
Citation: Shams, M.; Carpentieri, B.

Efficient Inverse Fractional Neural

Network-Based Simultaneous

Schemes for Nonlinear Engineering

Applications. Fractal Fract. 2023, 7,

849. https://doi.org/10.3390/

fractalfract7120849

Academic Editors: Gani Stamov and

Jorge Mario Cruz-Duarte

Received: 6 October 2023

Revised: 20 November 2023

Accepted: 24 November 2023

Published: 29 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Efficient Inverse Fractional Neural Network-Based Simultaneous
Schemes for Nonlinear Engineering Applications
Mudassir Shams 1,2 and Bruno Carpentieri 1,*

1 Faculty of Engineering, Free University of Bozen-Bolzano (BZ), 39100 Bolzano, Italy; mudassir4shams@gmail.com
or mudassir.shams@unibz.it

2 Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
* Correspondence: bruno.carpentieri@unibz.it

Abstract: Finding all the roots of a nonlinear equation is an important and difficult task that arises
naturally in numerous scientific and engineering applications. Sequential iterative algorithms fre-
quently use a deflating strategy to compute all the roots of the nonlinear equation, as rounding errors
have the potential to produce inaccurate results. On the other hand, simultaneous iterative parallel
techniques require an accurate initial estimation of the roots to converge effectively. In this paper,
we propose a new class of global neural network-based root-finding algorithms for locating real and
complex polynomial roots, which exploits the ability of machine learning techniques to learn from
data and make accurate predictions. The approximations computed by the neural network are used
to initialize two efficient fractional Caputo-inverse simultaneous algorithms of convergence orders
ς + 2 and 2ς + 4, respectively. The results of our numerical experiments on selected engineering appli-
cations show that the new inverse parallel fractional schemes have the potential to outperform other
state-of-the-art nonlinear root-finding methods in terms of both accuracy and elapsed solution time.

Keywords: fractional derivative; inverse fractional scheme; regression analyses; computational
efficiency; neural network

1. Introduction

Determining the roots of nonlinear equations of the form

f (υ) = 0, (1)

is among the oldest problems in science and engineering, dating back to at least 2000 BC,
when the Babylonians discovered a general solution to quadratic equations. In 1079, Omer
Khayyams developed a geometric method for solving cubic equations. In 1545, in his
book Ars Magna, Girolomo Cardano published a universal solution to a cubic polynomial
equation. Cordano was one of the first authors to use complex numbers, but only to derive
real solutions to generic polynomials. Niel Hernor Abel [1] proved Abel’s Impossibility
theorem “There is no solution in radical to general polynomial with arbitrary coefficient
of degree five or higher” in 1824. The fact established in the 17th century that every
generic polynomial equation of positive degree has a solution, possibly non-real, was
completely demonstrated at the beginning of the 19th century as the “Fundamental theorem
of algebra” [2].

From the beginning of the 16th century to the end of the 19th century, one of the
main problems in algebra was to find a formula that computed the solution of a generic
polynomial with arbitrary coefficients of degree equal to or greater than five. Because there
are no analytical or implicit methods for solving this problem, we must rely on numeri-
cal techniques to approximate the roots of higher-degree polynomials. These numerical
algorithms can be further divided into two categories: those that estimate one polynomial
root at a time and those that approximate all polynomial roots simultaneously. Work in this

Fractal Fract. 2023, 7, 849. https://doi.org/10.3390/fractalfract7120849 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7120849
https://doi.org/10.3390/fractalfract7120849
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract7120849
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7120849?type=check_update&version=4

Fractal Fract. 2023, 7, 849 2 of 39

area began in 1970, with the primary goal of developing numerical iterative techniques that
could locate polynomial roots on contemporary, state-of-the-art computers with optimal
speed and efficiency [3]. Iterative approaches are currently used to find polynomial roots
in a variety of disciplines. In signal processing, polynomial roots are the frequencies of
signals representing sounds, images, and movies. In control theory, they characterize
the behavior of control systems and can be utilized to enhance system stability or perfor-
mance. The prices of options and futures contracts are determined by estimating the roots
of (1); therefore, it is critical to compute them accurately so that they can be priced precisely.

