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Abstract: The dual-drive ball screw pair serves as a crucial element within the fixed gantry machine
tool with cross-rail movement. When in service, the dual-drive ball screw pair experiences variations
in axial load, impacting the contact load distribution of the ball screw pair. A calculation model
for determining the axial load offset of the dual-drive ball screw pair is proposed to investigate the
variation in axial load. The impact of the geometric error associated with the guide rail and the
position of the slide are considered. This paper presents the contact load distribution model for the
dual-drive ball screw pair. This study investigates the contact load and contact angle distribution of
the dual-drive ball screw pair during the machine tool in service. Additionally, based on fractal theory,
the stiffness models of individual micro-convex body and contact surfaces have been established. This
study provides a comprehensive analysis of the contact stiffness of the ball screw pair, considering
the influence of guide rail geometric error and slide position. In addition, the three-dimensional
surface morphology of ball screw pair is obtained by experiments. This paper investigates the contact
stiffness distribution of dual-drive ball screw pair during service.

Keywords: dual-drive; ball screw pair; contact load; contact angle; contact stiffness

1. Introduction

The ball screw pair has gained significant popularity in the precision equipment
primarily due to its notable benefits, such as excellent transmission efficiency, substantial
stiffness, and robust bearing capacity [1–4]. The contact load distribution and contact
stiffness of a ball screw pair are critical factors influencing transmission performance [5–7].
The axial load on each ball screw pair in the dual drive system of fixed gantry machine tools
with cross-rail movement is subjected to variation due to geometric error of the column
guide rail and the position of the slide. And the ball contact stiffness at different positions
on the screw is also different.

Every movement of the machine must take into account the dynamic interaction
between the machine structure [8]. The dual-drive system of a fixed gantry machine tool
with cross-rail movement exhibits motion errors that can be categorized into positioning,
linear, and angle errors. The primary component influencing positioning error is the
precision of the ball screw pair. In contrast, the straightness and angle errors are determined
by other factors such as the surface quality of the guide rail, assembly error, and other
related issues [9]. Currently, a considerable body of research focused on the modeling of
geometric error in machine tool guides can be found [10–14]. Hwang et al. [15] suggested
a three-probe system that can evaluate the guide rail’s straightness and parallelism at
the same time. Ekinci et al. [16] investigated the relationship between the motion error
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and the guide’s geometric error. Moreover, the authors examined the internal mechanism
causing the motion error. In the same year [17], an analysis was conducted to examine
the relationship between the straightness and angle error. This analysis involved fitting
a surface curve of a guide rail using trigonometric functions. Zha et al. [18] developed
an error model to address the vertical straightness error of open hydrostatic guides. This
model considers the average impact of pressure oil film error and guide rail contour
error. Tang et al. [9] analyzed the characteristics of the guide rail machining process. The
authors utilized measurement data to establish a systematic approach for determining the
correlation between the angle and straightness error of precision linear tables and guide
rail surfaces. A theoretical foundation for analyzing the axial load of the dual-drive ball
screw pair under service circumstances was provided by earlier work on the modeling of
the geometric inaccuracy of the guide rail.

The ball screw pair causes contact deformation due to external force, changing the
ball contact load. Since the ball is in a closed raceway, it is challenging to describe the
distribution of the contact load directly. Mei et al. [19] established a load distribution
model considering the geometric error of the ball screw. Wei et al. [20] analyzed the contact
relationship between the ball-and-screw raceway and the nut raceway. Gu et al. [21]
examined the contact stiffness of ball screw pairs by employing the elastic contact theory.
The authors examined the variations in the transmission stiffness of the system and the
contact stiffness of the moving pair under different operational circumstances. Lin et al. [22]
developed a co-ordinate system based on vector space for the ball screw. They analyzed the
motion of a ball sliding and studied how contact deformation affects the resulting sliding
characteristics. Based on this investigation, a kinematics model of the single-arc ball screw
pair was constructed by Hu et al. [23], who also examined five different motion types at
the ball contact site. Huang et al. [24] studied the normal contact load of a ball screw. The
authors successfully established a correlation between normal deformation displacement
and axial displacement. Feng et al. [16] proposed a lumped dynamics model to describe
double-nut structures. Liu et al. [4] proposed a static analysis methodology that considers
the dynamic movement of the nut. This approach can determine the load distribution
on the nut at any specific place along the axis of the screw. Zhou et al. [25] proposed a
novel calculating technique to determine the normal contact load between the ball and the
raceway. They could not define the load condition since the study circumstance is now
in a no-load state. Liu et al. [26] established a static load distribution model considering
geometric errors for double-nut ball screw pairs. Zhao et al. [27] concentrated on the impact
of the rotating moment caused by assembly error. However, the application of these models
is not immediately practical for analyzing the contact load distribution and contact stiffness
of a dual-drive ball screw pair in fixed gantry machine tools with cross-rail movement.
The axial load of the dual-drive ball screw pair is subjected to variations caused by the
geometric error of the guide rail and slide position. These variations impact the contact
load distribution and contact stiffness of the ball screw pair.

