtained. It
is evident that all images exhibit high CC scores in all directions and channels. However,
after undergoing MIEA-FCSM’s encryption process, all CC scores drastically decreased
to exceptionally low levels. This clearly shows MIEA-FCSM’s superior performance in
eliminating pixel correlations.

Table 8. CC scores of MIEA-FCSM.

Size Name Channel
Plaintext Ciphertext

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

512 × 512 2.1.01 Red 0.8632 0.8758 0.8516 −0.0025 0.0013 0.0009
2.1.01 Green 0.8685 0.8837 0.8536 −0.0022 0.0025 0.0029
2.1.01 Blue 0.8760 0.8812 0.8609 0.0018 −0.0011 −0.0025
2.1.02 Red 0.8314 0.8498 0.7652 −0.0026 0.0012 0.0018
2.1.02 Green 0.7552 0.7872 0.6740 −0.0013 −0.0024 0.0019
2.1.02 Blue 0.7325 0.7413 0.6312 0.0029 0.0003 −0.0010
2.1.05 Red 0.9570 0.9584 0.9390 0.0005 −0.0023 0.0024
2.1.05 Green 0.9375 0.9356 0.9100 −0.0015 −0.0020 −0.0007
2.1.05 Blue 0.9266 0.9193 0.8965 −0.0035 −0.0035 0.0033

1024 × 1024 2.2.01 Red 0.9256 0.9290 0.9049 0.0001 0.0037 0.0006
2.2.01 Green 0.9142 0.9173 0.8994 −0.0008 0.0023 0.0015
2.2.01 Blue 0.9031 0.9107 0.8868 0.0010 −0.0036 −0.0016
2.2.08 Red 0.9181 0.9286 0.9015 0.0039 −0.0012 −0.0026
2.2.08 Green 0.9141 0.9177 0.8922 0.0009 0.0011 0.0002
2.2.08 Blue 0.9011 0.8950 0.8710 −0.0012 −0.0026 −0.0024
2.2.11 Red 0.8111 0.8095 0.7710 0.0004 −0.0034 0.0021
2.2.11 Green 0.7858 0.7826 0.7186 0.0026 −0.0007 0.0037
2.2.11 Blue 0.7580 0.7733 0.7061 −0.0022 −0.0036 −0.0027

5.7. Information Entropy

Due to its capability to measure pixel randomness and distribution, information
entropy is often employed for testing the security of suggested image encryption algorithms.
Generally, if the information entropy value is larger, the ciphertext pixels possess a higher
degree of randomness, and their distribution is also more uniform. In a mathematical sense,
we can determine the value of information entropy through

IE(ω) = −
N

∑
n=1

q(ωn) log2 q(ωn). (27)

In Equation (27), N is the number of pixel values ω, and q(ωn) represents the probability
of ωn. According to Equation (27), one can infer that for an image with an 8-bit pixel
depth, the maximum value of its information entropy is 8. We encrypted six images using
MIEA-FCSM and calculated the information entropy value for each channel of all images.
From Table 9, we can observe that the entropy values of all channels in each original
image are relatively small. In contrast, after encrypting, the entropy values of the resulting
ciphertext images are all very close to the maximum value of 8. As listed in Table 10, we
further compared MIEA-FCSM with several recent algorithms. Among all the algorithms,
one can observe that the information entropy score achieved by MIEA-FCSM is closest to 8.
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Overall, MIEA-FCSM demonstrates certain advantages when it comes to the randomness
and distribution uniformity of ciphertext pixels.

Table 9. Information entropy scores of MIEA-FCSM.

Size Name Channel Plaintext Ciphertext

512 × 512 2.1.01 Red 7.5091 7.9994
2.1.01 Green 7.3542 7.9994
2.1.01 Blue 6.5966 7.9993
2.1.02 Red 7.4061 7.9993
2.1.02 Green 7.4188 7.9994
2.1.02 Blue 6.5931 7.9994
2.1.05 Red 7.5580 7.9993
2.1.05 Green 7.4597 7.9994
2.1.05 Blue 6.6665 7.9994

1024 × 1024 2.2.01 Red 7.7575 7.9998
2.2.01 Green 7.3387 7.9998
2.2.01 Blue 6.9561 7.9998
2.2.08 Red 7.7229 7.9998
2.2.08 Green 7.5289 7.9999
2.2.08 Blue 6.8318 7.9998
2.2.11 Red 6.6944 7.9999
2.2.11 Green 6.3414 7.9998
2.2.11 Blue 5.1766 7.9998

Table 10. Information entropy scores of nine algorithms.

