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Abstract: This study investigates the pricing formula for European options when the underlying
asset follows a fuzzy mixed weighted fractional Brownian motion within a jump environment. We
construct a pricing model for European options driven by fuzzy mixed weighted fractional Brownian
motion with jumps. By converting the partial differential equation (PDE) into a Cauchy problem,
we derive explicit solutions for both European call options and European put options. The figures
and tables demonstrating the effectiveness of the results highlight the suitability of the fuzzy mixed
weighted fractional Brownian motion with jump model for option pricing.
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1. Introduction

Since Black and Scholes [1] proposed the Black–Scholes model in 1973, a pioneering
development of an option pricing model, the modern theory of option pricing has un-
dergone rapid advancement. However, the assumptions within the Black–Scholes model,
namely the geometric Brownian motion of the underlying asset price and constant volatility,
fail to conform to the realities of financial markets. Consequently, substantial disparities
between the theoretical prices calculated using the Black–Scholes model and actual market
prices have emerged. As a result, scholars have undertaken efforts to enhance and expand
the Black–Scholes model, as evidenced in scholarly works [2–4], where researchers have
proposed the utilization of fractional Brownian motion (fBm in short) models exhibiting
long-memory features as an enhancement to the classical Black–Scholes model.

Fractional Brownian motion represents a self-similar Gaussian process with stationary
increments, characterized by the Hurst parameter H. The value of this parameter deter-
mines the degree of long-term dependence within the process. Recently, Mehrdoust and
Najafi [5] succeeded in deducing explicit solutions for the fractional Black–Scholes model,
characterized by a somewhat less resilient payoff function. Although fBm could effectively
encompass the extended correlations among returns spanning different days, Rogers [6]
showcased that it concurrently introduced the potential for arbitrage opportunities. To
address this challenge and accommodate the enduring memory characteristic, EI-Nouty [7]
and Mishura [8] illustrated the feasibility of employing a mixed fractional Brownian motion
(mfBm in short), thereby capturing the intermittent variations in financial assets. More-
over, Cheridito [9] established the equivalence between the mfBm and a Brownian motion
under the condition of the Hurst exponent H ∈ ( 3

4 , 1). This mathematical equivalence
removes the potential for arbitrage, enabling valid financial use. For more applications
of mfBm on financial models, please refer to [10–12]. Recently, another type of fractional
Gaussian process–sub-fractional Brownian motion was also used in applications for option
pricing, as seen in [13–15]. For example, Guo et al. [15] studied the issue of time-varying
implied volatility of options and applied its model to option pricing under sub-mixed
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fractional Brownian motion. The article concluded, through comparative analysis of four
models, namely Brownian motion, fractional Brownian motion, sub-fractional Brownian
motion, and sub-mixed fractional Brownian motion, that the model of sub-mixed fractional
Brownian motion exhibited the best pricing performance.

Bojedcki et al. [16] proposed an extension to fractional Brownian motion called
weighted fractional Brownian motion (weighted-fBm in short). This extension incorporates
a weighting function and exhibits non-stationary increments, thus offering a more flexible
dependency structure. From this vantage point, the model of weighted-fBm might be better
suited for capturing the behavior of financial systems. In such systems, investors often
delay decisions until information surpasses a particular threshold. Nevertheless, according
to the literature [17], it can be understood that the pricing model of the underlying asset
driven by a fractional Gaussian process may lead to arbitrage opportunities. To avoid this
issue, the commonly employed method is to construct a linear combination of a standard
Brownian motion and a fractional Gaussian process (for example, a fractional Brownian
motion or a sub-fractional Brownian motion), as described in [9–15], among others. This
research also adopts such an approach, constructing a mixture of standard Brownian
motion and weighted-fBm as a linear combination. Khalaf et al. [18] pointed out that this
mixture, along with the asymptotic stationary properties for weighted-fBm, opened up the
possibility of the mixture being a martingale or equivalent to Brownian motion, as it is the
same as mfBm. This indicates that the pricing model of the underlying asset driven by a
mixed weighted fractional Brownian motion is arbitrage-free.

Furthermore, the uncertainty in financial markets stems not only from stochasticity
but also ambiguity. In practice, recorded financial data contain inaccuracies, especially
for risk-free rates and volatility. For instance, the risk-free rate used in pricing European
options is only an approximation, since different institutions have varying rates. Zadeh [19]
pioneered fuzzy set theory in 1965, providing a key technique for modeling ambiguous
markets. Wu [20] then incorporated fuzzy sets into option pricing, proposing fuzzy pricing
models for European options. Fuzzy set theory can be employed to quantify uncertainty
and risk, facilitating a more comprehensive assessment of option prices. By introducing
fuzzy random variables, the impact of various factors on option prices can be considered,
contributing to a more accurate reflection of market uncertainty. In this study, the triangular
fuzzy number is introduced for the estimation of relevant parameters. The choice of
employing the triangular fuzzy number is based on their relatively simple representation
and form, making them more easily interpretable and understandable. The triangular fuzzy
number offers an intuitive grasp of the boundaries and central tendencies of a fuzzy set.