This study introduces a calculation model for the axial force offset load of a dual-drive
ball screw pair considering the guide rail geometric error and the slide position. The model
considers the variable axial load of the ball screw pair during service conditions. Simulta-
neously, an investigation is conducted on the contact load and contact angle distribution
of the ball screw during the machine tool being in service. Additionally, based on fractal
theory, the contact stiffness model of the contact surface is proposed. This study provides
a comprehensive analysis of the contact stiffness of the ball screw pair, considering the
influence of guide rail geometric error and slide position.

2. Axial Load Offset Analysis of the Dual-Drive Ball Screw Pair
2.1. Structure Introduction of Machine Tool

The structure of the machine tool needs to be looked at to investigate how the axial
load of the dual-drive ball screw pair changes in a fixed gantry machine tool with cross-
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rail movement. Figure 1 displays the comprehensive structure of the machine tool. The
structure primarily comprises a bed, table, column, bridge, cross-rail, and slide.
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Figure 1. Fixed gantry machine structure with cross-rail movement.

2.2. Mapping Relationship between Guide Tolerance and Geometric Error

Every moving component of the machine tool has six degrees of freedom in a Cartesian
co-ordinate system based on a rigid body motion co-ordinate system, under the standard
BS ISO 230-1-2012 [28]. Errors occur during the movement of parts due to parallelism
and straightness errors in the guide, as shown in Figure 2. If the w-axis guide rail of the
machine tool is used as a case study, six geometric errors arise when the cross-rail traverses
along the w-axis. These errors encompass positioning error, X-direction straightness error,
Y-direction straightness error, roll error, pitch error, and yaw error (Figure 3).
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Figure 2. Guideway error diagram.

The surface topography of the components satisfies Dirichlet boundary conditions [17].
Therefore, the truncated Fourier series can describe the surface topography of the guide.
The corresponding expression is as follows:

T(x) =
k
2

sin
(

2πx
λ

)
(1)

where T(x) is the surface topography curve of the guide rail on a plane and simultaneously
an amplitude. k is the straightness error of the guide. λ is the wavelength of the curve T(x).

The correlation between guide tolerance and geometric error will be represented
as follows:

δZ(w) = H(w) (2)
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δX(w) =
TX(wi−1) + TX(wi+1)

2
(3)

δY(w) =
TY(wi−1) + TY(wi+1)

2
(4)

εZ(w) =
TX(wi−1) + TX(wi+1)

2L
(5)

εX(w) =
TX(wi+1)− TX(wi−1)

D
(6)

εY(w) =
TY(wi+1)− TY(wi−1)

D
(7)

where H(w) is the screw error, TX(w) is the guide rail surface topography curve in
X-direction. TY(w) is the guide rail surface topography curve in Y-direction. L is the
distance between the guide base of the left and right column. D is the width of the cross-
rail. δZ(w) is positioning error. δX(w) is X-direction straightness. δY(w) is Y-direction
straightness. εZ(w) is roll error. εX(w) is pitch error. εY(w) is yaw error.
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Figure 3. Structure diagram of dual-drive.

2.3. Offset Analysis of Dual-Drive Ball Screw Pair

The guide rail geometric error changes the dual-drive ball screw pair axial load when
the cross-rail moves. As shown in Figure 3, the red wireframe within the illustration denotes
the actual position of the cross-rail. The motor, ball screw pair, and bearing performance
parameters on the left and right columns are the same, so δZ(w) has no effect on the center
of gravity of the cross-rail. δX(w), εZ(w), and εY(w) do not alter the cross-rail Y-Z plane
center of gravity shift. And εX(w) is determined by δY(w). Therefore, the expression for
the offset δD of the center of gravity of the cross-rail can be expressed as follows:

δD = δY(w) (8)
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Subsequently, determining the axial loads on the dual-drive ball screw pair are con-
ducted by considering the offset of the cross-rail center of gravity.

FD
R =

GD(LD − 2δD)

2LD
(9)

FD
L = GD − FD

R (10)

where FD
L and FD

R are the axial loads on the dual-drive ball screw pair when only the weight
of the cross-rail is considered. GD is the weight of the cross-rail. LD is the distance between
the dual-drive ball screw pair.

The movement of the slide along the cross-rail shifts the slide’s center of gravity,
altering the axial load experienced by the dual-drive ball screw pair. The axial loads on the
dual-drive ball screw pair during the slide’s movement can be expressed as follows:

FH
R =

GH LH
LD

(11)

FH
L = GH − FH

L (12)

where FH
L and FH

R are the axial loads of the dual-drive ball screw pair when only the weight
of the slide is considered. LH is the distance between the center of gravity of the slide and
the left lead screw of the dual-drive.

When the machine tool is in service, the axial loads on the dual-drive ball screw pair
are expressed as follows:

FR = FD
R + FH

R (13)

FL = FD
L + FH

L (14)

3. Contact Load Distribution Modeling and Verification Analysis

The following assumptions are presented in this study for building the mechanical
model of the ball screw pair.

Assumption 1. This analysis solely considers the ball screw pair low-speed operating circumstances,
ignoring the impacts of friction and sliding.

Assumption 2. The change in the lead screw section is not considered.

Assumption 3. The deformation of each contact point is limited to the elastic range. The center of
curvature of the raceway aligns with the center of curvature of the ball [29,30].

