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Abstract: The propagation of Rayleigh waves is usually accompanied by dispersion, which becomes
more complex with inherent attenuation. The accurate simulation of Rayleigh waves in attenuation
media is crucial for understanding wave mechanisms, layer thickness identification, and parameter
inversion. Although the vacuum formalism or stress image method (SIM) combined with the
generalized standard linear solid (GSLS) is widely used to implement the numerical simulation
of Rayleigh waves in attenuation media, this type of method still has its limitations. First, the
GSLS model cannot split the velocity dispersion and amplitude attenuation term, thus limiting its
application in the Q-compensated reverse time migration/full waveform inversion. In addition,
GSLS-model-based wave equation is usually numerically solved using staggered-grid finite-difference
(SGFD) method, which may result in the numerical dispersion due to the harsh stability condition and
poses complexity and computational burden. To overcome these issues, we propose a high-accuracy
Rayleigh-waves simulation scheme that involves the integration of the fractional viscoelastic wave
equation and vacuum formalism. The proposed scheme not only decouples the amplitude attenuation
and velocity dispersion but also significantly suppresses the numerical dispersion of Rayleigh waves
under the same grid sizes. We first use a homogeneous elastic model to demonstrate the accuracy
in comparison with the analytical solutions, and the correctness for a viscoelastic half-space model
is verified by comparing the phase velocities with the dispersive images generated by the phase
shift transformation. We then simulate several two-dimensional synthetic models to analyze the
effectiveness and applicability of the proposed method. The results show that the proposed method
uses twice as many spatial step sizes and takes 0.6 times that of the GSLS method (solved by the
SGFD method) when achieved at 95% accuracy.

Keywords: fractional laplacian; viscoelastic media; rayleigh waves; vacuum formalism; dispersion

1. Introduction

Rayleigh waves have been extensively observed in seismic exploration [1] and play
an important role in near-surface geophysical exploration, e.g., widely used in urban
underground space exploration [2–5], subsurface parameter inversion [6–9] and layer
thickness identification [10–12]. Taking full waveform inversion as an example, ignoring
Rayleigh wave information during gradient updating can lead to data mismatch and
ultimately reduce the reliability of velocity inversion results [13,14]. Furthermore, the
dispersion curve of Rayleigh waves is sensitive to shear-wave (S-wave) velocity and layer
thickness, which is conducive to the construction of the velocity profiles and obtaining the
layer thickness [12,15–17]. Therefore, the accurate simulation of Rayleigh waves is crucial
in comprehending the mechanism of seismic-wave propagation and constructing reliable
subsurface models.

The free-surface boundary condition severely affects the accuracy of Rayleigh-waves
simulation [18]. Several strategies have been proposed for implementing surface modeling;
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for example, the vacuum formalism [19–21], the characteristic variable method [22,23],
the stress image method (SIM) [24–26], Mittet’s scheme (MS) [27], and the acoustic-elastic
boundary approach (AEA) [28]. Among them, the vacuum formalism is an early and
efficient scheme that simulates Rayleigh waves by setting the S-wave-related parameters
to zero. Nevertheless, this method suffers from severe numerical dispersion due to the
inability to use high-order spatial difference operators [28,29], thus not being able to
achieve the accuracy requirements of surface-wave simulation [30]. Alternatively, SIM is a
more suitable option because of its stability and accuracy [24–26,31,32], although it lacks
rigorous mathematical proof [26]. The advantages and disadvantages of common-used free
boundary conditions and their formulas are shown in Table 1. Generally, Rayleigh waves
suffer more severe numerical dispersion than body waves owing to energy leaking into
the domain above the free surface or the low-velocity structure [25,33]. To achieve similar
simulation accuracies between Rayleigh and body waves, small time or space steps may be
adopted [28,32], resulting in a significant increase in computational requirements [34,35].

Table 1. Comparison of the free boundary conditions.

Method Advantage Disadvantage Formulation

vacuum formalism simple and easy to implement low-accuracy and poor numer-
ical stability


ρ(i, j− k)→ 0,
vP(i, j− k) = 0,
vS(i, j− k) = 0

characteristic variable method high accuracy high computational load


v̇new

x = v̇old
x + 1

ρcS
σ̇old

xz

v̇new
z = v̇old

z + 1
ρcP

σ̇old
zz

σ̇new
xx = σ̇old

xx − λ̃
λ̃+2µ̃

σ̇old
zz

σ̇new
zz = 0, σ̇new

xz = 0

SIM high computational efficiency
and high-accuracy

only for plane waves and semi-
infinite media


∂σxx

∂t =
4µ(λ+µ)

λ+2µ
∂vx
∂t

σzz(i, j) = 0
σzz(i, j− k) = −σzz(i, j + k)
σxz(i, j− k) = −σxz(i, j + k− 1)