Recently, Zhang et al. [21] discussed the pricing problem of European options under
the assumption that the underlying stock price, the risk-free interest rate, the volatility, the
jump intensity, and the mean value and variance of jump magnitudes are all fuzzy numbers.
Bian and Li [22] used stochastic analysis, fractal theory, and fuzzy set theory to construct a
European option pricing model based on the long-term memory property of the financial
market in an uncertain environment, and the conclusions showed that the European option
pricing model with long-term memory property was more suitable for financial markets
in an uncertain environment. More related studies can be referred to in [23–25]. To tackle
these challenges, we propose a new framework for pricing European options under a fuzzy
mixed weighted-fBm model with jumps. This flexible model incorporates both mixed
weighted-fBm to capture long-range dependence and jumps to represent sudden price
changes, while using fuzzy sets to model inherent data uncertainty. By capturing a wider
range of asset price behaviors, our approach is similar to the treatment of [21] in enhancing
the accuracy of options pricing.

The subsequent sections of this paper are structured as follows: Section 2 expounds on
the mixed weighted-fBm and fuzzy set theory, providing essential preliminary knowledge.
In Section 3, we derive the corresponding Itô’sformula for the asset price propelled by the
mixed weighted-fBm with jumps, and provide the expressions for the underlying asset
price. In Section 4, we acquire the Black–Scholes partial differential equation along with the
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solution in a closed-form for European options. In Section 5, we present a fuzzy stochastic
process that employs fuzzy random variables to define the underlying asset price process,
and deduce the α-cut of the fuzzy price of European options. Section 6 presents numerical
results using European call options. The findings demonstrate the sensitivity of the fuzzy
option prices to changes in b and α. Section 7 provides a conclusion.

2. Preliminaries

Let {Ω,Ft, P} be a complete probability space, endowed with a filtration {Ft}t≥0 that
adheres faithfully to the usual conditions.

2.1. Mixed Weighted-fBm

Definition 1. The mixed weighted-fBm ξt = {ξt(σ1, σ2)}t≥0 is a linear combination of the
Brownian motion {Bt}t≥0 and the weighted-fBm {Ba,b

t }t≥0, which can be expressed as

ξt(σ1, σ2) = σ1Bt + σ2Ba,b
t , ∀t ≥ 0,

where a, b are the index and satisfy the condition a > −1, |b| < 1, |b| < a + 1. σ1, σ2 are positive
constants; {Bt}t≥0 and {Ba,b

t }t≥0 are independent of each other. {Ba,b
t }t≥0 is defined by [26].

In what follows, we present certain attributes of the mixed weighted-fBm through the
proposition delineated hereafter. For more detailed information about the properties of the
mixed weighted-fBm, one can refer to [18,26].

Proposition 1. The mixed weighted-fBm ξt = {ξt(σ1, σ2)}t≥0 has the following properties:

• {ξt(σ1, σ2)}t≥0 is a central Gaussian process.
• When t = 0, ξo(σ1, σ2) = σ1B0 + σ2Ba,b

0 = 0.
• ∀t, s ≥ 0, the covariance of ξt(σ1, σ2) and ξs(σ1, σ2) is

Cov(ξt(σ1, σ2), ξs(σ1, σ2))

= σ2
1 (t ∧ s) +

1
2B(a + 1, b + 1)

σ2
2

∫ t∧s

0
ua
(
(t − u)a + (s − u)b

)
du,

where t ∧ s = 1
2 (t + s − |t − s|), and B(·, ·) is the beta function.

2.2. Fuzzy Set Theory

Definition 2 (Fuzzy number [20]). ã represents a fuzzy subset of the set of real numbers, denoted
by R. ã earns the appellation of a fuzzy number under the following conditions:

(1) ã qualifies as both a normal fuzzy set and a convex fuzzy set;
(2) The membership function µã of ã exhibits upper semi-continuity;
(3) The α-level set ãα of ã remains confined within boundaries.

If ã is a fuzzy number, its α-cut set ãα is a bounded closed interval. We can denote
ãα =

[
ãL

α , ãU
α

]
. When ãL

α = ãU
α = a, then we have ãα = a.