In recent years, many iterative techniques for estimating the roots of nonlinear equa-
tions have been proposed. These methods use several quadrature rules, interpolation
techniques, error analysis, and other techniques to improve the convergence order of previ-
ously known single-root-finding procedures [4–6]. In this paper, we will focus on iterative
approaches for solving single-variable nonlinear equations one root at a time. However,
we will generalize these methods to locate all distinct roots of nonlinear equations simul-
taneously. A sequential approach for finding all the zeros in a polynomial necessitates
repeated deflation, which can produce significantly inaccurate results due to rounding
errors propagating in finite-precision floating-point arithmetic. As a result, we employ
more precise, efficient, and stable simultaneous approaches. The literature is vast and dates
back to 1891, when Weierstrass introduced the single-step derivative-free simultaneous
method [7] for finding all polynomial roots, which was later rediscovered by Kerner [8],
Durand [9], Dochev [10], and Presic [11]. Gauss–Seidal [12] and Petkovic et al. [13] in-
troduced the second-order method for approximating all roots simultaneously; Börsch–
Supan [14] and Mir [15] presented the third-order method; Provinic et al [16] introduced
the fourth-order method; and Zhang et al [17] the fifth-order method. Additional enhance-
ments in efficiency were demonstrated by Ehlirch in [18] and Milovanovic et al. in [19];
Nourein proposed a fourth-order method in [20]; and Petkovic et al. a six-order simul-
taneous method with derivatives in [21]. Former [22] introduced the percentage efficacy
of simultaneous methods in 2014. Later, in 2015, Proinov et al. [23] presented a general
convergence theorem for simultaneous methods and a description of the application of
the Weierstrass root approximating methodology. In 2016, Nedzibove [24] developed a
modified version of the Weierstrass method, and in 2020, Marcheva et al. [25] presented
the local convergence theorem. Shams et al. [26,27] presented the computational efficiency
ratios for the simultaneous approach on initial vectors to locate all polynomial roots in 2020,
as well as the global convergence in 2022 [28]. Additional advancements in the field can be
found in [29–33] and the references therein.

The primary goal of this study is to develop Caputo-type fractional inverse simultane-
ous schemes that are more robust, stable, computationally inexpensive, and CPU-efficient
compared to existing methods. The theory and analysis of inverse fractional parallel nu-
merical Caputo-type schemes, as well as their practical implementation utilizing artificial
neural networks (ANNs) for approximating all roots of (1), are also thoroughly examined.
Simultaneous schemes, Caputo-type fractional inverse simultaneous schemes, and simulta-
neous schemes based on artificial neural networks are all discussed and compared in depth.
The main contributions of this study are as follows:

• Two novel fractional inverse simultaneous Caputo-type methods are introduced in
order to locate all the roots of (1).

• A local convergence analysis is presented for the parallel fractional inverse numerical
schemes that are proposed.

• A rigorous complexity analysis is provided to demonstrate the increased efficiency of
the new method.

• The Levenberg–Marquardt Algorithm is utilized to compute all of the roots us-
ing ANNs.

• The global convergence behavior of the proposed inverse fractional parallel root-
finding method with random initial estimate values is illustrated.

Fractal Fract. 2023, 7, 849 3 of 39

• The efficiency and stability of the new method are numerically assessed using dynam-
ical planes.

• The general applicability of the method for various nonlinear engineering problems is
thoroughly studied using different stopping criteria and random initial guesses.

To the best of our knowledge, this contribution is novel. A review of the existing body
of literature indicates that research on fractional parallel numerical methods for simulta-
neously locating all roots of (1) is extremely limited. This paper is organized as follows.
In Section 2, a number of fundamental definitions are given. The construction, analysis,
and assessment of inverse fractional algorithms are covered in Section 3. A comparison is
made between the artificial neural network aspects of recently developed parallel methods
and those of existing schemes in Section 4. A cost analysis of classical and fractional parallel
schemes is detailed in Section 5. A dynamical analysis of global convergence is presented
in Section 6. In order to evaluate the newly developed techniques in comparison to the
parallel computer algorithms that are currently documented in the literature, Section 7
solves a number of nonlinear engineering applications and reports on the numerical results.
The global convergence behavior of the inverse parallel scheme is also compared to that of
a simultaneous neural network-based method in this section. Finally, some conclusions
arising from this work are drawn in Section 8.

2. Preliminaries

Despite the fact that with the exception of the Caputo derivative, none of the fractional-
type derivatives satisfy the fractional calculus conditions, [aς](1) = 0, if ς is not a natural
number, in this section we discuss some basic concepts of fractional calculus, as well as the
fractional iterative scheme for solving (1) using Caputo-type derivatives.