MS high computational efficiency complicated calculation
{

σzz = 0, ρx = 0.5ρ0
λ = 0, 2µ = µ0

AEA high computational efficiency complicated calculation
{

σzz = 0, ρx = 0.5ρ0
λ = 0, 2µ = 2µ0

Earth materials usually behave as an imperfectly elastic medium [36], affecting the
characteristics of Rayleigh waves in terms of amplitude and phase during their propaga-
tion [37–39]. So far, several mechanisms have been proposed for simulating Rayleigh waves
in viscoelastic media [26,40–42]. The most common approach is developed by combining
the generalized standard linear solid (GSLS) with SIM. Carcione [40] propagated Rayleigh
waves by using the characteristic variable method. Zhang et al. [41] further modeled
Rayleigh waves by using the Chebyshev pseudospectral method and analyzed the velocity
dispersion. Yuan et al. [42] analyzed the attenuation and dispersion of Rayleigh waves by
comparing elastic and viscoelastic wavefields. The abovementioned GSLS-model-based
scheme has the advantage of parallel computation when solved using the staggered-grid
finite-difference (SGFD) method [43–45]. Nevertheless, the GSLS model requires internal
memory variables, which could significantly increase the computation time and memory,
especially in 3D cases [46,47]. In contrast, the recently developed decoupled fractional
Laplacians (DFL) equation is an ideal propagator for Rayleigh waves in attenuation me-
dia [48–50]. Compared with the time-fractional viscoelastic wave equation [51], the DFL
equation avoids a large amount of wavefield storage, thus benefiting from higher computa-
tional efficiency [52]. Compared to the GSLS model, the DFL equation can decouple the two
attenuation-associated effects, thus being convenient for amplitude compensation [53–55].
Recently, the DFL equation has been extensively used in both attenuation compensation
imaging and full waveform inversion [55–59].
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In this study, we stimulate Rayleigh waves in an attenuated medium by using the DFL
viscoelastic wave equation. It is worth noting that the DFL viscoelastic wave equation is
solved using the staggered-grid pseudospectral (SGPS) method, which naturally avoids the
numerical dispersion problem encountered by the GSLS-based viscous equation (solved
by the SGFD method) when employing the vacuum formalism. In addition, we set the
vacuum formalism as the free-surface boundary condition and apply the convolutional
perfectly matched layers (CPML) to absorb boundary reflections. The proposed scheme not
only inherits the simplicity of the vacuum formalism but is also capable of propagating
Rayleigh waves with Nyquist spatial accuracy because the spatial derivatives are solved
using the fast Fourier transform (FFT).

The remainder of this paper is organized as follows. First, we review the DFL viscoelas-
tic wave equation in Section 2. Then, we present the integration of the DFL viscoelastic
wave equation and vacuum formalism to describe the propagation of body and Rayleigh
waves. Next, several numerical experiments are conducted, as discussed in Section 3, to
demonstrate the proposed scheme’s accuracy and superiority to other similar methods.
Finally, we discuss computational efficiency in Section 4 and draw conclusions of this study
in Section 5.

2. Modeling Method
2.1. DFL Viscoelastic Wave Equation

The first-order velocity-stress viscoelastic wave equation in the time domain can be de-
rived from the momentum conservation equation and viscoelastic constitutive relationship.
The linearized equation of momentum conservation [40,60] can be expressed as{

ρ ∂vx
∂t = ∂σxx

∂x + ∂σxz
∂z + fx,

ρ ∂vz
∂t = ∂σxz

∂x + ∂σzz
∂z + fz,

(1)

where vx and vz represent the particle velocity components in the x- and z-directions,
respectively; σxx, σzz and σxz are the stress components; ρ denotes the mass density; fx and
fx are the body forces. The constitutive equation [50] is derived as

∂σxx
∂t = Mp

(
∂vx
∂x + ∂vz

∂z

)
− 2Ms ∂vz

∂z ,
∂σzz
∂t = Mp

(
∂vx
∂x + ∂vz

∂z

)
− 2Ms ∂vx

∂x ,
∂σxz

∂t = Ms
(

∂vz
∂x + ∂vx

∂z

)
,

(2)

where

Mθ =− ργθcθω0

(
−∇2

)− 1
2
+ ρc2

θ + ργθ
c3

θ

ω0

(
−∇2

) 1
2

+ ρπγθcθ

(
−∇2

)− 1
2 ∂

∂t
+ ρπγ2

θ c2
θ

1
ω0

∂

∂t
,

(3)

cθ = c̃θ cos
(πγθ

2

)
, γθ =

1
π

arctan
1

Qθ
, (4)

and θ = P or S representing P- or S-wave, respectively. Furthermore, cθ and γθ are the
associated propagation velocity and attenuation strength, respectively; c̃θ denotes the
velocity at the reference frequency ω0; and Qθ is the quality factor. Next, the 2D DFL
viscoelastic wave equation can be derived by the following first-order system:
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ρ ∂vx
∂t = ∂σxx

∂x + ∂σxz
∂z + fx,

ρ ∂vz
∂t = ∂σxz

∂x + ∂σzz
∂z + fz,

∂σxx
∂t = Mp

(
∂vx
∂x + ∂vz

∂z

)
− 2Ms ∂vz

∂z ,
∂σzz
∂t = Mp

(
∂vx
∂x + ∂vz

∂z

)
− 2Ms ∂vx

∂x ,
∂σxz

∂t = Ms
(

∂vz
∂x + ∂vx

∂z

)
,

(5)

Note that the spatially independent Laplace operators in Equation (5) can accurately
propagate seismic waves in the attenuation medium. In addition, Equation (5) can be used
to decouple the amplitude decay and phase distortion, thereby providing a direct advantage
for seismic modeling and imaging applications. Moreover, Equation (5) is generally solved
using the SGPS method, which can effectively suppress numerical dispersion compared to
the SGFD method.