Definition 3 (Triangle fuzzy number [27]). Allow ã = (a1, a2, a3) to denote a veritable fuzzy
set within the realm of Group R, and it earns the distinguished title of a triangular fuzzy number
when its membership function is meticulously defined as such:

µã(x) =


x−a1
a2−a1

, a1 ≤ x ≤ a2,
x−a3
a2−a3

, a2 ≤ x ≤ a3,

0, x > a3.
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The utmost despondent extent of uncertainty, denoted as ã, is embodied by a1, while
the zenith of optimism is marked by a3, and at the heart of it all lies a2, symbolizing the most
probable value. The α-cut of ã manifests itself as a sealed interval, elegantly articulated
as follows:

ãα = [(1 − α)a1 + αa2, (1 − α)a3 + αa2],

where ãL
α = (1 − α)a1 + αa2, ãU

α = (1 − α)a3 + αa2.

3. Asset Pricing Model

In this research, we embrace the venerable theory of financial stochastic analysis,
weaving extensions into the fabric of the Black–Scholes model. Moreover, the ensuing
suppositions endure as follows:

(i) The temporality of transactions and the magnitude of assets persist in a seamless continuum;
(ii) Transaction expenses and fiscal levies remain conspicuously absent from the equation;
(iii) The dealing involving assets faces no constriction, allowing for both short selling and

short buying without hindrance;
(iv) The return of risk-free assets in time period t is

dMt = rMtdt, (1)

where constant r is the risk-free interest rate;
(v) The risk assets (stocks) price St is driven by the mixed weighted-fBm with jumps:

dSt = µStdt + Stdξt(σ1, σ2) + γStdJt

= µStdt + σ1StdBt + σ2StdBa,b
t + γStdJt, (2)

where µ is the instantaneous expected return of the stock; σ1, σ2, and γ represent the
volatility of stock prices; and {Jt}t≥0 is a compensated Poisson process with intensity
λ. {Bt}t≥0, {Ba,b

t }t≥0, and {Jt}t≥0 are independent of each other.

Theorem 1. Let us postulate that Yt takes the form of Yt = ξt(σ1, σ2) + γJt with an initial value
of zero, while f (t, Yt) exhibits second-order differentiability. Consequently, Itô’s formula for the
mixed weighted fractional Brownian motion with jumps can be elegantly articulated as such:

f (t, Yt) = f (0, 0) +
∫ t

0

{
∂ f
∂s

+

[
σ2

1
2

+
λγ2

2
+

(1 + a + b)σ2
2

2
sa+b

]
∂2 f
∂Y2

}
ds

+σ1

∫ t

0

∂ f
∂Y

dBs + σ2

∫ t

0

∂ f
∂Y

dBa,b
s + γ

∫ t

0

∂ f
∂Y

dJs.

Proof. By virtue of Itô’s formula for weighted fractional Brownian motion (Refer to
Theorem 2.1 in Reference [26] for details) and the analytical technique pertaining to the
jump process [28], we derive the following:

f (t, Yt) = f (0, 0) +
∫ t

0

∂ f
∂s

ds +
∫ t

0

∂ f
∂s

dȲs +
1
2

∫ t

0

∂2 f
∂s2 d(Ȳs)

2 + ∑
s≤t

[ f (s, Ys)− f (s−, Ys−)]

= f (0, 0) +
∫ t

0

[
∂ f
∂s

− λγ
∂ f
∂Y

]
ds +

∫ t

0

[
σ2

1
2

+
(1 + a + b)σ2

2
2

sa+b

]
∂2 f
∂Y2 ds

+ σ1

∫ t

0

∂ f
∂Y

dBs + σ2

∫ t

0

∂ f
∂Y

dBa,b
s + ∑

s≤t
[ f (s, Ys)− f (s−, Ys−)]. (3)

The following identities are used by

dȲt = σ1dBt + σ2dBa,b
t − λγdt,
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(dȲt)
2
=
[
σ2

1 + (1 + a + b)σ2
2 ta+b

]
dt.

and Ȳt = σ1Bt + σ2Ba,b
t − λγt is the continuous part of Yt.

Assuming that g(x) exhibits second-order differentiability, and considering the Poisson
process {Nt}t≥0 with intensity λ, which possesses second-order moment increments, we
can invoke a generalized Itô’s formula to assert

∑
s≤t

[g(Ns)− g(Ns−)] =
∫ t

0

∂g
∂N

dNs +
λ

2

∫ t

0

∂2g
∂N2 ds.