Only one of the left and right ball screw pairs in the dual-drive can be analyzed due to
their identical structural makeup. Hence, the right ball screw pair is analyzed. Figure 3
shows the primary configuration of the ball screw pair. The ball screw pair is connected to
the motor, while a diagonal contact bearing on the motor side restricts the screw axis and
radial movement. The lower section of the screw is upheld by a radial bearing, allowing
axial motion to accommodate heat expansion. When the ball screw pair is not subjected to
an external load, the contact force Qi and contact angle αi of the ith ball and raceway are
equal, respectively, Qsi = Qni and αsi = αni.

3.1. Axial Deformation of Ball Screw during Movement

Figure 4 shows the axial load balance of the screw subjected to strain and compression
of the nut. When the ball screw pair is in force balance, the sum of the projection of the
ball contact force on the screw axis is equal to the axial external force of the ball screw pair.
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The relationship between the ball contact force Qi and the overall axial force Fa of the lead
screw can be expressed as follows [19]:

Fa =
z

∑
i=1

Qi sin αi cos λ (15)

where z is the number of balls. i is the ball number of the ball. α is the contact angle. λ is
the pitch angle of the ball screw.
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The Fsi (axial internal force) between any two ball contact points on the screw is
obtained as follows:

Fsi =


Z
∑

j=i+1
Qj sin αj cos λ, i = 1, 2, · · · , Z− 1

0, i = Z
(16)

Similarly, the Fni (axial internal force) between any two ball contact points on the nut
is also expressed:

Fni =
Z

∑
j=i

Qj sin αj cos λ, i = 1, 2, · · · , Z (17)

The axial deformation between the adjacent contact points on the screw and the nut
can be expressed as follows:

∆ζi =
∆LFζi

Eζ Sζ
, ζ = s, n (18)

where ζ = s and ζ = n represent the screw groove and the nut groove, respectively.
Eς = (Es, En) is the elastic modulus for the screw groove/the nut groove. ∆L is the axial
distance between the contact sites of adjoining balls. Sζ = (Sn, Ss) is the corresponding
cross-sectional area for the screw groove/the nut groove.
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The axial deformation relationship between the adjacent contact points on the screw
and nut can be expressed as follows:

εi − εi−1 = ∆si + ∆ni (19)

where ε is the center axial displacement of the screw groove to the nut groove.

3.2. Relation between Contact Angle and Elastic Deformation

Before loading, the original contact angle of the ball contact with the screw/nut
raceway is 45◦. Figure 5 shows the geometric relationship between the screw and nut
groove centers. The center of the ith ball, the screw, and the nut groove are denoted as Obi,
Osi, and Oni, respectively. Before loading, the axial and radial lengths between the groove
centers could be represented as follows:

C0 = A0 sin α0 (20)

B0 = A0 cos α0 (21)

where α0 is the contact angle under no load. A0 is the original space between the centers of
the groove centers, which may be represented as follows:

A0 = Rs + Rn − 2Rb (22)

where Rs is the measurement of the screw groove’s radius. Rb is the measurement of the
nut groove’s radius. Rb is the measurement of the ball’s radius.
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A minor displacement of the screw/nut groove center and ball center will occur due to
the elastic deformation of the ball screw pair following loading. Considering the influence
of axial and lateral elastic deformation, the ball center and the groove center of the screw
and nut are moved from Obi, Osi, and Oni to O′bi, O′si, and O′ni. According to the geometric
relationship in Figure 5, the axial distance and radial distance of the groove center after
loading can be expressed as follows:

Ci = C0 + εi (23)
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Bi = B0 + δri (24)

Based on the geometric relationship shown in Figure 5, the ball screw contact angle
may be defined using the following equation:

sin αi =
Ci√

C2
i + B2

i

(25)

3.3. Homogeneous Co-Ordinate Transformation

Various co-ordinate systems are constructed to assist the examination of contact load
distribution in a ball screw pair, as shown in Figure 6. The global co-ordinate system
CS
(

x y z
)

is established, the z-axis is rejoined with the screw axis, the original O is
fixed in space, and the screw axis rotates at the same speed. The origin O is located in the
geometric center of the angular contact ball bearing. The point p represents the projection
of the center of the sphere onto the x− y plane. The angle θ from the x-axis is on the line
connecting the projection point p and the center point O.

Fractal Fract. 2023, 7, 873 10 of 42 
 

 

 
Figure 6. The spatial correlation of the co-ordinates. 

The co-ordinate systems ( )1 1 1CS x y z   and ( )2 2 22CS x y z   parallel to the 
global co-ordinate system are established using the center of the ball and the center of the 
nut base as the origin, respectively. The transformation −1 2T  from 1CS  to 2CS  can be 
expressed as follows: 

( )
θ
θ

θ θ θ λ
θ λ−

 
 
 =
 
 
  

1 2

1 0 0 cos
0 1 0 sin

Trants cos sin tan =
0 0 1 tan
0 0 0 1

m

m
m m m

m

R
R

T R R R
R

 (26)

where mR  is the pitch radius of the ball screw. The parameter λ  can be expressed as 
follows: 

λ
π

−
 

=   
 

1tan
2

p

m

L
R

 (27)

where pL  is the pitch of the ball screw. 