2.2. Boundary Treatment
2.2.1. Free Surface Boundary

The vacuum formalism required for modeling a surface topography is to set vP, vS, ρ→ 0
in the region above the free surface. This approach is desirable because it can be implemented
using the same scheme as that used in the interior of the model [19–21]. In this study, we
assume that the free surface is set at j = 0, and the z-axis is downward positive (Figure 1b).
Then, the medium parameters above the free surface are set as

ρ(i, j− k)=0, vP(i, j− k) = 10−8, vS(i, j− k) = 10−8, k = 1, 2, · · · , N, (6)

to approximate the vacuum layers, where N is the thickness of the layers. Further, the
velocity is set close to zero to avoid division by zero.

Vacuum Layers

C
P

M
L

Interior Domain

(a) (b)

C
P

M
L

CPML

Free Surface

Figure 1. (a) Combined boundary condition structure schematic and (b) layout of the wavefield
variables and medium parameters on the staggered-grids mesh.

2.2.2. Absorbing Boundary

The actual medium of the Earth is a half-infinite space. Numerical simulations are
usually performed in finite domains due to computational cost and hardware limitations.
Therefore, accurate simulation results require an appropriate absorbing boundary condition,
such as Perfectly Matched Layers (PML) [61], CPML [62], and Multiaxial Perfectly Matched
Layers (M-PML) [63,64]. In this study, we adopt the CPML method [62] to eliminate the
nonphysical reflections from the other artificial boundaries (Figure 1a). Compared to the
classical PML method, waves with grazing incidence are better absorbed in the CPML
method. Additionally, its memory storage cost is similar to that of the classical PML method.
The CPML method is applied to the first-order velocity-stress viscoelastic wave equation,
and it can be expressed as
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ρ ∂vx
∂t = 1

κx
· ∂σxx

∂x + Φxx +
1
κz
· ∂σxz

∂z + Φxz

ρ ∂vz
∂t = 1

κx
· ∂σxz

∂x + Φxz +
1
κz
· ∂σzz

∂z + Φzz
∂σxx

∂t = Mp
(

1
κx
· ∂vx

∂x + Ψxx +
1
κz
· ∂vz

∂z + Ψzz

)
− 2Ms

(
1
κz
· ∂vz

∂z + Ψzz

)
∂σzz
∂t = Mp

(
1
κx
· ∂vx

∂x + Ψxx +
1
κz
· ∂vz

∂z + Ψzz

)
− 2Ms

(
1
κx
· ∂vx

∂x + Ψxx

)
∂σxz

∂t = Ms
(

1
κx
· ∂vz

∂x + Ψzx +
1
κz
· ∂vx

∂z + Ψxz

)
, (7)

with

Φij = BjΦij + Aj
∂σij

∂j
, Ψij = BjΨij + Aj

∂vi
∂j

, i, j = x or z, (8)

where Bj = e−
(

dj

/
κj+αj

)
∆t; Aj =

dj

κj(dj+αjκj)

(
Bj − 1

)
; dj = − (m+1)vmax

2L

(
l
L

)
ln γ controls the

decay in the j direction; and l(0 ≤ l ≤ L) denotes the distance between the point inside
the CPML and internal boundary. Further, L is the thickness of CPML; m = 2 or 3 is
a positive integer number; vmax is the maximum velocity; γ represents the theoretical

reflection coefficient; κj = 1 + (κmax − 1)
(

l
L

)m
controls the absorption of surface waves;

and κmax ≥ 1 is a positive real number. Moreover, αj = παmax

(
1− l

L

)
controls the

absorption of the low-frequency components, where αmax is generally taken as the main
frequency of the wavelet and j = x or z denotes spatial coordinates.

2.3. Numerical Implementation

As the pseudospectral method can effectively transform the exponential operator
into a multiplication operator, it has been widely used for solving the fractional Laplacian
operators [50,65,66]. In this study, we use the finite-difference scheme and SGPS method to
calculate the temporal derivatives and fractional Laplace operators, respectively [66,67].
As shown in Figure 1b, as different components of one physical parameter are defined at
different staggered-grid points, arithmetic averaging and harmonic-averaging schemes [68]
are used to compute model parameters. Therefore, we have

ρxi+ 1
2 ,j =

ρi,j + ρi+1,j

2
, ρzi,j+ 1

2
=

ρi,j + ρi,j+1

2
, (9)

MS
i+ 1

2 ,j+ 1
2
=

 4
(

1
MS

i,j
+ 1

MS
i+1,j

+ 1
MS

i,j+1
+ 1

MS
i+1,j+1

)−1
i f MS

i,j M
S
i+1,j M

S
i,j+1MS

i+1,j+1 6= 0

0 otherwise
(10)

The detailed numerical implementation can be summarized in the following four steps.
1. Calculate the spatial derivatives

The spatial derivatives in Equation (5) can be solved using the SGPS method

∂±u
∂m

= F−1
m

[
ikme±ikm∆m/2Fm(u)

]
, m = x or z, (11)

where u = (v+x , v+z , σ−xx, σ−zz, σ−xz)
T , Fm represents the 1D Fourier transform, and F−1

m is the
corresponding inverse transform. Note that ± of e-exponential denotes the half spatial
interval shift, where + and − correspond to the left (up) and right (down) shifts, respec-
tively. In addition, the + and − operators of partial u represent the current and previous
time, respectively.
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2. Calculate the fractional Laplacians term as follows:

Mθ

(
∂v+m
∂n

)
=− ργθcθω0F−1

[
k−1F

(
∂v+m
∂n

)]
+ ρc2

θF−1
[
F
(

∂v+m
∂n

)]
+ ργθc3

θω0
−1F−1

[
kF
(

∂v+m
∂n

)]
+ ρπγθcθF−1

[
k−1F

(
∂

∂t
∂v+m
∂n

)]
+ ρπγ2

θ c2
θω0

−1F−1
[
F
(

∂

∂t
∂v+m
∂n

)] (12)

with
∂

∂t

(
∂v+m
∂n

)
=

1
∆t

(
∂v+m
∂n
− ∂v−m

∂n

)
, m, n = x or z, (13)

where F and F−1 represent the 2D Fourier and inverse transforms, respectively.
3. Update the particle velocity and stress as follows:

v+x = v−x + ∆t
ρ

(
∂σ−xx
∂x + ∂σ−xz

∂z

)
+ fx

v+z = v−z + ∆t
ρ

(
∂σ−xz
∂x + ∂σ−zz

∂z

)
+ fz

σ+
xx = σ−xx + ∆t

[
MP
(

∂v+x
∂x + ∂v+z

∂z

)
− 2MS ∂v+z

∂z

]
σ+

zz = σ−zz + ∆t
[

MP
(

∂v+x
∂x + ∂v+z

∂z

)
− 2MS ∂v+x

∂x

]
σ+

xz = σ−xz + ∆t
[

MS
(

∂v+x
∂z + ∂v+z

∂x

)]
. (14)

4. Update the particle velocity and stress of the absorbing boundary:

v+x = v−x + ∆t
ρ

(
1
κx
· ∂σ−xx

∂x + Φ−xx +
1
κz
· ∂σ−xz

∂z + Φ−xz

)
+ fx

v+z = v−z + ∆t
ρ

(
1
κx
· ∂σ−xz

∂x + Φ−xz +
1
κz
· ∂σ−zz

∂z + Φ−zz

)
+ fz

σ+
xx = σ−xx + ∆t

[
MP
(

1
κx
· ∂v+x

∂x + Ψ−xx +
1
κz
· ∂v+z

∂z + Ψ−zz

)
− 2MS

(
1
κz
· ∂v+z

∂z + Ψ−zz

)]
σ+

zz = σ−zz + ∆t
[

MP
(

1
κx
· ∂v+x

∂x + Ψ−xx +
1
κz
· ∂v+z

∂z + Ψ−zz

)
− 2MS

(
1
κx
· ∂v+x

∂x + Ψ−xx

)]
σ+

xz = σ−xz + ∆t
[

MS
(

1
κz
· ∂v+x

∂z + Ψ−zx +
1
κx
· ∂v+z

∂x + Ψ−xz

)]
. (15)

Therefore, the vacuum formalism combined with the DFL viscoelastic wave equation
can be implemented to accurately simulate Rayleigh waves.

3. Numerical Examples

We first validate the accuracy and superiority of the proposed scheme by using the
half-space and two-layer models, respectively. Then, the Marmousi model is used to
demonstrate its ability to treat complex attenuation media. In the following tests, the
vacuum formalism is applied to simulate Rayleigh waves, and the CPML method is used
to suppress reflections from other boundaries.

3.1. Homogeneous Half-Space Model
3.1.1. Elastic Medium

First, we use a homogeneous elastic half-space model with a size of 2000 × 800 and
spatial intervals of 1.25 m to verify the accuracy with respect to the analytical solution.
For the homogeneous elastic medium, the analytical solution can be obtained using the
Cagniard–De Hoop technique [69]. The model comprises 20 absorbing layers and the
reference phase velocities are vP = 2000 m/s and vS = 1150 m/s defined at a reference
frequency of 200 Hz and density of ρ = 1.5 g/cm3. The maximum simulation time is 1 s
with a time interval of 0.25 ms. A Ricker wavelet with a peak frequency of 20 Hz is selected
as the vertical point source. The source and receiver are placed at (0 m, 0 m) and (600 m,
0 m), respectively. To simulate Rayleigh waves, we use the vacuum formalism as the
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free surface boundary condition and apply the CPML method [62] to suppress reflections
from other boundaries. Figure 2 shows traces of the vx and vz components, where the red
dashed line and black line represent the numerical and analytical solutions, respectively. As
observed, the red dashed lines satisfactorily match the black lines, indicating a prominent
accuracy of the proposed scheme.
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(b)
−1

−0.5

Figure 2. Comparison of seismograms computed using numerical (red dashed line) and analytical
(black line) solutions at the offset of 600 m: (a) vx component and (b) vz component.