The Gamma function is described as follows [34]:

d(υ) =
+∞∫
0

uυ−1e−udu, (2)

where υ > 0. With d(1) = 1 and d(σ + 1) = σ!, where σ ∈ N, Gamma is a generalization of
the factorial function.

For

f : R→ R, f ∈ C+∞([ς, υ]),−∞ < ς < υ < +∞, ς ≥ 0, m = [ς] + 1,

order ς’s Caputo fractional derivative is defined as [35]:

[
Ca

ς
ς1

]
f (υ) =


1

d(m−ς)

υ∫
0

dm

dtm f (t) 1
(υ−t)ς−m+1 dt, ς ∈ N,

dm−1

dtm−1 f (υ), ς = m− 1 ∈ N ∪ {0},
(3)

where d(υ) is a gamma function with υ > 0.

Theorem 1 (Generalized Taylor Formula [36]). The generalized Taylor theorem of fractional
order is a powerful mathematical tool that extends the applicability of Taylor series approximations
to fractional-order functions that model and describe a wide range of complex phenomena in a
variety of scientific and engineering domains, including signal processing, control theory, biomedical
engineering, image processing, chaos theory, economic and financial modeling, and many more.

Suppose
[

Ca
γϑ
ς1

]
f (υ) ∈ C([ς1, ς2]) for γ = 1, . . . , σ + 1, where ς ∈ (0, 1]. Then,

f (υ) =
σ

∑
i=0

[
Ca

iς
ς1

]
f (ς1)

(υ− ς1)
iς

d(iς + 1)
+
[

Ca
(σ+1)ς
ς1

]
f (ζ)

(υ− ς1)
(σ+1)ς

d((σ + 1)ς + 1)
, (4)

Fractal Fract. 2023, 7, 849 4 of 39

and ς1 ≤ ζ ≤ υ, ∀υ ∈ (ς1, ς2] and
[

Ca
n∗ς
ς1

]
=
[

Ca
ς
ς1

]
.
[

Ca
ς
ς1

]
. . .
[

Ca
ς
ς1

]
(n-times). In terms of

the Caputo-type Taylor development of f (υ) around ς1 = ζ, then

f (υ) =

[
Ca

ς
ζ

]
f (ζ)

d(ς + 1)
(υ− ζ)ς +

[
Ca

2ς
ζ

]
f (ζ)

d(2ς + 1)
(υ− ζ)2ς + O(υ− ζ)3ς. (5)

Factoring

[
Ca

ς
ζ

]
f (ζ)

d(ς+1) , we have:

f (υ) =

[
Ca

ς
ζ

]
f (ζ)

d(ς + 1)

[
(υ− ζ)ς + C2(υ− ζ)2ς

]
+ O(υ− ζ)3ς, (6)

where

Cγ =
d(ς + 1)
d(γς + 1)

[
Ca

γς
ζ

]
f (ζ)[

Ca
ς
ζ

]
f (ζ)

, γ = 2, 3, . . . (7)

The corresponding Caputo-type fractional derivative of f (υ) around ζ is

[
Ca

ς
ζ

]
f (υ) =

[
Ca

ς
ζ

]
f (ζ)

d(ς + 1)

[
d(ς + 1) +

d(2ς + 1)
d(ς + 1)

C2(υ− ζ)ς
]
+ O(υ− ζ)2ς. (8)

3. Construction of Inverse Fractional Parallel Schemes

Numerical methods for solving nonlinear equations are essential tools for a wide range
of problems. They do, however, have trade-offs, such as the necessity for initial guesses,
convergence issues, and parameter sensitivity. To produce accurate and efficient answers,
the method used should be carefully assessed depending on the specific characteristics of
the problem. The Newton–Raphson method,

y(σ) = υ(σ) − f (υ(σ))
f ′(υ(σ))

, (i = 1, 2, . . .), f
′
(υ(σ)) 6= 0, (9)

is a widely used algorithm for locating a single root of (1). If f
′
(υ(σ)) → 0, the method

becomes unstable. As a result, we consider an alternate technique based on fractional-order
iterative algorithms in this paper.