A new co-ordinate system ( )3 3 33CS x y z  is established at the origin of the co-

ordinate system 2CS . In 3CS , the 3y -axis is oriented perpendicular to the screw axis, 
and the contact points between the ball and the screw/nut are situated in the −

33y z  

plane. The transformation −2 3T  from 2CS  to 3CS  can be expressed as follows: 

( )
θ λ θ θ λ

θ λ θ θ λπθ λ
λ λ−

− − − 
 − −   = + ⋅ −      
  

2 3

sin cos cos sin sin 0
cos cos sin cos sin 0

Rot Rot = 
sin 0 cos 02

0 0 0 1

z yT  (28)

As shown in Figure 7, The origin of ( )4 4 44CS x y z  is located at contact point A

. The direction of the contact force is defined along the 4z -axis. The transformation −3 4T  
from 3CS  to 4CS  can be expressed as follows: 

Figure 6. The spatial correlation of the co-ordinates.

The co-ordinate systems CS
(

x1 y1 z1
)

and CS2
(

x2 y2 z2
)

parallel to the global
co-ordinate system are established using the center of the ball and the center of the nut
base as the origin, respectively. The transformation T1−2 from CS1 to CS2 can be expressed
as follows:

T1−2 = Trants
(

Rm cos θ Rm sin θ Rmθ tan λ
)
=


1 0 0 Rm cos θ
0 1 0 Rm sin θ
0 0 1 Rmθ tan λ
0 0 0 1

 (26)

where Rm is the pitch radius of the ball screw. The parameter λ can be expressed as follows:

λ = tan−1
(

Lp

2πRm

)
(27)
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where Lp is the pitch of the ball screw.
A new co-ordinate system CS3

(
x3 y3 z3

)
is established at the origin of the co-

ordinate system CS2. In CS3, the y3-axis is oriented perpendicular to the screw axis, and
the contact points between the ball and the screw/nut are situated in the y3 − z3 plane. The
transformation T2−3 from CS2 to CS3 can be expressed as follows:

T2−3 = Rotz

(
θ +

π

2

)
· Roty(−λ) =


− sin θ cos λ − cos θ − sin θ sin λ 0
cos θ cos λ − sin θ − cos θ sin λ 0

sin λ 0 cos λ 0
0 0 0 1

 (28)

As shown in Figure 7, The origin of CS4
(
x4 y4 z4

)
is located at contact point A.

The direction of the contact force is defined along the z4-axis. The transformation T3−4 from
CS3 to CS4 can be expressed as follows:

T3−4 = Rotz

(
−π

2

)
· Roty

(π

2
− α
)
· Trans

(
0 0 −Rb

)
=


0 1 0 0

− sin α 0 − cos α Rb cos α
− cos α 0 sin α −Rb sin α

0 0 0 1

 (29)
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When Equations (26), (28), and (29) are combined, the co-ordinate value of the contact
point A in the CS1 can be expressed as follows:[

xA yA zA 1
]T

= T1−2 · T2−3 · T3−4 ·
[
0 0 Qi 1

]T (30)

A co-ordinate system CS5
(
x5 y5 z5

)
parallel to the global co-ordinate system is

established with contact point A as the origin. In the CS5, the process of converting the
contact force Qi to its equivalent force is as follows:[

Qxi Qyi Qzi 1
]T

= Rotz

(
θ +

π

2

)
· Roty(−λ) · Rotz

(
−π

2

)
· Roty

(π

2
− α
)
·
[
0 0 Qi 1

]T (31)
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3.4. Lateral Deformation Analysis of the Ball Screw

As shown in Figure 8, the contact force is broken down in the co-ordinate system CS5
by assuming that the screw cross-section is rigid. The distance rAi between contact point A
and screw axis is expressed as follows:

rAi =
√

x2
Ai + y2

Ai (32)

where xAi is the horizontal distance of the contact point A of the ith ball along the x1-axis.
yAi is the horizontal distance of the contact point A of the ith ball along the y1-axis.
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Establishing the co-ordinate system CS6
(

x6 y6 z6
)

parallel to the global co-ordinate
system utilizes the location of the screw axis corresponding to A as the origin. Figure 9
shows the screw axis mechanical model. The addition torques TAxi, TAyi, and moment MAi
may be produced by the comparable shear forces QAxi, QAyi, and axial internal force QAzi
acting on the screw axis.

TAxi = −QAxiyAi (33)

TAyi = QAyixAi (34)

MAi = QAzirAi (35)
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The screw can be considered as a simple beam due to its significantly smaller diameter
compared to its length. The mechanical examination of the screw indicates that supple-
mentary torques TAxi and TAyi do not impact the screw deformation. Screw deformation is
influenced by the factors QAxi, QAyi, QAzi, and MAi. We only consider the screw’s lateral
deformation caused by the forces QAxi, QAyi, and MAi in this study. The axial deformation
caused by QAzi is not considered.

The following expression can be used to represent the lateral displacement of the
screw by QAxi and QAyi:

wxi =
i−1

∑
j=1

QAxj

(
L− Lj

)
6EIL

[
L

L− Lj

(
Li − Lj

)3
+

(
L2 −

(
L− Lj

)2
)

Li − L3
i

]
+

z

∑
j=i

QAxj

(
L− Lj

)
Li

6EIL

[
L2 − L2

i −
(

L− Lj

)2
]

(36)

wyi =
i−1

∑
j=1

QAyj

(
L− Lj

)
6EIL

[
L

L− Lj

(
Li − Lj

)3
+

(
L2 −

(
L− Lj

)2
)

Li − L3
i

]
+

z

∑
j=i

QAyj

(
L− Lj

)
Li

6EIL

[
L2 − L2

i −
(

L− Lj

)2
]

(37)

where QAxj is the contact force along the x-axis of the jth ball at contact point A. L is the
length of the screw. Lj is the distance of the jth ball from the origin O on the z-axis. E is
the elastic modulus of the screw. I is the product of inertia. Li is the distance of the ith ball
from the origin O on the z-axis. QAyj is the contact force along the y-axis of the jth ball at
contact point A.