Next, to demonstrate the superiority of the proposed scheme in suppressing numerical
dispersion, we employ SGPS and SGFD methods to solve the elastic wave equation. The
first-order velocity-stress equation in isotropic elastic media and numerical implementation
are given in Appendix A. A homogeneous elastic model is discretized into 1000 × 400 grids
with spatial intervals of 2.5 m. The reference velocities defined at 200 Hz are vP = 2000 m/s
and vS = 1150 m/s , with a time step of 0.5 ms and density of ρ = 1.5 g/cm3. A vertical
point source with a dominant frequency of 20 Hz is located at (0 m, 0 m). Figure 3 shows
the wavefield snapshots at t = 1 s, in which RW, P, S, and S* denote Rayleigh waves,
direct P-waves, direct S-waves, and free-surface-related S-waves [70]; the left and right
columns correspond to the vx and vz components, respectively. The first row represents
the snapshots generated by using the SGFD method with spatial and time steps of 2.5 m
and 0.5 ms; the second row represents those generated by the SGPS method with the same
spatial and time intervals; the third row displays the snapshots obtained using the SGFD
method with smaller intervals (spatial steps of 1.25 m and time steps of 0.25 ms). For a
clear comparison, we enlarge the snapshots of the free surface in Figure 4. Figure 4a,b show
obvious numerical artifacts (marked by the arrows), i.e., the simulation results of the SGFD
method suffer serious numerical dispersion for larger spatial and time steps. When the
spatial and time steps are reduced (Figure 4e,f), the numerical artifacts decrease significantly.
This is because the second-order SGFD method produces a significant truncation error that
can be reduced by increasing the FD stencil length or reducing the spatial sampling interval.
The clean wavefront in Figure 3c–f indicates that the proposed scheme can accurately
extrapolate wavefields with twice the spatial and time steps of the SGFD method. Figure 5
displays the seismic traces within 0.2–0.8 s recorded at (600 m, 0 m), where Figure 5a,b
correspond to the traces of the vx and vz component waveforms, respectively. Similar to
wavefield snapshots, obvious ring phenomena can be observed from the traces obtained
using the SGFD method with spatial steps of 2.5 m and time steps of 0.5 ms (blue dashed
lines). When the spatial and time steps are reduced, the waveform distortion of Rayleigh
waves decreases significantly (black lines). These waveforms are almost the same as those
obtained using the SGPS method, with spatial steps of 2.5 m and time steps of 0.5 ms (red
dashed lines). Figures 3 and 5 indicate that the proposed scheme can effectively suppress
the spatial numerical dispersion compared to the SGFD method for the same mesh division.
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This phenomenon is attributed to the SGPS method propagating Rayleigh waves with
Nyquist spatial accuracy as a result of using FFT to solve spatial derivatives.

Distance (km)

0

0.5

1

D
ep

th
 (

k
m

)

Distance (km)

0

0.5

1

0

1

10
 −2

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

(a) (b)

0

0.5

1

D
ep

th
 (

k
m

) 0

0.5

1

100 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

(c) (d)

0

0.5

1

D
ep

th
 (

k
m

) 0

0.5

1

10
 −2

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

(e) (f)

0.5

0

1

0.5

0

1

0.5

RW

S

S*

P

RW

S

S*

P

RW

S

S*

P

RW

S

S*

P

RW

S

S*

P

RW

S

S*

P

−1

−0.5

−1

−0.5

−1

−0.5

 −2

Figure 3. Elastic wavefield snapshots in a homogeneous half-space model at t = 1 s. The left and
right columns correspond to the vx and vz components, respectively. (a,b) Wavefields simulated
using the SGFD method with ∆h = 2.5 m and ∆t = 0.5 ms; (c,d) Wavefields computed using the
SGPS method with the same spatial and time intervals; (e,f) Wavefields generated using the SGFD
method with ∆h = 1.25 m and ∆t = 0.25 ms.
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3.1.2. Viscoelastic Medium

Next, we extend the vacuum formalism to the viscoelastic medium. The model used
in this scenario is the same as the first model (Figure 2), except for the location of the source,
which is at the (1250 m, 0 m). In addition, the values of the quality factor are Qp = 50,
Qs = 30. Here, we only use the SGPS method for the simulation because numerically
solving fractional Laplace operators by using the SGFD method is difficult. Figure 6 shows
wavefield snapshots at t = 0.5 s. As shown, Rayleigh waves only propagate near the free
surface, because the depth of its propagation is about one wavelength [37]. Compared with
the elastic wavefield (Figure 6a,b), the amplitude of viscoelastic wavefield (Figure 6c,d) is
seriously attenuated due to inherent attenuation characteristics of the viscoelastic medium.
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Figure 6. Comparisons between the elastic and viscoelastic wavefield snapshots in a homogeneous
half-space model at t = 0.5 s: (a) elastic vx component, (b) elastic vz component, (c) viscoelastic vx

component, and (d) viscoelastic vz component.

Next, we obtain the dispersive images to verify the method’s accuracy, with the source
located at (0 m, 0 m). Figure 7a shows the common-gather (offset from 250 to 1500 m)
with a recording time of 2 s. As shown, the energy of Rayleigh waves is the strongest, and
their amplitudes decrease gradually with the increase of the offset (represented by arrows).
Figure 7b shows the corresponding dispersive images of Rayleigh waves in the frequency-
velocity domain that are generated using the phase shift transform method [71], where
the black dots denote the theoretical phase velocities of Rayleigh waves [40]. The results
show that the dispersive images satisfactorily conform to the theoretical phase velocities,
except for the slight differences at frequencies below 10 Hz, which can be attributed to the
near-field effects, such as nonplane wave propagation and body-wave energy leakage [72].
Moreover, the phase velocities of Rayleigh waves increase with respect to frequency, as is
consistent with Carcione’s analytical solution [40].
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Figure 7. (a) Common-gather and (b) dispersive images in the homogeneous half-space model.
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3.2. Two-Layer Model

We design a two-layer model to verify the ability of the proposed scheme to process the
viscoelastic heterogeneous medium. The two-layer model is discretized into 1200 × 600 grid
points with 1.25 m spatial intervals. A horizontal interface is observed at a depth of 250 m,
and a vertical point source with 20 Hz dominant frequency is set at (750 m, 0 m). The
time step is 0.25 ms, and the parameters of each layer are shown in Table 2. The vacuum
formalism is set to the free surface boundary condition. The CPML method [62] is used to
suppress reflections from other boundaries. Figure 8 displays the wavefield snapshots at
t = 0.45 s. As shown, the energy of Rayleigh waves is stronger than that of the body waves
near the free surface, which is consistent with the dominant proportion of surface wave
energy in an elastic medium. In addition, the figure displays the reflected P-wave (RPP),
reflected S-wave (RPS), transmitted P-wave (TPP), and transmitted S-wave (TPS) generated
because of the presence of the reflecting interface.