Algorithm Entropy Score

[20] 7.9984
[37] 7.9993
[38] 7.9976
[39] 7.9993
[35] 7.9993
[40] 7.9993
[28] 7.9992
[34] 7.9992

MIEA-FCSM 7.9994

To better measure the randomness of ciphertext images, Wu et al. [41] suggested a
new performance indicator called local Shannon entropy (LSE). Mathematically, one can
define LSE as follows:

ẼW,Q(p) = ∑W
r=1 Ẽ(pr)/W, (28)

where p1, p1, . . . , pW denote W non-overlapping pixel blocks. Each pixel block contains Q
pixels. These pixel blocks are randomly chosen from the image that needs to be mea-
sured. Ẽ(pr) represents the information entropy of pr. With the parameter settings
(W = 30, Q = 1936) recommended in [41], we conducted the LSE test on six ciphertext
images generated by MIEA-FCSM. When the significance level is 0.05, the ideal value
of LSE is 7.902469317. If the LSE score of a ciphertext image falls within the range of
(7.901901305, 7.903037329), it can be considered to have successfully passed the LSE test.
Table 11 presents the relevant test results. It is evident that all color channels of the
six ciphertext images have successfully passed the LSE test. This indicates that the cipher-
text images generated by MIEA-FCSM indeed exhibit excellent randomness.
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Table 11. LSE test results of MIEA-FCSM.

Size Ciphertext Channel LSE Value Result

512 × 512 2.1.01 Red 7.902608 Pass
2.1.01 Green 7.901998 Pass
2.1.01 Blue 7.902302 Pass
2.1.02 Red 7.902425 Pass
2.1.02 Green 7.902242 Pass
2.1.02 Blue 7.902601 Pass
2.1.05 Red 7.902229 Pass
2.1.05 Green 7.901915 Pass
2.1.05 Blue 7.902005 Pass

1024 × 1024 2.2.01 Red 7.901944 Pass
2.2.01 Green 7.902186 Pass
2.2.01 Blue 7.902156 Pass
2.2.08 Red 7.902944 Pass
2.2.08 Green 7.902651 Pass
2.2.08 Blue 7.902183 Pass
2.2.11 Red 7.902465 Pass
2.2.11 Green 7.902302 Pass
2.2.11 Blue 7.902973 Pass

5.8. Robustness Analysis

Given the network environments of various applications, encrypted images are prone
to experiencing data loss or damage while being utilized. Hence, for an image encryption
algorithm to be considered reliable, it should be robust enough to withstand certain levels
of data loss or damage. By deliberately adding noise and removing pixels, we conducted
a series of robustness evaluations on MIEA-FCSM. Specifically, we first added salt and
pepper noise with varying intensities (0.04/0.08/0.12/0.16) and then decrypted these
noise-contaminated images. Next, we removed 25% of the ciphertext pixels at different
locations and decrypted the resulting images. From the first two rows of Figure 14, we
can see that when the noise intensity is relatively low, the reconstructed image is slightly
affected. Although the noise intensity is very high, MIEA-FCSM can also effectively restore
the original image, successfully conveying most of its information. Similarly, from the
last two rows of Figure 14, we can observe that when a large amount of data loss occurs
on a single channel, there is little impact on the information transfer, and MIEA-FCSM
also performs well in reconstructing the original image when a large amount of data loss
occurs simultaneously in all channels. To evaluate the quality of decrypted images more
objectively, we also introduced two performance indicators: peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) [42]. For a decrypted image A,
one can calculate its PSNR value as follows:

PSNR = 10 × log10
H × W × 2552

∑H
i=1 ∑W

j=1 (A(i, j)− B(i, j))2
, (29)

where H ×W is the size of A and the corresponding plaintext image B. In general, a higher
PSNR value implies a better quality of A. Similar to PSNR, SSIM is also frequently utilized
to assess the quality of decrypted images [43]. Mathematically, the SSIM value of A can be
defined as follows:

SSIM(A, B) =
(2µaµb + (0.01R)2) + (2σab + (0.03R)2)

(µ2
a + µ2

b + (0.01R)2)(σ2
a + σ2

b + (0.03R)2)
, (30)

where µa is the mean of A, µb is the mean of B, σa is the variance of A, σb is the variance of
B, and σab is the covariance of A and B. The range of an SSIM value is [0, 1]. If the SSIM
value of A is closer to 1, it indicates a higher level of similarity between the images. For
ciphertext images contaminated by noise of different intensities, we calculated the PSNR
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and SSIM values of the corresponding decrypted images. As can be observed from Table 12,
when the noise intensity is lower, the quality of the decrypted image is better. The quality
of the decrypted image decreases as the noise intensity increases. It is worth noting that
even if the noise intensity is as high as 0.16, MIEA-FCSM still maintains a considerable
level of image quality. Similarly, for some ciphertext images that suffered data losses, we
also calculated the PSNR and SSIM values of the corresponding decrypted images. By
observing Table 13, one can find that even if the data loss reaches 128 × 128 × 3 pixels, the
decrypted image still has good quality. To summarize, MIEA-FCSM is robust enough to
effectively withstand significant data loss or corruption.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

Figure 14. Robustness analysis for MIEA-FCSM: (a1–a4) are encrypted images contaminated by
varying intensities of noise; (b1–b4) are decrypted images of (a1–a4); (c1–c4) are encrypted images
with 25% missing pixels at different positions; (d1–d4) are decrypted images of (c1–c4).

Table 12. PSNR and SSIM values under different noise intensities.

Noise Intensity
Red Channel Green Channel Blue Channel

PSNR SSIM PSNR SSIM PSNR SSIM

0.02 19.7562 0.7419 20.0190 0.7539 20.1633 0.6462
0.04 16.8391 0.6155 17.0988 0.6210 17.3881 0.4880
0.06 15.1894 0.5370 15.5601 0.5403 15.6278 0.4015
0.08 14.0505 0.4732 14.4138 0.4722 14.5452 0.3376
0.10 13.2139 0.4246 13.5473 0.4224 13.7136 0.2933
0.12 12.5858 0.3815 12.9287 0.3707 13.0371 0.2555
0.14 12.0616 0.3432 12.4292 0.3366 12.5424 0.2206
0.16 11.6114 0.3095 11.9224 0.3056 12.0879 0.2018
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Table 13. PSNR and SSIM values under different data losses.

Data Loss
Red Channel Green Channel Blue Channel

PSNR SSIM PSNR SSIM PSNR SSIM

8 × 8 × 3 pixels 37.8487 0.9922 38.9434 0.9937 39.6916 0.9917
8 × 16 × 3 pixels 35.3148 0.9876 35.9973 0.9889 36.5064 0.9840
16 × 16 × 3 pixels 32.4402 0.9763 33.1772 0.9798 33.4375 0.9700
16 × 32 × 3 pixels 29.6289 0.9618 30.2890 0.9664 30.4249 0.9508
32 × 32 × 3 pixels 27.0253 0.9358 27.6840 0.9418 28.0802 0.9215
32 × 64 × 3 pixels 24.0892 0.8974 24.6410 0.9054 24.9010 0.8691
64 × 64 × 3 pixels 21.4835 0.8434 21.8936 0.8489 22.2412 0.8024

64 × 128 × 3 pixels 18.7302 0.7676 19.1784 0.7745 19.5178 0.7187
128 × 128 × 3 pixels 16.3065 0.6941 16.7271 0.6901 16.9790 0.6479

5.9. Randomness Test

To more comprehensively assess the randomness performance of MIEA-FCSM, we
also employed the NIST SP800-22 random test suite to conduct numerous experiments on
the ciphertext images generated by MIEA-FCSM. The experiment results we obtained are
presented in Table 14. Clearly, for all ciphertext images, the obtained p values are signifi-
cantly greater than the threshold of 0.01. Thus, MIEA-FCSM indeed features outstanding
randomness performance.