The following expression may be used to represent the lateral displacement of the screw
brought on by the additional moment MAi component in the x-axis and y-axis directions:

wMxi =
i−1

∑
j=1

MAj cos θj

6EIL

[
−L3

i + 3L
(

Li − Lj

)2
+

(
L2 − 3

(
L− Lj

)2
)

Li

]
+

z

∑
j=i

MAj cos θjLi

6EIL

[
L2 − 3

(
L− Lj

)2
− L2

i

]
(38)

wMyi =
i−1

∑
j=1

MAj sin θj

6EIL

[
−L3

i + 3L
(

Li − Lj

)2
+

(
L2 − 3

(
L− Lj

)2
)

Li

]
+

z

∑
j=i

MAj sin θjLi

6EIL

[
L2 − 3

(
L− Lj

)2
− L2

i

]
(39)

where MAj is the additional moment brought about by the jth ball. θj is the angle at which
the jth ball is rotated along the screw.

The lateral deformation of the ball screw can be expressed as follows:

δri = (wxi + wMxi) cos θi +
(
wyi + wMyi

)
sin θi (40)

3.5. The Contact Load Modeling of the Ball Screw

The following information can be derived based on the geometric relationship shown
in Figure 5:

O′siO′ni = A0 + (δsi + δni) (41)

(
O′siO′ni

)2
= B2

i + C2
i (42)

where, according to the Hertz contact theory, δsi and δni represent the elastic deformations
of the screw and nut under the influence of the contact force:

δςi = kςQ
2/

3
i , ς = s, n (43)

kς =
2K(eς)

πa∗ς

 9
32

(
1− µb

2

Eb
+

1− µς
2

Eς

)2

·∑ ρς

 (44)
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where kς is the Hertz contact coefficient. K(eς)/πa∗ς is the Hertz contact coefficient. Eb and
Eς = (Es, En) are, respectively, the elastic modulus of the ball, the elastic modulus of the
screw, and the elastic modulus of the nut. ∑ ρς is the sum of the principal curvature of the
raceway at the contact point.

The axial displacement εi of the raceway centers relative to the ith ball can be obtained
by incorporating the Equations (23), (24), (41), and (43) into Equation (42) as follows:

εi =

√√√√[A0 + (ks + kn)Q
2/

3
i

]2

− (B0 − δri)
2 − C0 (45)

Based on the above discussion, the relationship between axial load and contact load of
Equation (15) can be expressed as follows:

Fa =
z

∑
i=1

√√√√√
(C0 + εi)

2 + (B0 − δri)
2 − A0

ks + kn

3/
2

· (C0 + εi)√
(C0 + εi)

2 + (B0 − δri)
2
· cos λ (46)

By combining Equations (13), (14), and (46), the force balance equations on the left and
right ball screw pairs in the dual-drive system can be expressed as follows:

FL =
z
∑

i=1

√√
(C0+εi)

2+(B0−δri)
2−A0

ks+kn

3/
2
· (C0+εi)√

(C0+εi)
2+(B0−δri)

2 · cos λ

FL = GD + GH − GD ·LD+GH ·LH
L

FR =
z
∑

i=1

√√
(C0+εi)

2+(B0−δri)
2−A0

ks+kn

3/
2
· (C0+εi)√

(C0+εi)
2+(B0−δri)

2 · cos λ

FR = GD + GH − GD ·LD+GH ·LH
L

(47)

3.6. Modeling of the Contact Stiffness Based on Fractal Theory

The contact stiffness is an important parameter that affects the dynamic performance
of the contact, which is often calculated by fractal model [31]. The fractal rough surface
profile is expressed by the W-M function and can be expressed as follows [32,33]:

z(x) = G(D−1)
∞

∑
n=n1

γ
cos 2πγn
(2−D)n ; 1 < D < 2; γ > 1 (48)

where G is a scaling constant. D is the fractal dimension of the surface profile. The
frequency expression denotes ω = γn, and γ is related to the sampling length LW−M by
γn1 ≈ 1/LW−M, with n1 corresponding to the low cutoff frequency of the profile. The
fractal roughness parameter D, varying from 1 to 2, is dimensionless, while the scaling
parameter G is not limited to a specific range and has a length dimension.