Table 2. Parameters of the two-layer model.

Depth (m) ρ (g/cm3) vS (m/s) vP (m/s) QS QP

Layer 1 250 1.5 700 1500 30 50
Layer 2 500 2.0 1150 2000 90 150
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Figure 8. Viscoelastic wavefield snapshots of the two-layer model at t = 0.45 s: (a) vx component and
(b) vz component.

Next, we further verify the accuracy of the proposed scheme in a heterogeneous atten-
uation medium by using the dispersion images. To obtain a clear dispersion phenomenon,
the two-layer model is discretized into 1000 × 400 grid points with 2.5 m spatial intervals
and a horizontal interface at a depth of 15 m. A Ricker wavelet with 20 Hz dominant
frequency at (0 m, 0 m) serves as the vertical point source. The time step is 0.25 ms, and
the parameters of each layer are shown in Table 3. Figure 9a shows the common-gather
(offset from 250 to 1500 m) with a recording time of 3 s. We observe severe dispersion and
amplitude decay, which are enhanced with the increase of the offset. Figure 9b shows the
corresponding dispersive images. As shown, Rayleigh waves display multimode compris-
ing fundamental and high-order modes due to an inherent characteristic that Rayleigh
waves have dispersion phenomenon in the multilayered media. The fundamental mode
exhibits a predominant energy, while the energy of the higher-order modes decreases with
their increasing order. This phenomenon is associated with the detection depth of Rayleigh
waves and the viscosity of the medium. Additionally, a noticeable decrease is observed in
the resolution of the dispersion energy. The dispersive images reveal accurate phase veloci-
ties of Rayleigh waves compared with the analytical results (black dots) calculated using
the Knopoff method [73]. This indicates that the simulation results of the heterogeneous
medium are accurate.

Table 3. Parameters of the two-layer model.

Depth (m) ρ (g/cm3) vS (m/s) vP (m/s) QS QP

Layer 1 15 1.5 600 2400 30 50
Layer 2 985 2.0 800 3000 90 150
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Figure 9. (a) Common-gather and (b) dispersive images in the two-layer model.

Next, we analyze the effect of attenuation on Rayleigh waves. For this, we set three
models with the same simulation parameters as those of the first two-layer model (Figure 8),
except for the Q values and model size (discretized into 2000 × 800 grid points). The detailed
Q values are shown in Figure 10a. We make QP = QS for simplicity. We set Q = ∞ in
Model 1 as the reference, and Models 2 and 3 display the upper and lower attenuation
layers (Q = 50), respectively. In Figure 10b, I–III display partial snapshots corresponding
to Models 1–3 at t = 0.35 s, and IV represents the difference between Models 2 and 1;
the strong amplitude residual near the free surface indicates that the shallow attenuation
has a greater impact on surface waves. Furthermore, V shows the difference between
Models 3 and 1; as observed, only the lower attenuation layer significantly affects the body
waves. Figure 11 displays seismograms recorded at (875 m, 0 m), which provide a clearer
verification of this phenomenon. This phenomenon can be attributed to the fact that the
energy of Rayleigh waves decays exponentially along the depth and is mainly concentrated
in a wavelength range [74]. To further evaluate the stability of the proposed scheme, we
simulate the propagation of the Rayleigh waves up to 10 s. The energy attenuation curve
(Figure 12) indicates that the proposed scheme is still stable even for a large simulation time.

Figure 10. (a) Set of two-layer models and (b) wavefield snapshots. I–III show the partial snapshots
of Models 1–3 at t = 0.35 s, respectively; IV shows the difference between Models 2 and 1; and V
shows the difference between Models 3 and 1.
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Figure 12. Energy decay for 10 s simulation.

3.3. Marmousi Model

This section demonstrates the simulation results of the Marmousi model with a more
realistic level of structural complexity. Figure 13a–d display the P-wave velocity, S-wave
velocity, QP, and QS, respectively. The model contains 663 × 234 grid points with a spacing
of 2 m. A vertical point source with 20 Hz dominant frequency is added at (663 m, 0 m).
The simulation time is 2 s with a time step of 0.1 ms. The vacuum formalism is used
as the free surface boundary condition for the simulation of Rayleigh waves, and the
CPML method [62] is used to suppress the reflections from other boundaries. To verify
the simulation accuracy, the results of SIM function as a reference solution. Figure 14
shows the wavefield snapshots at t = 0.45 s and the common-gather of particle velocity vz
component. Here, I/VI and II/VII display the simulation results generated by the SIM and
proposed scheme, respectively. The proposed scheme and SIM simulate almost matched
wavefields and common-gather, and the minor difference (IV and IX) between the two
suggests that the proposed scheme can handle a complex heterogeneous medium. In the
figure, III and VIII show the simulation results under the absorption-only boundaries.
Compared with the proposed scheme, the wavefield snapshot of the shallow layer differs
significantly (marked by the arrows) because free surface conditions are not set; that is,
Rayleigh waves, R* waves, and other reflection waves are not generated near the free
surface. In addition, these differences are more clearly observed (marked by boxes) in
the common-gather. The residuals (V and X) indicate that surface waves have a greater
influence on the shallow wavefield, especially energy distribution. To further test the
performance of the proposed method in complex media, we then compare the simulation
results between the DFL equation and the GSLS model (solved by the SGFD method and
can be found in Appendix B), both employing the vacuum formalism. Figure 15a,c display
the simulation results generated by solving the DFL equation using the SGPS method.
Figure 15b,d show the simulation results obtained by solving the GSLS model using the
SGFD method. In Figure 15b, we find obvious numerical artifacts (marked by arrows),
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and Figure 15d displays a visible tailing phenomenon. By contrast, the DFL equation
(Figure 15a,c) generates clean wavefronts, and Rayleigh waves do not have a broomstick
shape in the common shot gather. It is further verified that the proposed method can
effectively suppress the numerical dispersion of Rayleigh waves.

