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Abstract: This paper’s major goal is to prove some symmetrical Maclaurin-type integral inequalities
inside the framework of multiplicative calculus. In order to accomplish this and after giving some
basic tools, we have established a new integral identity. Based on this identity, some symmetrical
Maclaurin-type inequalities have been constructed for functions whose multiplicative derivatives are
bounded as well as convex. At the end, some applications to special means are provided.
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1. Introduction

The theory of inequality has seen a rise in research activity over the past 20 years
in different fields of sciences, both theoretical and applied, including in the study of the
qualitative properties of solutions to ordinary, partial, and integral differential equations
as well as in numerical analysis, where this tool is essential for estimating quadrature
errors, and in a variety of calculation types, including time scale calculus [1-3], fractional
calculus [4-7], quantum calculus [8,9], and classical (Newtonian) calculus [10-12].

The term multiplicative calculus originates from the classical calculation of Newton
and Leibniz, which was introduced by Grossman and Katz when they presented and
examined the first non-Newtonian systems [13].

The multiplicative derivative and integral were presented by Bashirov et al. [14]. Its
relationship to the classical derivative and integral, as well as some of its features, are
mentioned below.

The multiplicative derivative of the function G with the notation G* is as follows:

Definition 1 ([14]). For a positive function G : R — Rt . The multiplicative derivative is

guw)i_

=0 = nm< o

A—0

Remark 1. If G is positive and differentiable at t, then G* exists and is related to the standard
derivative G' as follows:

G (t) = eInG(1) _ G0
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b
The multiplicative integral or * integral of the function G noted [(G(t)

a

)4 is as follows:

Proposition 1 ([14]). Let G € L'[a, b]. Then, the * integral of the function G is

b

b
[@n™ = exp{ / 1n<g<t>>dt}.

a

It is also practical to remember the integration-by-parts formula.

Theorem 1 ([14]). Let G, x : [a,b] — R, where G is a multiplicative differentiable function and x
is a differentiable function. So, the function GX is a multiplicative integrable function that satisfies

Lemma 1 ([15]). Let G,k : [a,b] — R, where G is a differentiable multiplicative function and k is
a differentiable function. Suppose x : ] C R — R is a differentiable function, then

/b(g*(k(t))k’(t)x(t))dt _ g(k(b))x(b) ) .

The analogous multiplicative of the Hermite-Hadamard inequality was provided by
Ali et al. in [16], as follows:

Theorem 2. Let G be a positive and multiplicatively convex function on the interval [y, ap]; then,
the following double inequality is true:

_1

g(m;—lxz) < (jg(x)dX) v < 1/G ()G (ay). (1)

Since the publication of the aforementioned paper, several works concerning multi-
plicative inequalities have been published (see, for instance, [15,17-20]).

In [21], Meftah investigated some Maclaurin-type inequalities for multiplicatively
convex functions and established the following results.

Theorem 3. Assume that G : [a, a3] — R is a multiplicative differentiable map with multiplica-
tive convex derivative G* on [a1, ap). Then, we have

(o) o)) ) (Joor)

< <(g*(“1))64 (g* (5,11%))379 (g* (W))B‘M (g* (@))379(g* (0(2))64> 13,824 .
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Theorem 4. Assume that Theorem 3’s whole set of hypotheses is true. Then, we have

|((Q(W))3(Q(W))z(g(mm))> (Ig )

A~

< (e (o (@) (@ () o)

Theorem 5. Assume that Theorem 3’s whole set of hypotheses is true. Then, we have

|((9(5“12“2))3(G(“;M))2(g(al+5az)>)(fg )

b—a

< ((@@)(o(2=))" (o (222)) (@ @)

The multiplicative Riemann-Liouville fractional integrals were first introduced by
Abdeljawad and Grossman in [4] and satisfies the following relations:

Definition 2. The left and right multiplicative Riemann—Liouville fractional integral of order
a € C, where Re(a) > 0, is given as follows:

(aI%@) (5¢) = oUzs (In09)) () )
and )
(IF ) (3) = ey (Inog)) () 3)
where J*. and J*_ are the left and right Riemann—Liouville fractional integrals, respectively, defined
T 2
as follows:
¢
1 _
T+ 9)(©) = E=m"To(udp,a<g
I'(a)
a
and

b
U5 9)(©) = gy [ (1= 0" Mol s <t
¢

Budak and Ozgelik [22] proved some multiplicative fractional Hermite-Hadamard-type
inequalities by combining the operators (2) and (3) with the definition of multiplicative convex
functions. One can also consult [22-28] concerning fractional multiplicative inequalities.