Combining Yt = ξt(σ1, σ2) + γJt = σ1Bt + σ2Ba,b
t + γNt − λγt, we obtain

∑
s≤t

[ f (s, Ys)− f (s−, Ys−)] = γ
∫ t

0

∂ f
∂Y

dNs +
λγ2

2

∫ t

0

∂2 f
∂Y2 ds. (4)

We can substitute Equation (4) back into Equation (3), which yields

f (t, Yt) = f (0, 0) +
∫ t

0

{
∂ f
∂s

+

[
σ2

1
2

+
λγ2

2
+

(1 + a + b)σ2
2

2
sa+b

]
∂2 f
∂Y2

}
ds

+σ1

∫ t

0

∂ f
∂Y

dBs + σ2

∫ t

0

∂ f
∂Y

dBa,b
s + γ

∫ t

0

∂ f
∂Y

dJs.

This completes the proof.

Theorem 2. The stock price, which complies with Equation (2), unveils an explicit solution as follows:

St = S0 exp

{
µt −

[(
σ2

1
2

+
λγ2

2

)
t +

σ2
2

2
ta+b+1

]
+ σ1Bt + σ2Ba,b

t + γJt

}
.

Proof. Let f (t, Yt) = S0 exp
{

µt −
[(

σ2
1
2 + λγ2

2

)
t + σ2

2
2 ta+b+1

]
+ Yt

}
.

According to Theorem 1, we obtain

d f ( f , Yt) =

{
∂ f
∂t

+

[
σ2

1
2

+
λγ2

2
+

σ2
2

2
ta+b+1

]
∂2 f
∂Y2

}
dt +

∂ f
∂Y

dYt

= µ f (t, Yt)dt + f (t, Yt)dYt

= µ f (t, Yt)dt + f (t, Yt)dξt(σ1, σ2) + γ f (t, Yt)dJt, (5)

where ∂ f
∂t =

{
µ −

[
σ2

1
2 + λγ2

2 +
σ2

2
2 ta+b+1

]}
f (t, Yt),

∂ f
∂Y = f (t, Yt),

∂2 f
∂Y2 = f (t, Yt).

Comparing Equation (2) and Equation (5), we can infer that dSt = d f (t, Yt), with the
values matching f (0, Y0) = S0. Therefore,

St = S0 exp

{
µt −

[(
σ2

1
2

+
λγ2

2

)
t +

σ2
2

2
ta+b+1

]
+ σ1Bt + σ2Ba,b

t + γJt

}
.

This completes the proof.

4. Pricing Formula for European Option under the Mixed Weight-fBm Model with Jump

Equipped with the unequivocal solution for the stock price St, in this section, we shall
derive the pricing formula for European call and put options.
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Theorem 3. Supposing that the price of the underlying asset, St, adheres to Equation (2), then
the value of the contingent claim, denoted as Vt = V(t, St), complies with the ensuing partial
differential equation:

∂V
∂t

+ rSt
∂V
∂S

+

[
σ2

1
2

+
λγ2

2
+

(a + b + 1)σ2
2

2
ta+b

]
S2

t
∂2V
∂S2 − rVt = 0.

Proof. Using the self-financing strategy Πt = (θ1
t , θ2

t ), we maintain a number of θ1
t bonds

and θ2
t stocks to construct the wealth process, the value of which at time t is

Vt = θ1
t Mt + θ2

t St. (6)

Combining Equation (1) and Equation (2), we obtain

dVt = θ1
t dMt + θ2

t dSt

=
(

rθ1
t Mt + µθ2

t St

)
dt + θ2

t St

(
σ1dBt + σ2dBa,b

t + γdJt

)
. (7)

Similarly, applying Theorems 1 and 2 gives

dVt =
∂V
∂t

dt +
∂V
∂S

dSt +
1
2

∂2V
∂S2 (dSt)

2

=

{
∂V
∂t

+ µSt
∂V
∂S

+

[
σ2

1
2

+
λγ2

2
+

(a + b + 1)σ2
2

2
ta+b

]
S2

t
∂2V
∂S2

}
dt

+ St
∂V
∂S

(
σ1dBt + σ2dBa,b

t + γdJt

)
, (8)

where (dSt)2 = S2
t

[
(σ2

1 + λγ2) + (a + b + 1)σ2
2 ta+b

]
dt.

Comparing Equation (7) and Equation (8), θ1
t and θ2

t are given asθ1
t = (rMt)−1

{
∂V
∂t +

[
σ2

1
2 + λγ2

2 +
(a+b+1)σ2

2
2 ta+b

]
S2

t
∂2V
∂S2

}
,

θ2
t = ∂V

∂S .
(9)

From Equation (6), we obtain

θ1
t =

Vt − θ2
t St

Mt
. (10)

Combining Equation (9) and Equation (10), Theorem 3 is proved.
This completes the proof.