For isotropic surfaces, the relationship between the three-dimensional fractal dimen-
sion D3 and the two-dimensional fractal dimension D is expressed as follows:

D3 = D + 1 (49)

For anisotropic surface, when any two orthogonal contours are either independent or
exhibit weak correlation with each other, the three-dimensional fractal dimension Ds of the
surface is expressed as follows:

Ds = Dver + Dhor (50)

where Dver and Dhor are the dimensions of mutually orthogonal surface profiles.
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The fractal parameters are determined by the logarithmic plot of the W-M power
spectrum function. The power spectrum of the W-M function is expressed as follows:

S(w) =
G2(D−1)

2 ln γ

1
ω(5−2D)

(51)

Calculating the logarithm of Equation (51), then:

lgS(ω) = 2(D− 1)lgG− lg2 ln γ + (2D− 5)lgω (52)

Equation (52) can be expressed as follows:

lgS(ω) = klgω + b (53)

where k = 2D− 5, b = 2(D− 1)lgG− lg2 ln γ.
Then, the fractal dimension D and the parting roughness parameter G can be expressed

as follows:
D = (k+5)

2
log G =

b+log(2 ln γ)
2(D−1)

}
(54)

The number of micro-convex bodies with contact areas between a and a + da can be
expressed as follows:

n(a) = −dN
da

=
D
2

aD/2
l

a(D/2+1)
(55)

For the contact between two rough surfaces, the number of micro-convex n′(a) can be
expressed as follows:

n′(a) = λ · n(a) =


(

4
πE′

R1rb
R1−rb

)1/2

π(R1 − rb)


( 1

rb
− 1

R1
)

· n(a) (56)

According to fractal theory, the three stages of elastic deformation, elastoplastic defor-
mation, and plastic deformation were analyzed separately.

When δ < δec(a > aec), the micro-convex body is in a state of complete elastic contact.
The critical elastic contact area can be expressed as follows:

aec = G2
(

3E∗

4πkσs

) 1
D−1

(57)

When in the elastoplastic contact state, the area of contact deformation can be ex-
pressed as follows:

apc = G
(

βE
σs

) 2
D−1

(58)

where β =
( 2m+1

2m )
2(m−1)

π1/2

(30×0.21/m)
m/(m−1) .

When a < apc, the contact point undergoes complete plastic deformation. The contact
area can be expressed as follows:

ap = 2πRpδ (59)

where the relationship between the top radius Rp of the micro-convex body and the contact
area a can be expressed as follows:

Rp =
aD/2

2πG(D−1)
(60)
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The normal stiffness of a single micro-convex body can be expressed as follows:

kn =
dFe

dδ
(61)

According to the formulas for calculating the contact force and contact deformation
of the micro-convex body in references [32,33], the normal contact stiffness of the elastic
stage and the normal contact stiffness of the elastoplastic stage are, respectively, expressed
as follows:

knec =
dFec

dδ
=

4E
3
√

π
· 3− D

2− D
a1/2 (62)

knep =
dFep

dδ
=

2
3

σ
(m−1)

m
s ·

[
0.2E∗

√
π

(
2m + 1

2m

)2(m−1)
] 1

m

G
(D−1)

m · a
Dm+1−D

2m · 2
2− D

[[
2 + ln

(
ϕ(1− 1

m )

3× 0.21/m

)]
· 2m + 1− D

2m
+

m−mD− 1 + D
2m

]
(63)

Combining Equations (56), (62), and (63), the contact stiffness can be expressed as follows:

Kn =
∫ al

aec
knecn′(a)da +

∫ aec

apc
knepn′(a)da (64)

Figure 10 illustrates the contact load distribution and contact stiffness calculation
procedure for the ball screws.
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lead being 8 mm, the ball diameter being 4.763 mm, and the nut outer diameter being 90 
mm. Figure 11 shows the ball screw pair three-dimensional mesh. One end of the screw is 
fixed and the other end allows it to translate along the axis. The axial load is 5000 N. The 
contact is frictional and the coefficient of friction is 0.002. Figure 12 shows the stress cloud 
representations of the ball bearings. Figure 13 shows the distribution of contact load dur-
ing the finite element analysis. The numerical analysis is considered adequate based on 
the evidence of a maximum error of 8.7%. 

Figure 10. Flow chart.

3.7. Finite Element Verification

One company model, 6008-3 ball screw pair, is used for finite element modeling, which
reduces numerical calculation and simulation calculations and verifies the force analysis
model. There are 125 balls in total, with the nominal diameter being 60 mm, the lead
being 8 mm, the ball diameter being 4.763 mm, and the nut outer diameter being 90 mm.
Figure 11 shows the ball screw pair three-dimensional mesh. One end of the screw is
fixed and the other end allows it to translate along the axis. The axial load is 5000 N. The
contact is frictional and the coefficient of friction is 0.002. Figure 12 shows the stress cloud
representations of the ball bearings. Figure 13 shows the distribution of contact load during
the finite element analysis. The numerical analysis is considered adequate based on the
evidence of a maximum error of 8.7%.
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4. Results and Discussion

Table 1 shows the parameters of the dual-drive ball screw pair in the fixed gantry
machine with cross-rail movement.
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Table 1. Ball screw parameters.