The fractional Newton approach using different fractional derivatives is discussed
by Akgül et al. [37], Torres-Hernandez et al. [38], Gajori et al. [39], and Kumar et al. [40].
Candelario et al. [41] proposed the following Caputo-type fractional variant of the classical
Newton method (FNN):

υ(σ+1) = υ(σ) −
(
d(ς + 1)

f (υ(σ))[
Ca

ς
ς1

]
f (υ(σ))

)1/ς

, (10)

where
[

Ca
ς
ς1

]
f (υ(σ)) ≈

[
Ca

ς
ζ

]
f (ζ) for any ς ∈ R. The following error equation is satisfied

by the order of convergence of the fractional Newton method, which is ς + 1,

e(σ+1) =

(
d(2ς + 1)− d2(ς + 1)

ςd2(ς + 1)

)
C2eς+1

i + O
(

e2ς+1
i

)
, (11)

where e(σ+1) = υ(σ+1) − ζ and e(σ) = υ(σ) − ζ and Cγ =
(
d(ς+1)
d(γς+1)

)([
Ca

γς
ζ

]
f (ζ)[

Ca
ς
ζ

]
f (ζ)

)
,

γ = 2, 3, . . .

Fractal Fract. 2023, 7, 849 5 of 39

Candelario et al. [41] proposed another fractional numerical scheme for calculating
simple roots of (1) as: 

y(σ) = υ(σ) −
(
d(ς + 1) f (υ(σ))

[Ca
ς
ς1] f (υ(σ))

)1/ς

,

z(σ) = y(σ) −
(
d(ς + 1) f (y(σ))

[Ca
ς
ς1] f (υ(σ))

)1/ς

.
(12)

The order of convergence of the numerical scheme is 2ς + 1, and the associated error
equation is:

e(σ+1) =

(
−d(2ς + 1)− d(ς + 1)

ς2 ∗ d2(ς + 1)

)
G ∗ C2

2e2ς+1
i + O

(
eς2+2ς+1

i

)
,

being ς2 + 2ς + 1 < 3ς + 1 ∀ς ∈ (0, 1], e(σ+1) = z(σ) − ζ and G = d2(ς+1)−d(2ς+1)
d2(ς+1) .

There have recently been numerous studies on iterative root-finding algorithms that
can precisely approximate one root of (1) at a time [42–45]. The class of fractional numerical
schemes is particularly sensitive to the choice of the initial guesses; if we do not choose a
suitable initial guess sufficiently close to a root of (1), the method becomes unstable and
may not converge. As a result, we explore numerical schemes with global convergence
properties, i.e., parallel numerical schemes for simultaneously finding all roots of (1).

3.1. Construction of Inverse Fractional Parallel Scheme of Order ς + 2

The German mathematician Karl Weierstrass (1815–1897) developed the Weierstrass
(WDKI) method for finding roots of (1), which is based on the following quadratically
convergent iterative scheme [46]:

u(σ)
i = υ

(σ)
i −

f (υ(σ)i)
n
Π
j=1
j 6=i

(υ
(σ)
i − υ

(σ)
j)

. (13)

In order to reduce the computational costs and enhance the convergence rates, we
investigate inverse simultaneous methods [47]. The inverse simultaneous scheme applied
to (1) is given as [48]:

u(σ)
i =

(
υ
(σ)
i

)2
∗

 n
Π
j=1
j 6=i

(υ
(σ)
i − υ

(σ)
j)


υ
(σ)
i ∗

n
Π

j=1
j 6=i

(υ
(σ)
i − υ

(σ)
j) + f (υ(σ)i)

. (14)

Method (13) can also be expressed as:

u(σ)
i =

(σ)
i −

(
υ
(σ)
i

)
∗ f (υ(σ)i)

υ
(σ)
i ∗

n
Π

j=1
j 6=i

(υ
(σ)
i − υ

(σ)
j) + f (υ(σ)i)

, (15)

replacing υ
(σ)
j with y∗(σ)j in (14). As a result, our new inverse fractional simultaneous

scheme (FINSς) is established as follows:

Fractal Fract. 2023, 7, 849 6 of 39

u(σ)
i =

(
υ
(σ)
i

)2
∗

 n
Π
j=1
j 6=i

(
υ
(σ)
i − y∗(σ)j

)
υ
(σ)
i ∗

 n
Π
j=1
j 6=i

(
υ
(σ)
i − y∗(σ)j

)+ f (υ(σ)i)

, (16)

where y∗(σ)j = υ
(σ)
j −

(
d(ς + 1)

f (υ(σ)j)

[Ca
ς
ς1] f (υ(σ)j)

)1/ς

. Method (16) can also be written as:

u(σ)
i =

(
υ
(σ)
i

)2
∗

 n
Π
j=1
j 6=i

υ
(σ)
i − υ

(σ)
j −

(
d(ς + 1)

f (υ(σ)j)

[Ca
ς
ς1] f (υ(σ)j)

)1/ς



υ
(σ)
i ∗

 n
Π
j=1
j 6=i

υ
(σ)
i − υ

(σ)
j −

(
d(ς + 1)

f (υ(σ)j)

[Ca
ς
ς1] f (υ(σ)j)

)1/ς

+ f (υ(σ)i)

. (17)

The newly developed inverse fractional-order inverse parallel schemes outperform other
current approaches in the literature in terms of convergence order, as proven by the
following convergence analysis.