Theorem 4. With the underlying asset price St following Equation (2), the price at time t of a
European call option with strike price K and maturity T is

C(t, St) = StΦ(d1)− Ke−r(T−t)Φ(d2), (11)

where

d1 =
ln St

K + r(T − t) + (
σ2

1
2 + λγ2

2 )(T − t) + σ2
2
2 (Ta+b+1 − ta+b+1)√

(σ2
1 + λγ2)(T − t) + σ2

2 (T
a+b+1 − ta+b+1)

,

d2 = d1 −
√
(σ2

1 + λγ2)(T − t) + σ2
2 (T

a+b+1 − ta+b+1),

and Φ(·) denotes the standard normal cumulative distribution function.
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Proof. The valuation of the European call option adheres to the ensuing differential equation ∂V
∂t + rSt

∂V
∂S +

[
σ2

1
2 + λγ2

2 +
(a+b+1)σ2

2
2 ta+b

]
S2

t
∂2V
∂S2 − rVt = 0,

C(T, ST) = (ST − K)+.
(12)

Through the utilization of variable substitution, Equation (12) metamorphoses into a
Cauchy problem. Let St = S = ex and V(t, St) = C(t, x); then, x = ln S.

∂V
∂t

=
∂C
∂t

,
∂V
∂S

=
1
S

∂C
∂x

,
∂2V
∂S2 =

1
S2

(
∂2C
∂x2 − ∂C

∂x

)
.

By substituting the above formula into Equation (12), it can be obtained that ∂V
∂t + r ∂C

∂x +

[
σ2

1
2 + λγ2

2 +
(a+b+1)σ2

2
2 ta+b

](
∂2C
∂x2 − ∂C

∂x

)
− rC = 0,

C(T, x) = (ex − K)+.
(13)

Let 
u(s, z) = C(t, x)er(T−t),

s =
(

σ2
1
2 + λγ2

2

)
(T − t) + σ2

2
2

(
Ta+b+1 − ta+b+1

)
,

z = x + r(T − t)−
(

σ2
1
2 + λγ2

2

)
(T − t)− σ2

2
2

(
Ta+b+1 − ta+b+1

)
.

(14)

Then, we have

C(t, x) = u(s, z)e−r(T−t),

∂C
∂t

= e−r(T−t)

{[
ru +

σ2
1

2
+

λγ2

2
+

(a + b + 1)σ2
2

2
ta+b

]
(

∂u
∂z

− ∂u
∂s

)− ∂u
∂z

r

}
,

∂C
∂x

= e−r(T−t) ∂u
∂z

,

∂2C
∂x2 = e−r(T−t) ∂2u

∂z2 .

By substituting the above formula into Equation (13), it can be obtained that{
∂2u
∂z2 = ∂u

∂s ,
u(0, z) = (ez − K)+.

In accordance with the classical principles of thermal dynamics, there exists a unique
strong solution

u(s, z) =
1

2
√

πs

∫ +∞

−∞
u(0, τ)e

(τ−z)2
4s dτ

=
1

2
√

πs

∫ +∞

−∞
eτ−Ke

(τ−z)2
4s dτ.
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Then,

V(t, St) = C(t, x) = u(s, z)e−r(T−t)

=
e−r(T−t)

2
√

πs

∫ +∞

ln K
(eτ − K)+e

(τ−z)2
4s dτ

=
e−r(T−t)

2
√

πs

∫ +∞

ln K
eτe

(τ−z)2
4s dτ − Ke−r(T−t)

2
√

πs

∫ +∞

ln K
e
(τ−z)2

4s dτ

= I1 − I2. (15)

For I2, let y = τ−z√
πs ; we have

√
2sdy = dτ. Then,

I2 =
Ke−r(T−t)

2
√

πs

∫ +∞

ln K
e
(τ−z)2

4s dτ

=
Ke−r(T−t)

2
√

πs

∫ +∞

ln K−z√
2s

e−
y2
2 dy

= Ke−r(T−t)Φ
(

z − ln K√
2s

)
.

Similarly, for I1, let ϖ = τ−z−2s√
2s

; we have
√

2sdϖ = dτ.

I1 =
e−r(T−t)

2
√

πs

∫ +∞

ln K
eτe

(τ−z)2
4s dτ

=
e−r(T−t)

2
√

πs
ez+s

∫ +∞

ln K−z−2s√
2s

e−
ϖ2
2 dϖ

= e−r(T−t)ez+sΦ
(

z + 2s − ln K√
2s

)
.