Very recently, Peng and Du [29] established some non-symmetrical fractional Maclaurin-
type inequalities as follows:

Theorem 6. G : [a1,a0] — R is an increasing multiplicative differentiable map. If G* is
multiplicative convex on (&1, xp], then for « > 0, the following inequality related to multiplicative
RL-fractional integrals holds:
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<(9(“%))3(g(%>)2<g<%52>)3>%

L(9)

< (G*(e1)) 2l (g* (551%)) 2L (300 +A5+Dy)

20 (As+Ag+A7+Ag)

(o)

24 (Ag+A 4+ 1A ) ey—e
5 3 9 10T 2811 2 1A
x(0 () (0°(e2) 52,

where 64~ 1T (a+1)
(ep—¢1)"
£0) = ((1809)E)(10) (w5=)) =
3¢ 1r(a+1)
5eq+4-¢ e1+e (ep—2)"
(ga0) (62 (c100) (452
with
_ 1
A = 6(a+1)(at2)’ ) ,
1 10—11a—15 5 5\ 5 5\a
282+ 85+ Ay 48(a+10§(a+§) + 12(;11) (g) , - 24(;;2) (§)1 ’ ,
16—8x—8a? 5 5\& 3\a 3\a
As + A+ A7+ Ag Bty T 1) (3)2 i (3" s (3) 5
10419 +a? + 7 a (é)a

Ag + Ay + 3013
A1p

48(a+1)(a+2)

a+2)

Theorem 7. Under the assumptions of Theorem 6, if G* < M with M > 0, then we have

(o)) (o(52) (o))’

£(9)

1 1
o o

€y —E€ Ay
< Mzél[lz(iil)(%) +2(of+1)(%) *6?0&3’1)]'

The goal of the current study is to construct some new symmetrical fractional Maclaurin-
type inequalities for multiplicatively convex functions, which are motivated by the previ-
ously stated papers. To address this, we provide a novel integral identity, from which the
fractional Maclaurin inequality for bounded multiplicative derivatives is derived initially.
The situation when the multiplicative derivatives are convex is then covered. Some appli-
cations to special means are provided at the end. The remainder of the current paper is
organized as follows: Some symmetrical fractional Maclaurin inequalities are presented
in Section 2. Section 3 provides some applications to special means. Section 4 draws
the conclusion.

2. Main Results
We begin with the auxiliary result that follows.

Lemma 2. Assume that G : [e1, €3] — R is a multiplicative differentiable mapping with multi-
plicative integrable derivative G* on [e1, €3]. Then, we have
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3 3% Ir(a+1)

(o) (o) o)) o0 5
. P
Q*((lfh)€1+ﬁ5ﬁ%)e ) )

Q*((l DE== +ﬁsl+s2>(%( 8(1ﬁ)“)))

€n—¢€
an\ 3t

€y —E€
an\ 23t

| A (8h%—
x(f(Q*((l—ﬁ)ﬁ;@JrﬁSﬁ&z)(u(si 3)))
0

1 ,1 _
X f(g*((lh)el*;"EZMe o )
0
where -
<( 5sl+sz > )(51+5521 g) > (4)
X (5€1+fz Iag> (elerez) ( s1+5a2 ) (81;82)
Proof. Let .
1 N 2ot
6
. </<g*(<lﬁ>sl+ﬁ5ef”) ) ) ,
0
82*81
/1 g* 581 —+ & " hgl + € (i(3—8(1—h)“)) dh 3
6 2 ’
0
. dahy 23t
(/1 <9*< 81 +€2 +r4 +582>(214<8ﬁ —3>)> )
6
0

and

2—¢

| +5 La—pymy s
N ———
0

By using the integration by parts for multiplicative integrals, I; yields
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€)—¢€1

1pan 40\ T 6
(g*((1_ﬁ)gl+hssl6+sz)éﬁ> >

1

J

/ dh
278 1pn

(g*((lﬁ)€1+h5€16+22) g w)