Table 14. NIST test outcomes for MIEA-FCSM.

Item Name
p Value (Ciphertext)

Result
2.1.01 2.1.02 2.1.05 2.1.06 2.2.01 2.2.08

Frequency (Monobit) 0.938984 0.455468 0.636900 0.271176 0.125786 0.959300 Random
Frequency (Block) 0.377102 0.695136 0.486114 0.919744 0.626776 0.986615 Random
Runs 0.848245 0.123654 0.657268 0.983728 0.224505 0.301428 Random
Longest Runs 0.554931 0.637710 0.364070 0.558170 0.326202 0.318947 Random
Matrix Rank 0.389840 0.116814 0.209644 0.247903 0.934658 0.998876 Random
Discrete Fourier Transform 0.200888 0.119452 0.853707 0.523441 0.763061 0.515849 Random
Non-Overlapping Template 0.674401 0.265663 0.126927 0.299549 0.222029 0.709035 Random
Overlapping Template 0.549943 0.995207 0.218516 0.353877 0.598382 0.301744 Random
Universal 0.905732 0.975949 0.486118 0.855998 0.293810 0.458157 Random
Linear Complexity 0.167901 0.223193 0.168184 0.564220 0.979454 0.534705 Random
Serial 1 0.887276 0.492728 0.496104 0.177181 0.925572 0.629930 Random
Serial 2 0.664458 0.394830 0.220287 0.827247 0.859346 0.503489 Random
Approximate Entropy 0.126032 0.443620 0.903944 0.459428 0.581134 0.873983 Random
Cumulative Sums (Forward) 0.649861 0.533670 0.476382 0.213114 0.149726 0.956529 Random
Cummulative Sums (Reverse) 0.721430 0.406060 0.892509 0.457783 0.876487 0.977343 Random
Random Excursions (x = −1) 0.070625 0.272277 0.210229 0.121351 0.550582 0.176783 Random
Random Excursions (x = +1) 0.407268 0.371559 0.122416 0.299785 0.438516 0.302316 Random
Random Excursions Variant
(x = −1) 0.943201 0.331413 0.829856 0.105968 0.134844 0.083536 Random

Random Excursions Variant
(x = +1) 0.412591 0.197920 0.067770 0.355611 0.252079 0.554221 Random

5.10. Efficiency Analysis

Given that current digital image applications possess salient characteristics such as
large data volume and high throughput, it is essential for a suggested image encryption al-
gorithm to exhibit extremely high encryption efficiency. Otherwise, the suggested algorithm
cannot cater to the demands of practical applications.

Actually, several targeted designs have been introduced in our MIEA-FCSM to ensure
the attainment of incredibly high encryption efficiency. Firstly, we developed and adopted
2D-SCPM, which possesses a simple structure yet exhibits excellent chaotic performance.
Secondly, we optimized the strategy for generating and utilizing chaotic sequences. Thirdly,
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we implemented the multi-channel fusion technique on the input image, resulting in a
significant decrease in the computational amount of subsequent encryption steps. Lastly,
all encryption operations are conducted at the vector level without compromising security.
In comparison to pixel-level or bit-level encryption strategies, this can also considerably
boost encryption efficiency.

To validate and demonstrate the superior efficiency of MIEA-FCSM, we conducted
extensive experiments on six encryption algorithms using the same microcomputer. As can
be seen from Table 15, the encryption efficiency of MIEA-FCSM is significantly higher than
that of other recently reported algorithms. Even for inputs with a size of 1024 × 1024 and
up to six channels (two 1024 × 1024 color images), MIEA-FCSM only took 0.3372 seconds
on average to complete encryption, and the average throughput achieved is as high as
168.5608 Mbps. This indicates that MIEA-FCSM does have extremely high encryption
efficiency, and can well meet the needs of practical applications. For instance, in medical
applications, MIEA-FCSM can be employed to encrypt medical images, ensuring the
safeguarding of patient privacy. Similarly, in high-data-throughput social applications,
individuals can utilize MIEA-FCSM to encrypt different social-related images, thereby
protecting trade secrets and personal privacy.