By substituting the expressions for s and z from Equation (14) into I1 and I2, and
subsequently substituting I1 and I2 into Equation (15), this completes the proof.

Remark 1. The relationship of parity between the prices of European call option Ct and European
put option Pt is expressed as Pt is Ct − Pt = St − Ke−r(T−t), which enables us to determine the
price of a European put option at time t.

Remark 2. If a = 0, γ = 0, let H = b+1
2 , then the mixed weighted-fBm with the jump model

reduces to the mfBm Black–Scholes model with the Hurst index H, which is consistent with the
result in [29,30].

5. European Option Pricing in a Fuzzy Framework

According to Theorem 4 and reference [31], we can readily attain the subsequent
findings regarding the fuzzy price, denoted as C̃t, of the European call option.

Theorem 5. With fuzzy interest rate r̃, fuzzy volatility σ̃1, σ̃2 and γ̃, fuzzy jump intensity λ̃, and
fuzzy stock price S̃t, the fuzzy European call price C̃t at time t is

C̃t = S̃tΦ(d̃1)− Ke−r̃(T−t)Φ(d̃2),
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where

d̃1 =
ln S̃t

K + r̃(T − t) + (
σ̃2

1
2 + λ̃γ̃2

2 )(T − t) + σ̃2
2
2 (Ta+b+1 − ta+b+1)√

(σ̃2
1 + λ̃γ̃2)(T − t) + σ̃2

2 (T
a+b+1 − ta+b+1)

,

d̃2 = d̃1 −
√
(σ̃2

1 + λ̃γ̃2)(T − t) + σ̃2
2 (T

a+b+1 − ta+b+1).

Remark 3. The relationship of parity between the prices of European call option C̃t and European
put option P̃t is expressed as C̃t − P̃t = S̃t − Ke−r̃(T−t), which enables us to determine the price of
a European put option at time t.

Theorem 6. The respective interval endpoints of the α-cut for the price of a European call
option C̃t are (

C̃t
)L

α
= f

((
S̃t
)L

α
, T, t, a, b, K, (r̃)L

α , (σ̃1)
L
α , (σ̃2)

L
α , (γ̃)L

α ,
(
λ̃
)L

α

)
,(

C̃t
)U

α
= f

((
S̃t
)U

α
, T, t, a, b, K, (r̃)U

α , (σ̃1)
U
α , (σ̃2)

U
α , (γ̃)U

α ,
(
λ̃
)U

α

)
.

Proof. The α-cut set (C̃t)α of C̃t can be articulated as (C̃t)α =
[
(C̃t)L

α , C̃t)U
α

]
.

With regard to the α-cut set of fuzzy variables encompassing fuzzy interest rate r̃,
fuzzy volatility σ̃1, σ̃2 and γ̃, as well as the fuzzy jump intensity λ̃, the fuzzy stock price
S̃t can be delineated as follows: r̃α = [r̃L

α , r̃U
α ], (σ̃1)α = [(σ̃1)

L
α , (σ̃1)

U
α ], (σ̃2)α = [(σ̃2)

L
α , (σ̃2)

U
α ],

λ̃α = [λ̃L
α , λ̃U

α ], γ̃α = [γ̃L
α , γ̃U

α ], (S̃t)α = [(S̃t)L
α , (S̃t)U

α ].
It can be seen from Equation (11) that
∂ f
∂S = Φ(d1) > 0, ∂ f

∂r = (T − t)e−r(T−t)Φ(d2) > 0, ∂ f
∂σ1

= ∂ f
∂λ = ∂ f

∂γ = S
√

T − tΦ′(d1) >

0, and ∂ f
∂σ2

= S
√

Ta+b+1 − ta+b+1Φ′(d1) > 0.
One may ascertain that f is indeed an ascending function with respect to S, r, σ1, σ2, λ,

and γ. Consequently, the theorem stands as duly established.
This completes the proof.

The triangle fuzzy number is commonly used to represent fuzzy variables. In this
study, the fuzzy interest rate, fuzzy volatility, fuzzy jump intensity, and fuzzy stock price
are all modeled as triangle fuzzy numbers to capture their inherent uncertainty. There is
r̃ = (r1, r2, r3), σ̃1 = (σ11, σ12, σ13), σ̃2 = (σ21, σ22, σ23), λ̃ = (λ1, λ2, λ3), γ̃ = (γ1, γ2, γ3),
and S̃t = (S1, S2, S3). From Definition 3, we can obtain that

(S̃)α = [(1 − α)S1 + αS2, (1 − α)S3 + αS2];
(r̃)α = [(1 − α)r1 + αr2, (1 − α)r3 + αr2];
(σ̃1)α = [(1 − α)σ11 + ασ12, (1 − α)σ13 + ασ12];
(σ̃2)α = [(1 − α)σ21 + ασ22, (1 − α)σ23 + ασ22];
(λ̃)α = [(1 − α)λ1 + αλ2, (1 − α)λ3 + αλ2];
(γ̃)α = [(1 − α)γ1 + αγ2, (1 − α)γ3 + αγ2].