1 Serte %hﬂé—l dh
{ g((l—ﬁ)sl-i-h%)
1
o 1
1
expd [(4m1InG (1-h)e +4 %12 dﬁ}
o ma(nneasiz))

— (g(Selgrez))% %1
exp{(

G f6 (u—ey)*! 1rlg(u)du}

1
= 5e1te 6 1
= (g( 6 )) 6”‘_1l"(a+1)

5¢e1+€p (£2,€1>a
1 ¢ a—1
expd | oy Efl (u—e1)* 1 InG(u)du
1 _ 6 r(a+1)
5 6 (ez_sl)a’
= (Q(HTHZ)) ((*1%81'*'52 g) (81)) .
A

Similarly, we have

£p—€]

! 1(3_8(1—HK)* dh 3
(f(G*((l—ﬁ)mZ”—kﬁel;Ez)(y( (1-h) ))) )

L

0
e e N
= g(Q* ((1 _ﬁ)&l% _i_h#)%(zlj@—?i(l—ﬁ) )))
_ o) 1

- o ( dh
Sk A 1‘ g _pa—1
g(%) j<g((17h)5€1%+h¥>3( 1) )
0

- (6(22)) % (6(152))

e [ (§0-* InG (11 17245152 )
(65(252)) % (o(252))

atée
3e—1p(g+1 2 + a1
eXP{ ( (gz—s(l;—oc)ﬁ J (%—u) lng(u)du) }

&

5eq+ep
6

- (6(952))* (6(*22))
3""11"(0(+1)
£1+ep - (SZ’S])N
(exp{ #1)55 ;g <51;sz 7u> lng(u)du})
1+e
_ (et

= (o)) o(52) (o) (432)) =77

o1
Qol=

—

Q)

(6)
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and

52*51

1 1 gar_3))\ P\ T3
{(g* ((1-mage + ﬁ%)bﬂ )>>
g . d
(g*(ﬁ yaga i) A s>>>
5
5en 24
))é - . .
>> f<g< 1 ﬁ €1+€2 +ﬁ€1+5€2)3 >
0
£17To%

_ (o(2522)) % (a(132))

1
eXP{]%fxﬁ"‘ 1InG((1-h) €1+€2+ﬁ€1+5€2)dh

0

-

5

(o)) o (152)!

614—6522 )
_ae-l e tep \ AT
P T { (n=952)" InG(u)du

€
2

5 1

€1+5¢p 24 +ep 3
E( 2))* (r(122)) — ”
expd L ¢ ? gte _1 d o)
P o 81{% (u ate ) nG(u)du
i 30— 1r(a+1)

(9(222)) (9(232))  (vtnsa6) (242) ) =

08

(g*(( )€1+552 1 e )é(lﬁ)zx>dh> =

dh
1924 1_p
Q*((l—ﬁ)%Jrhs) 55 )>
1 1
5

(g(s1+6 sz))*% 'fl<g((1ﬁ)fl+6552+ﬁgz) éa(lh)a1>dh,

0

_ (o(12))"

1
exp{j%zx(lfﬁ)"‘*l 1ng((17h)$+ﬁsz)dﬁ}

' RV (®)
_ (9(152))

exp{ (60(%“ }2 (e2—u)* In g(u)du}

_ (9(2))®
64— 1T(a+1)

) (Slfgl)a
or| ] et
2

6“1r(at1)

B (g(mssz))é(<sl+:ezlig> (82)>_ Ca

TN OY—

Multiplying (5)—(8) yields the desired outcome. [
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Theorem 8. Assume that Lemma 2's hypotheses are all true. If |In G*| < In M on [e1, €3], then
we have

30— 1Ir(a41)

|<(g(sglﬁ+gz)>3(g(“?2))z(g(“ﬁ))3)é(@(g» o

1
I3

b—a 7—3a 3
_b-a +3a(2
< MBam (72 (5)")

where O(.) is defined by (4).