Parameters Value Unit

Ball radius 6.35 mm
Screw groove radius 6.985 mm
Nut groove radius 6.985 mm

Length of screw 1200 mm
Nominal pitch circle radius 50 mm

Nominal pitch 16 mm
Number of balls 380 /

Outer diameter of nut 155 mm
Length of nut 311 mm

Elastic modulus 210×109 Pa
Poisson ratio 0.3 /
Helix angle 2.9155 degree

4.1. Verification of the Proposed Model

The proposed model was compared to the model from [19], as shown in Figure 14.
The reference [19] exclusively focuses on the axial deformation of the screw. When an
axial load is applied, the deformation of the front ball is greater than that of the rear ball.
Therefore, the contact load on the ball shows a decreasing trend. In the paper’s model, the
axial deformation of the screw, the lateral deformation of the screw, and the change in the
contact angle of the ball are considered. Hence, the distribution of the contact load on the
ball exhibits periodicity with an increasing amplitude.
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4.2. Distribution Analysis of Contact Load/Angle with Ball Screw Positions

It is assumed that the ball screw pair is devoid of any preload to investigate the effect
of screw elastic deformation on the ball contact angle and contact load distribution. When
ignoring the impact of the guide rail geometric error and the slide position, the axial load
of the dual-drive ball screw pair remains constant, assuming a value of 55 kN. The overall
distribution of the contact load is shown in Figure 15. The contact load distribution can be
described by a complex nonlinear behavior. When the nut is in different positions of the
screw, the contact load distribution curves show different shapes. The uneven distribution
of the nut under the middle screw is preferable to the nut at both ends of the screw. Because,
the middle portion of the screw is more prone to deformation than the upper and lower
end of the screw. When the nut is located at the upper, middle, and lower end of the
screw, the standard deviation of the contact load distribution is 78.38, 30.05, and 64.98,
respectively. Additionally, the average contact load value—roughly 196.17 N—remains
relatively constant as the nut position with the screw varies.
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the change in contact load distribution. When the nut is located at the upper, middle, and 
lower end of the screw, the standard deviation of the contact angle distribution is 0.0337, 
0.0130, and 0.0285, respectively. Nonetheless, there is always an opposition between the 
curve shapes of the contact load distribution and the contact angle. 

  

Figure 15. The phenomenon of contact load distribution.

One of the crucial ball screw parameters is the contact angle, which is distributed
along the screw direction in relation to the nut position, as shown in Figure 16. It is evident
that the distribution of the contact angle exhibits complex nonlinear behavior, similar to
the change in contact load distribution. When the nut is located at the upper, middle, and
lower end of the screw, the standard deviation of the contact angle distribution is 0.0337,
0.0130, and 0.0285, respectively. Nonetheless, there is always an opposition between the
curve shapes of the contact load distribution and the contact angle.
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Figure 16. The phenomenon of contact angle distribution.

4.3. Distribution Analysis of Contact Load Based on Multiple Influencing Factors

Figure 17 shows the contact load distribution curve considering different axial load
conditions (Fa = 35, 000 N, Fa = 55, 000 N, and Fa = 75, 000 N) when the nut is in
the middle of the screw. The unevenness of the load distribution increases with axial
load. The standard deviations of contact load distribution are 18.71, 32.74, and 37.95,
respectively. However, the fluctuation period of the contact load distribution is roughly
the same. Figure 18 shows the contact angle distribution curve considering different axial
load conditions (Fa = 35, 000 N, Fa = 55, 000 N, and Fa = 75, 000 N) when the nut is in
the middle of the screw. The unevenness of the contact angle distribution increases with
axial load. The standard deviations of contact angle distribution are 0.0096, 0.0144, and
0.0191, respectively.

Figures 19 and 20 show the distribution phenomenon of contact load/angle under
different initial contact angles (α0 = 45◦, α0 = 46◦, and α0 = 47◦). The standard deviations
of contact load distribution at different initial contact angles are 32.74, 32.44, and 32.17,
respectively, indicating a decreasing trend. The standard deviations of the contact angle
distribution under different initial contact angles are constant, which is 0.0144.
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Figure 18. The influence of axial load on the contact angle distribution.
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Figure 19. The influence characteristic of contact angle on the contact load.
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Figure 20. The evolution characteristic of the contact angle based on original contact angle.

4.4. Axial Load Change on Dual-Drive Ball Screw Pair

The machine tool has a cross-rail weight of 5000 kg, a slide weight of 6000 kg, and
dual-drive ball screw pair spacing of 4410 mm. The axial loads of the dual-drive ball screw
pair can be determined via Equations (13) and (14) when the machine tool is in service. The
axial load of the ball screw pair on the left column during machine service has a maximum
of 76,490 N and a minimum of 36,430 N, as shown in Figure 21. The ball screw pair on the
right column has maximum and lowest axial loads of 78,570 N and 38,510 N, as shown
in Figure 22. Due to the geometric error of the guide on the column, the maximum and
minimum axial loads on the ball screw pairs on the left and right columns are different.
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Figure 21. Axial load distribution of the ball screw pair on the left column when the machine tool is
in service.
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Figure 22. Axial load distribution of the ball screw pair on the right column when the machine tool is
in service.

4.5. Distribution of Contact Load and Contact Angle under an Offset

Because the maximum axial load of the ball screw pair on the right column is larger
than that of the ball screw pair on the left column. Therefore, this analysis focuses on
the contact load and contact angle distribution of the ball screw pair located on the right
column. The distribution range of the contact force is shown in Figure 23. The distribution
range of the contact angle is shown in Figure 24.
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When the machine tool is in service, the contact load distribution of the ball screw 
pair on the right column is analyzed using the axial loads and nut locations on the diago-
nal shown in Figure 22 (position of the red line). Figure 25 shows the contact load distri-
bution curve. Figure 26 shows the contact angle distribution curve. Because the axial load 
on the nut is greater when it is located at the end of the screw, the contact load distribution 
and contact angle distribution are more uneven. 