Figure 13. Marmousi model (a) P-wave velocity, (b) S-wave velocity, (c) QP, and (d) QS.

Figure 14. (a) Wavefield snapshots at t = 0.45 s and (b) common-gathers. I–II are calculated using
the SIM and proposed scheme, respectively. III shows the simulation results under absorption-only
boundaries. IV represents the residuals between I and II, and V shows the residuals between II and
III. VI–X show the common-gathers corresponding to wavefield snapshots.
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Figure 15. The wavefield snapshots at t = 0.45 s and the common-gather of particle velocity vz

component. (a,c) display the simulation results obtained by solving the DFL equation using the
SGPS method; (b,d) show the simulation results obtained by solving the GSLS equation using the
SGFD method.
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4. Discussion

In the homogeneous elastic half-space and Marmousi models, we have confirmed the
effectiveness of the proposed method in suppressing the numerical dispersion of Rayleigh
waves at the same spatial step size. In addition, by enlarging the spatial step (approximately
twice as much) in the elastic model, we achieve approximate simulation results. To test this
for the attenuation media, we design a series of models with different time and spatial steps.
The model size, time, and spatial steps are shown in Table 4. A vertical point source with a
dominant frequency of 20 Hz is located at (0 m, 0 m), and the maximum simulation time
is 1 s. We set the simulation results of the GSLS-model-based wave equation with spatial
steps of 0.5 m and time steps of 0.1 ms as the reference. The seismograms and their L2 misfit
between the numerical and reference results are shown in Figure 16 and Table 5. Comparing
Figure 16a,b, we observe that both methods agree well with the reference results when
the spatial sampling is more than 50 points per minimum wavelength (∆h = 1 m). When
we further reduce the spatial sampling to 25 points per minimum wavelength (∆h = 2 m),
the proposed scheme achieves at least 95% accuracy, and the GSLS method produces
unacceptable results. None of the methods obtain acceptable results when the spatial
sampling is less than 12.5 points per minimum wavelength (∆h = 4 m). Compared to the
GSLS equation, the numerical implementation of the DFL equation is approximately three
times slower due to performing multiple FFTs. However, the computational efficiency of
the DFL equation is more favorable when considering both the calculation accuracy and
the number of spatial sampling points. For instance, when achieving 95% accuracy, the
DFL equation implements a spatial step size of 2m, whereas the GSLS equation necessitates
a spatial step size of 1 m. As a result, the DFL equation’s computation time is 0.6 times
faster compared to the GSLS equation.

Table 4. Parameters of the homogeneous viscoelastic half-space model. Note vP = 2000 m/s,
vS = 1000 m/s, QP = 50, QS = 30 and ρ = 1.8 g/cm3.

Points/Minimum
Wavelength Mesh Spatial Step (m) Time Step (ms)

10 200 × 160 5 1
12.5 250 × 200 4 0.8
25 500 × 400 2 0.4
50 1000 × 800 1 0.2
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Figure 16. Seismograms recorded at (600 m, 0 m) computed using (a) DFL and (b) GSLS equation.

Table 5. Computation time and misfit of the GSLS and DFL equation.

Equation Spatial Step (m) Computation Time (s) L2 misfit (%)

GSLS
5 32 207
4 54 165
2 208 27.49
1 1075 1.52

DFL
5 62 42.67
4 180 29.02
2 643 4.85
1 3992 0.61
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5. Conclusions

This study proposes a high-accuracy simulation method of Rayleigh waves, which
integrates the vacuum formalism and DFL viscoelastic wave equation. Compared with the
vacuum formalism based on the GSLS-model-based wave equation, the proposed scheme
can suppress the numerical dispersion with a simple form and convenient implementation.
We test the simulation results against the analytical solutions in an elastic half-space model.
The comparisons are excellent except for some slight differences. We then compare the
theoretical phase velocities with the dispersive images in a viscoelastic half-space model,
demonstrating the accuracy of the model results and revealing an increase in Rayleigh
wave phase velocities with frequency. To analyze the effectiveness and applicability of
the proposed method, we simulate several two-dimensional synthetic models. The results
demonstrate that the proposed method uses twice the spatial step size and requires 0.6 times
less time than the GSLS method (solved by the SGFD method) when achieving 95% accuracy.
We anticipate that the proposed scheme could provide valuable references for simulating
Rayleigh waves and other seismic waves.
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Appendix A. The Elastic Equation and Numerical Implementation

In 2D isotropic elastic media, the first-order velocity-stress equation is written as:

ρ ∂vx
∂t = ∂σxx

∂x + ∂σxz
∂z + fx,

ρ ∂vz
∂t = ∂σxz

∂x + ∂σzz
∂z + fz,

∂σxx
∂t = (λ + 2µ) ∂vx

∂x + λ ∂vz
∂z ,

∂σzz
∂t = λ ∂vx

∂x + (λ + 2µ) ∂vz
∂z ,

∂σxz
∂t = µ

(
∂vz
∂x + ∂vx

∂z

)
,

(A1)

where vx and vz represent the particle velocity components in the x- and z-directions,
respectively; σxx, σzz and σxz are the stress components; ρ denotes the mass density; fx and
fx are the body forces; λ and µ are Lame parameters.