Proof. According to Lemma 2, multiplicative integration, and the hypothesis that [In G*| <
In M, we have

3¢ Ir(a+1)

((o(5=))"(s(=52)) (o(25=))") ‘0000 =
1 . %ﬁ,x dh 826
= ({(Q ( h)ey + h2te2 ) ) >

iy 25t
X (}(g* 5€1+€2 +ﬁ€1+32>(2141(3—8(1—ﬁ)0())) >
0
. dh SZ*Sl
x (fl(g €1+€2+ﬁ£1+5€2>(714(gh —3))) )
0
82—8]
1 _1q_py 4
X <f (g* £1+5£2 +ﬁ82) 6( ) ) >
0
1
< oxp( e (o (0= +15555) an)
1
<oxp [543 801 —h)*| (g (11— my 2 +ﬁ€1+€2)\)dﬁ>
X exp f&z &8t — 3|’lng*< ﬁ)# +fl£1+6552>‘dﬁ>
><eXP ffz 81 )Ul( ((1_ﬁ)£1+65£2+ﬁ€2>‘>dﬁ>
<

exp(‘82 £1 ln/\/lfﬁ"‘dﬁ> exp(€2 & ln/\/lf|3 8(1 — h)"|dh

X exp (szn‘gl ln./\/lf\8ﬁ“ - 3|dﬁ> exp <823681 ln/\/lf(l - ﬁ)“dﬁ)

1
—ew@%EMM%W@%m(“”wwaﬁmM>
X exp<3§§;j11) (5_23"‘ +3a(3)" > ln/\/l) exP< ZIX-i]l ln/\/l)

_ sy (BT

where we have used

1 1 1
5—3a 6 [(3\~*

— — @ = x __ = —
4|3 8(1—h) |dﬁ {|8ﬁ 3|dh P + i1 <8) .
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The proof is finished. [

Corollary 1. By assuming that & = 1 in Theorem 6, we obtain
1, 1
Ser+e2\\° e1+e2\\? e +5e\\\ [ [ o) S
((652)) (o(252)) (o(=5%)) ) (o) e

Theorem 9. Assume that Lemma 2’s hypotheses are all true. If G* is multiplicative convex on
[e1, €2], then we have

() o) o)) o 57

e 5 ety (3)
< (g*(81>) @) (,x+2 (g*( 816+€2)) o (

2N

16-3(a+1)(a+2) L5 3.2

(g*(£1+£2)>(2(a+17)(:x+2)+a6fl(%) (Y

2
36

<g*<ez>>wlf<a+2>) ,

2
[

143, 3 3
<g* (s1+5£2 1a32) T3y (8)

where ©(.) is defined by (4).

Proof. According to Lemma 2, multiplicative integration, and the multiplicative convexity
of G*, we have

\<<

3A

5““2)) (5(252))'(6(=52))") 00
(0 o) Jan)
xexp§f€2 SEL|3 — 8(1 — )" |(1n‘g*((1—ﬁ)5€16+82+ﬁ81§€2)‘)dﬁ>

IA
¢
X
"U

X exp

J %8t =3[ ng* (1 ﬁ)“é”%“f’”)\dﬁ)

X exp

fsz sl (

1

oo oz w—ﬁg*(w)ﬁ))dﬁ)
O
X exp fez £1|3 81— ( <g*<551+£2)1 (Sl—gsz)h>)dﬁ>
1-

X exp fez 2L |8h 3!1n(g*(€1+€2) ﬁg*(Eﬁ&Z)ﬁ)dﬁ)
< exp fﬁz S (1 n n(f*(”?”)l_hf*(&)h)dﬁ>

((1 = w22 4 hes ) ) an

IN
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= exp <€23;1}ﬁ ((1 — B)InG*(e1) + AlnG* (5516“2))dh>

X exp &— €1f|3 8 1_ﬁ) ‘( lng*<5€1+52)+ﬁlng*

(45%))m)
x exp | 2 €1f|8ﬁ“ (( lng*<81;£2) ﬁlng*(51+5£z>) )
)

X exp %I(l —h)* ((1 —h)InG* (51+5€2

+ HilnG* (e ) ﬁ)

2—¢1 10—3a %

boa(10-3u | 3a (3
= (G*(e1)) 36a+1 a+2( (5£1+82)) iyt G T (3)
a

)

(o (sge))

+ ( 10— 4 3a 3 zx e e
£1+5¢ 36(a+2 72 a+2) zx+2 8) 21
x(g*(%)) ) 2 ( * () D542
3
8

T 5eide ](‘afz%*z(fiz)( )
= | (@) @TEm (gr ()