Theorem 7. When representing the interest rate, volatility, jump intensity, and stock price as
triangular fuzzy numbers, the α-cut set for the fuzzy European call price C̃t is characterized by its
interval endpoints [(C̃t)L

α , (C̃t)U
α ] :

(C̃t)
L
α = (S̃t)

L
α Φ(d̃L

1 (α))− Ke−r̃L
α (T−t)Φ(d̃L

2 (α)), (16)

(C̃t)
U
α = (S̃t)

U
α Φ(d̃U

1 (α))− Ke−r̃U
α (T−t)Φ(d̃U

2 (α)). (17)

where
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d̃L
1 (α) =

ln (S̃t)
L
α

K + r̃L
α (T − t) + ( [(σ̃1)

L
α ]

2

2 + λ̃L
α [(γ̃)

L
α ]

2

2 )(T − t) + [(σ̃2)
L
α ]

2

2 (Ta+b+1 − ta+b+1)√
([(σ̃1)L

α ]
2 + λ̃L

α [(γ̃)
L
α ]

2)(T − t) + [(σ̃2)L
α ]

2(Ta+b+1 − ta+b+1)
,

d̃L
2 (α) = d̃L

1 (α)−
√
([(σ̃1)L

α ]
2 + λ̃L

α [(γ̃)
L
α ]

2)(T − t) + [(σ̃2)L
α ]

2(Ta+b+1 − ta+b+1),

d̃U
1 (α) =

ln (S̃t)
U
α

K + r̃U
α (T − t) + ( [(σ̃1)

U
α ]2

2 + λ̃U
α [(γ̃)U

α ]2

2 )(T − t) + [(σ̃2)
U
α ]2

2 (Ta+b+1 − ta+b+1)√
([(σ̃1)

U
α ]2 + λ̃U

α [(γ̃)
U
α ]2)(T − t) + [(σ̃2)

U
α ]2(Ta+b+1 − ta+b+1)

,

d̃U
2 (α) = d̃U

1 (α)−
√
([(σ̃1)

U
α ]2 + λ̃U

α [(γ̃)
U
α ]2)(T − t) + [(σ̃2)

U
α ]2(Ta+b+1 − ta+b+1).

6. Numerical Experiments

This section thoroughly investigates how the parameter b affects the pricing model
by utilizing the control variable method. It provides an exhaustive examination of the
sensitivity and stability of the European option pricing model, particularly considering its
enduring memory characteristics amidst the backdrop of uncertainty. For simplicity, the
numerical experiments use European call option pricing as an example, with European
put options following analogous arguments. The parameter values match the benchmark
model in Table 1. CL

t and CU
t represent, respectively, the upper and lower boundaries of

European call option prices, and their associated connections can be expressed as follows:
CL

t =
(
C̃t
)L

α
, CU

t =
(
C̃t
)U

α
.

Table 1. Values of benchmark parameters.

Parameter Symbols Parameter Symbols

Strike price K = 30 Fuzzy stock price S̃ = (32, 33, 34)
Initial time t = 0 Fuzzy volatility σ̃1 = σ̃2 = γ̃ = (0.08, 0.1, 0.12)

Degree of confidence α = 0.95 Fuzzy jump intensity λ̃ = (1, 2, 3)
Parameter of weighted-fBm a = 0.5 Fuzzy risk-free rate r̃ = (0.048, 0.05, 0.052)

As depicted in Figures 1 and 2, we observe that when the maturity date is set at T = 0.25,
the triangular fuzzy price of European call options experiences a decline as parameter b
increases. When the maturity date is set at T = 2, the triangular fuzzy price of European call
options experiences an increase as parameter b increases. By combining the results obtained
from Table 2, we can draw the following conclusions: in the range where 0 < T < 1, an
increase in parameter b leads to a reduction in the triangular fuzzy price intervals of European
call options. Conversely, in cases where T > 1, an increase in parameter b results in an
expansion of the triangular fuzzy price intervals of European call options.

Table 2. The interval of triangular fuzzy price α-cut set for European call option varies across different
values of b.