  

Figure 24. Distribution range of the contact angle.
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When the machine tool is in service, the contact load distribution of the ball screw pair
on the right column is analyzed using the axial loads and nut locations on the diagonal
shown in Figure 22 (position of the red line). Figure 25 shows the contact load distribution
curve. Figure 26 shows the contact angle distribution curve. Because the axial load on the
nut is greater when it is located at the end of the screw, the contact load distribution and
contact angle distribution are more uneven.

Fractal Fract. 2023, 7, 873 32 of 42 
 

 

 

 
Figure 25. The phenomenon of contact load distribution under offset. 
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Figure 25. The phenomenon of contact load distribution under offset.
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axial load, that is, increasing or decreasing simultaneously. However, due to the existence 
of geometric errors, the maximum contact load of the ball does not change linearly on the 
screw. As shown in Figure 28, the maximum contact load of the ball exhibits a trend of 
growing, reducing, and increasing with the change in axial load and the movement of the 
nut position. 
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Figure 26. The phenomenon of contact angle distribution under offset.

As Figure 27 shows, there is a similar evolutionary trend between contact load and
axial load, that is, increasing or decreasing simultaneously. However, due to the existence
of geometric errors, the maximum contact load of the ball does not change linearly on the
screw. As shown in Figure 28, the maximum contact load of the ball exhibits a trend of
growing, reducing, and increasing with the change in axial load and the movement of the
nut position.
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4.6. Contact Stiffness Analysis of Ball Screw Pair 

The comprehensive influence of G  and D  on neK  is shown in Figure 29. It can 

be concluded that, when D   remains constant, neK   monotonically decreases with the 

increase in G . When parameter G  is an exact value, the value of neK  monotonically 
increases with the increase in D . 

  

Figure 28. Maximum contact load of the ball.

4.6. Contact Stiffness Analysis of Ball Screw Pair

The comprehensive influence of G and D on Kne is shown in Figure 29. It can be
concluded that, when D remains constant, Kne monotonically decreases with the increase
in G. When parameter G is an exact value, the value of Kne monotonically increases with
the increase in D.
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Figure 29. Comprehensive analysis of contact stiffness with G and D.

This paper uses the power spectrum density method to calculate the fractal dimension
D and the fractal parameter G, and it is based on the measured surface data. As shown in
Figure 30, a three-dimensional topography tester is used to measure the surface appearance
of the dual-drive ball screw pair test sample of the machine tool. The surface morphology
of the test sample is shown in Figure 31. Figure 32 shows the power spectral density of ball
screw specimen [32]. The linear fitting function can be obtained by using the least square
method. The fractal dimension D and the fractal parameter G of the ball screw specimen
are 1.28 and 3.5 × 10−12, respectively.
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Figure 30. Three-dimensional topography scanning experiment. 
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Figure 31. The surface morphology of the test sample. 
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Figure 32. The power spectrum density. 

The contact stiffness of the ball screw pair on the right column can be obtained by 
combining the test parameters with the contact load shown in Figure 25. Due to the influ-
ence of the geometric error of the guide rail and the position of the slide, the contact stiff-
ness of the ball screw pair on the right column also presents a complex nonlinear, as 
shown in Figure 33. 

  

Figure 32. The power spectrum density.

The contact stiffness of the ball screw pair on the right column can be obtained by
combining the test parameters with the contact load shown in Figure 25. Due to the
influence of the geometric error of the guide rail and the position of the slide, the contact
stiffness of the ball screw pair on the right column also presents a complex nonlinear, as
shown in Figure 33.
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Figure 33. Contact stiffness of ball screw.

5. Conclusions

A load model of the dual-drive ball screw pair in service condition is proposed in this
study by considering the influence of the guide rail geometric error and the slide position.
A detailed analysis is conducted on the impact of nut position and axial load on the load
distribution phenomenon. And the contact stiffness of a ball screw pair is predicted by the
fractal theory combined with the test. The investigation leads to the following conclusions:

(1) The distribution curves of contact load and contact angle for nuts at different positions
along the screw exhibit distinct variations, displaying complex nonlinear character-
istics across the feed direction of the screw. The uneven contact load distribution in
the middle position of the nut is superior to that at the screw ends. When the nut is
located at the upper, middle, and lower end of the screw, the standard deviation of
the contact load distribution is 78.38, 30.05, and 64.98, respectively. And the standard
deviation of the contact angle distribution is 0.0337, 0.0130, and 0.0285, respectively.

(2) There is a similar evolutionary trend between contact load and axial load, as well as
between contact angle and axial load. The unevenness of contact load distribution
and contact angle distribution increases with the increase in axial load. When the
axial load is 35,000 N/55,000 N/75,000 N, the standard deviation of the contact load
distribution is 18.71/32.74/37.95 and the standard deviation of the contact angle
distribution is 0.0096/0.0144/0.0191.

(3) The standard deviations of contact load distribution at different initial contact angles
(α0 = 45◦, α0 = 46◦, and α0 = 47◦) are 32.74, 32.44, and 32.17, respectively, indicating
a decreasing trend. The standard deviations of the contact angle distribution are
constant, which is 0.0144.

(4) Due to the influence of guide rail geometric error and slide position, the contact
stiffness of the double-drive ball screw pair shows complex nonlinearity as well.
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