Note that we obtained the average encryption throughput by calculating the average of
the encryption throughputs at four different input sizes. For each input size, we calculated
the encryption throughput of MIEA-FCSM as follows:

Throughput =
The total number of bits in the input images (Mb)

Encryption time (Seconds)
. (31)

For example, if the input size is 512 × 512 × 6, we can use the above equation to obtain the

encryption throughput, which is (512×512×6×8/220)
0.0676 ≈ 177.5148 Mbps.

Table 15. Average times (sec.) required and throughputs (Mbps) achieved by six algorithms.

Algorithm Unit
Time (sec.) and Throughput (Mbps)

Average
512 × 512 × 3 512 × 512 × 6 1024 × 1024 × 3 1024 × 1024 × 6

[33] sec. 1.1642 2.3685 5.3076 11.5125 –
Mbps 5.1538 5.0665 4.5218 4.1694 4.7279

[37] sec. 0.9373 1.9829 4.1355 8.3301 –
Mbps 6.4014 6.0517 5.8034 5.7622 6.0047

[38] sec. 1.8495 3.7407 7.4928 15.3363 –
Mbps 3.2441 3.2080 3.2031 3.1298 3.1962

[39] sec. 0.2691 0.5594 1.1221 2.3076 –
Mbps 22.2965 21.4516 21.3885 20.8008 21.4843

[44] sec. 1.6118 4.0054 10.3403 23.2284 –
Mbps 3.7225 2.9960 2.3210 2.0664 2.7765

MIEA-FCSM sec. 0.0308 0.0676 0.1504 0.3372 –
Mbps 194.8052 177.5148 159.5745 142.3488 168.5608

6. Conclusions

To solve the problems of existing image encryption algorithms and better ensure the
security of images, we first constructed a new fractional-order 3D Lorenz chaotic system
and a robust hyper-chaotic map named 2D-SCPM. Then, we further developed a highly
efficient multi-image encryption algorithm named MIEA-FCSM by exploiting the fractional-
order 3D Lorenz chaotic system and 2D-SCPM. The introduction of the fractional-order 3D
Lorenz chaotic system not only expands the key space but also strengthens the security of
our proposed MIEA-FCSM. In comparison to other chaotic maps currently available, our
proposed 2D-SCPM not only boasts a simpler structure but also exhibits superior chaotic
performance. As revealed by our chaotic performance experiments, 2D-SCPM possesses a
broad and continuous hyper-chaotic range and exceptionally rapid trajectory divergence
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speeds. Moreover, 2D-SCPM also demonstrates highly uniform trajectory distributions and
excellent trajectory unpredictability, randomness, and complexity. All of these factors make
2D-SCPM better suited for image encryption.

Our proposed MIEA-FCSM consists of four parts, which are the generation of chaotic
sequences, multi-channel fusion, generation of plaintext-related parameters, and two rounds
of plaintext-related substitution, diffusion, and scrambling. Considering the salient charac-
teristics of images, all of these encryption steps are specifically devised to enhance encryption
efficiency while guaranteeing a high level of security. Firstly, the improved chaotic sequence
generation process ensures the reusability of chaotic sequences. Secondly, multi-channel
fusion significantly reduces the computational workload of subsequent encryption oper-
ations to only one-sixth of the original amount. Finally, compared to existing bit-level,
DNA-level, and pixel-level encryption operations, full vector-level plaintext-related sub-
stitution, diffusion, and scrambling can also significantly improve encryption efficiency.
According to numerous experiments and analyses, MIEA-FCSM has excellent security,
which is comparable to or even superior to the current leading image encryption algorithms.
More importantly, MIEA-FCSM offers significant efficiency advantages. It can encrypt an
image of size 1024 × 1024 × 3 in just 0.1504 seconds on average, and its average encryption
throughput is as high as 168.5608 Mbps. Therefore, in contrast to existing image encryption
algorithms, MIEA-FCSM can better fulfill the requirements of practical applications.

In the future, we will proceed to introduce additional methods or technologies so as
to further enhance the encryption efficiency of MIEA-FCSM. For instance, compressive
sensing technology can be employed to pre-compress images to be encrypted.
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