T = 0.25 T = 2

b (C̃0)α b (C̃0)α

0.55 [3.4756,3.5856] 0.55 [7.3283,7.5065]
0.60 [3.4743,3.5843] 0.60 [7.3504,7.5290]
0.65 [3.4731,3.5830] 0.65 [7.3733,7.5522]
0.70 [3.4719,3.5819] 0.70 [7.3968,7.5761]
0.75 [3.4709,3.5808] 0.75 [7.4211,7.6007]
0.80 [3.4699,3.5798] 0.80 [7.4461,7.6261]
0.85 [3.4690,3.5788] 0.85 [7.4718,7.6522]
0.90 [3.4681,3.5780] 0.90 [7.4982,7.6791]
0.95 [3.4673,3.5772] 0.95 [7.5255,7.7068]
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Figure 1. The impact of parameter b on the pricing of European call options when T = 0.25.
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Figure 2. The impact of parameter b on the pricing of European call options when T = 2.

Finally, we compare the proposed pricing model to a model based on weighted
fractional Brownian motion (WFBM in short). For simplicity, we ignore jumps and focus on
the mixed weighted fractional Brownian motion (MWFBM in short) case. Figures 3 and 4
illustrate how the fuzzy price varies with the parameters b and α. The MWFBM model
yields higher option prices compared with the WFBM model. Table 3 presents the α-cut
set intervals of the fuzzy European call price (C̃t)α under the two models for different
confidence levels α. As shown in Table 3, the MWFBM intervals are greater than the WFBM
ones. With the current model excluding jumps, if a confidence level of 0.97 is acceptable,
any price between 6.7212 and 6.8011 can be chosen. In the event that the market value
descends below 6.7212, the individual responsible for making choices regards the price as
being undervalued and may opt for the acquisition of the option. Conversely, if the market
price surpasses 6.8011, the decision-maker views the price as overvalued and may decide
to exercise the option.
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Figure 3. The values of CL for both models evolve alongside variations in b and α.
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Figure 4. The values of CU for both models evolve alongside variations in b and α.

Table 3. A comprehensive analysis of the α-cut set intervals of the fuzzy price of European call
options under various models.

WFBM MWFBM

α (C̃0)α α (C̃0)α

0.99 [6.3881,6.4131] 0.99 [6.7478,6.7744]
0.98 [6.3757,6.4256] 0.98 [6.7345,6.7878]
0.97 [6.3632,6.4381] 0.97 [6.7212,6.8011]
0.96 [6.3507,6.4506] 0.96 [6.7079,6.8144]
0.95 [6.3382,6.4630] 0.95 [6.6946,6.8277]
0.94 [6.3257,6.4755] 0.94 [6.6813,6.8410]
0.93 [6.3133,6.4880] 0.93 [6.6680,6.8543]
0.92 [6.3008,6.5005] 0.92 [6.6547,6.8676]
0.91 [6.2883,6.5130] 0.91 [6.6414,6.8809]
0.90 [6.2758,6.5255] 0.90 [6.6281,6.8943]
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7. Conclusions

In this research, a fuzzy pricing model for European options is constructed within
the framework of mixed weighted fractional Brownian motion with jumps. Using a self-
financing strategy, we establish a partial differential equation (PDE) akin to the Black–
Scholes model to assess these financial derivatives. We then obtain European option
values by applying transform techniques. Similarly, put–call parity holds for the European
options. Section 6 presents numerical experiments using European call options. The results
demonstrate the sensitivity of fuzzy option prices to b and α. Additionally, the MWFBM
model is compared with the WFBM model. The results indicate that, for investors, the
MWFBM model carries less risk compared with the WFBM model. Based on the conclusions
drawn in this study, the next steps in planned research questions and directions include
the following:

(i) Improvement of Fuzzy random variables. Despite the advantages of triangular
fuzzy number in terms of simplicity and ease of interpretation, their limitation lies in
the potential inability to accurately depict some more complex fuzzy set distributions.
Future considerations may involve exploring more intricate forms of fuzzy numbers, such
as trapezoidal fuzzy numbers or generalized fuzzy number forms, to better capture the
characteristics of fuzziness.

(ii) Empirical applications. On the one hand, there is potential to apply the mixed
weighted fractional Brownian motion with the jumps model proposed in this paper to other
more complex option types, such as Asian options, barrier options, and compound options.
On the other hand, empirical simulations could involve comparing the MWFBM model
with other long-memory models, such as MFBM (Mixed Fractional Brownian Motion)
and MSFBM (Mixed Sub-fractional Brownian Motion), analyzing the accuracy of various
models in simulating real financial market conditions.
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