The first-order velocity-stress equation on a staggered grid is written as follows:

v+x = v−x + ∆t
ρx
(D+

x σ−xx + D−z σ−xz) + fx,
v+z = v−z + ∆t

ρz
(D+

z σ−zz + D−x σ−xz) + fz,
σ+

xx = σ−xx + ∆t[(λ + 2µ)D−x v+x + λD−z v+z ],
σ+

zz = σ−zz + ∆t[λD−x v+x + (λ + 2µ)D−z v+z ],
σ+

xz = σ−xz + ∆tµxz(D+
x v+z + D+

z v+x ),

(A2)

The spatial derivatives in Equation (A2) are approximated by high-order finite-
difference operators on a staggered grid. We define a forward operator D+

x as

D+
x ui,j+1/2

=
N

∑
k=1

αk
ui,j+k − ui,j−k+1

∆x
. (A3)
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and a backward operator D−z as

D−z ui+1/2,j =
N

∑
k=1

αk
ui+k−1,j − ui−k,j

∆z
. (A4)

where u = (v+x , v+z , σ−xx, σ−zz, σ−xz)
T , the + and − operators of partial u represent the current

and previous time, respectively. ∆x and ∆z are the grid spacing in the x- and z-directions,
respectively. N denotes the length of the operator and αk is the corresponding weight-
ing factor.

The spatial derivatives in Equation (A2) are computed using the SGPS method. We
define D±m as

D±m u = F−1
m

[
ikme±ikm∆m/2Fm(u)

]
, m = x or z, (A5)

where Fm represents the 1D Fourier transform, and F−1
m is the corresponding inverse

transform. Note that ± of e-exponential denotes the half spatial interval shift, where + and
− correspond to the left (up) and right (down) shifts, respectively.

Appendix B. The GSLS-Model-Based Wave Equation

The first-order velocity-stress viscoelastic wave equation of 2D media [43] in the time
domain is written as follows:

ρ ∂vx
∂t = ∂σxx

∂x + ∂σxz
∂z + fx,

ρ ∂vz
∂t = ∂σxz

∂x + ∂σzz
∂z + fz,

∂σxx
∂t =

(
λ̂ + 2µ̂

) ∂vx
∂x + λ̂ ∂vz

∂z +
L1
∑

l=1

∂e1l
∂t +

L2
∑

l=1

∂e2l
∂t ,

∂σzz
∂t = λ̂ ∂vx

∂x +
(
λ̂ + 2µ̂

) ∂vz
∂z +

L1
∑

l=1

∂e1l
∂t −

L2
∑

l=1

∂e2l
∂t ,

∂σxz
∂t = µ̂

(
∂vz
∂x + ∂vx

∂z

)
+

L2
∑

l=1

∂e3l
∂t ,

∂2e1l
∂t2 = − 1

τ
(1)
σl

∂e1l
∂t + 1

2 φ1l

(
∂vx
∂x + ∂vz

∂z

)
, l = 1, · · · , L1,

∂2e2l
∂t2 = − 1

τ
(2)
σl

∂e2l
∂t + 1

2 φ2l

(
∂vx
∂x −

∂vz
∂z

)
, l = 1, · · · , L2,

∂2e3l
∂t2 = − 1

τ
(2)
σl

∂e3l
∂t + 1

2 φ2l

(
∂vx
∂z + ∂vz

∂x

)
, l = 1, · · · , L2.

(A6)

where vx and vz represent the particle velocity components in the x- and z-directions,
respectively; σxx, σzz and σxz are the stress components; ρ denotes the mass density; fx and
fx are the body forces. Further, e1l is a memory variable that describes the characteristics
of the dilatational wave, and e2l and e3l are the memory variables for the quasi-shear
wave. Moreover, τ

(v)
σl and τ

(v)
εl are material relaxation times; the quantities λ̂ and µ̂ are the

unrelaxed Lame constants of 2D solid defined by:

λ̂ = M1
2

[
1− 1

L1

L1
∑

l=1

(
1− τ

(1)
εl

τ
(1)
σl

)]
− M2

2

[
1− 1

L2

L2
∑

l=1

(
1− τ

(2)
εl

τ
(2)
σl

)]
,

µ̂ = M2
2

[
1− 1

L2

L2
∑

l=1

(
1− τ

(2)
εl

τ
(2)
σl

)]
,

M1 = 2ρ
(
v2

P − v2
S
)Re

(
1
L1

L1
∑

l=1

1+iw0τ
(1)
εl

1+iw0τ
(1)
σl

)− 1
2
2

,

M2 = 2ρv2
S

Re

(
1
L2

L2
∑

l=1

1+iw0τ
(2)
εl

1+iw0τ
(2)
σl

)− 1
2
2

.
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where Mv(v = 1, 2) is the relaxed moduli; vP and vS are the reference velocities defined at

the reference frequency w0; and φvl =
Mv

Lvτv
σl

(
1− τ

(v)
εl

τ
(v)
σl

)
, (v = 1, 2) is response function.
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