(6-30)@i2) | 6o (3)a_ 3 (3
g* £1+€p 2(a+1)(a+2) a+I1\8 a+2\8
X 2

16—3 1 2
(lepleeid) | s (37— 2 (3)

Rl
o
=2

N

2 N

2N

)*)

28
143« 3a % 36

« (g (a1 ) B D G e

The result follows from the calculation of the following integrals:

1 1
1
B 1—hdﬁz/1—ﬁ"‘ﬁdﬁ:—,
/ (1—=h) (1=7) (@+1)(a+2)
0 0
1 1 1
a+1 _ . a+1 —
/h dh_(/(l ny = ——,
0
10-3 3x /3\+
. o « _ 4 4 o &
/13 8(1—h)"|(1—h)dh = /|8h — 3|hdh = (+2)+‘x+2(8)
and ) )
[13—-8(1—n)"|ndh = [|8h* —3|(1 —h)dh =
0 0
16—-3(a+1)(a42 1 2
2(,1%1)(;&“2*) Ly () - a2m (@)

The proof is completed. []

Remark 2. If we put « = 1, Theorem 7 may be simplified to Theorem 3.2 from [4].
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Corollary 2. Using the multiplicative convexity of G*, i.e., G* (#) < V/G*(e1)G*(e2),
Theorem 7 becomes

[t (o(s52) (o)) ooy 55

a2 1 14-3a 3 (3
< (G* (1)) 41(§+3S(a+9§) +2(511) (5" *2(312) (3) (g* (5816+€z )) 1r2) T 2+2) (5)

=N

08
2 36
o

14—3a 3¢ (3 a2 ' 1
% <g* (81+65€z ) ) iar2) T2 (5) (G*(e2)) 1w e (B — 2 ()

Remark 3. Corollary 2 will be reduced to Corollary 3.3 from [4], if we take o = 1.

Corollary 3. Using the multiplicative convexity of G*, i.e., G* (#) < \/ g* (5812 £ ) g* (81 562 ),

Theorem 7 becomes

((o(=2)) (o(05%)) (o(2))') ot o
< (9*(81))“““2(g*(5€16+ez))z?§+i“>d“+z>+z<a+l)<§>i
28

1
12+a—3a2 6 3w
19 o\ + X (g o

(g* <€1+5€2)) 2(a+1)(a+2) " 2(at1) (g*(sz))m

Remark 4. Corollary 3 will be reduced to Corollary 3.4 from [4], if we take & = 1.

3. Applications to Special Means

Consider the following means of arbitrary real number 71,12, . .., #u:
The arithmetic mean: A(#1,%2,...,1x) = w

The harmonic mean: H (11,72, ..., 1n) = n

ittt
The logarithmic means: L(1j1,12) = hlZiilnm’ 71,42 > 0, and 11 # 1.
. . k+1_17k+1 k
The k-logarithmic mean: Li(#y,172) = <(ki1)(;721—;71)> , 1,2 > 0,111 # 12, and

k e R\{-1,0}.
Proposition 2. For two positive real numbers 0 < 111 < 172, we have

1
25(51— 111 ) prghy
3 AP (11 )+ 1 AP (1m2) + 3 AP (222 12) =Ly () < e$

P

Proof. It suffices to apply Corollary 2, taking G (h) as a function with p > 2 where
1

G*(h) = PN M =P and }zg(u)d” " = ex {pr O
= M= , = exp p(771/772)}'
mn
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Proposition 3. For two positive real numbers 0 < 1 < 12 and n > 0, we have

3n n 3n
H 34(772/ ’72,;,/'72, 12,12, 11)H# (12, m)H' (112,11, 111,711, 111, 171)
< iy o o R o) +67 )

Proof. It suffices to apply Corollary 3 with « = 1 on the interval [%, '7%] to the function
U
G(t) = 7=, whose G*(#i) = e~ 1 and ff(u)d” =5 Py, e O
1

2

4. Conclusions

The conclusions produced in this work are based on a novel identity. We have con-
structed certain fractional Maclaurin-type integral inequalities for functions whose multi-
plicative derivatives are both bounded and multiplicatively convex. We have also discussed
some particular cases. A few applications of our findings to special means are given. Our
results improve those established in [29], and they also recover those established in [21].
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