Convergence Framework

The following theorem examines the convergence order of FINSς.

Theorem 2. Let ζ1, . . . , ζσ be a simple zero of (1), and for a sufficiently close initial distinct
estimation, υ

(0)
1 , . . . , υ

(0)
σ , of the roots, FINSς has a convergence order of ς + 2.

Proof. Let εi = υ
(σ)
i − ζi, ε′i = u(σ)

i − ζi be the errors in υ
(σ)
i , and u(σ)

i , respectively. Then,

u(σ)
i − ζi = υ

(σ)
i − ζi −

υ
(σ)
i f (υ(σ)i)

υ
(σ)
i

 σ
Π
j=1
j 6=i

(υ
(σ)
i − ∗y

(σ)

j)

+ f (υ(σ)i)

. (18)

Thus, we obtain

ε′i = εi


1−

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)

1 + f (υ(σ)i)
n
Π

j=1
j 6=i

(υ
(σ)
i −

∗
y
(σ)

j)


= εi



1−
n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)
+

f (υ(σ)i)
n
Π

j=1
j 6=i

(υ
(σ)
i −

∗
y
(σ)

j)

1 + f (υ(σ)i)
n
Π

j=1
j 6=i

(υ
(σ)
i −

∗
y
(σ)

j)


. (19)

Using the expression
n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)
− 1 =

n
∑

k 6=i

ε
ς+1
k

υ
(σ)
i −υ

(σ)
k

k−1
∏
j 6=i

(υ
(σ)
i −ζk)

(υ
(σ)
i −

∗
y
(σ)

j)
[49] in (19), we have:

Fractal Fract. 2023, 7, 849 7 of 39

ε′i = εi


ε

ς+1
i

υ
(σ)
i

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)
−

n
∑

k 6=i

ε
ς+1
k

υ
(σ)
i −

∗
y
(σ)

k

k−1
∏
j 6=i

(υ
(σ)
i −ζk)

(υ
(σ)
i −

∗
y
(σ)

j)

1 + εk

υ
(σ)
i

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)

. (20)

If we assume that all errors are of the same order, i.e., |εi| = |εk| = O(|ε|), then,

ε′i = |ε|
ς+2


1
υi

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)
−

n
∑

k 6=i

1
υ
(σ)
i −yσ

k−1
∏
j 6=i

(υ
(σ)
i −ζk)

(υ
(σ)
i −

∗
y
(σ)

j)

1 + εk

υ
(σ)
i

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)

 = O
(
|ε|ς+2

)
. (21)

Hence, the theorem is proved.

3.2. Construction of Inverse Fractional Parallel Scheme of Order 2ς + 4

Consider the two-step Weierstrass method [50] with fourth-order convergence, locally
defined as:

z(σ)i = u(σ)
i −

f (u(σ)
i)

n
Π
j=1
j 6=i

(u(σ)
i − u(σ)

j)
, (22)

where u(σ)
i = υ

(σ)
i − f (υ(σ)i)

n
Π

j=1
j 6=i

(υ
(σ)
i −υ

(σ)
j)

, and the two-step inverse Weierstrass method [51] with

fourth-order convergence, locally (IWDKI) defined as:

z(σ)i =

(
u(σ)

i

)2
∗

 n
Π
j=1
j 6=i

(u(σ)
i − u(σ)

j)


u(σ)

i ∗

 n
Π
j=1
j 6=i

(u(σ)
i − u(σ)

j)

+ f (u(σ)
i)

, (23)

where u(σ)
i =

(
υ
(σ)
i

)2
∗

 n
Π

j=1
j 6=i

(υ
(σ)
i −υ

(σ)
j)


υ
(σ)
i ∗

n
Π

j=1
j 6=i

(υ
(σ)
i −υ

(σ)
j)+ f (υ(σ)i)

.

Method (23) can also be written as:

u(σ)
i = υ

(σ)
i −

(
υ
(σ)
i

)
∗ f (υ(σ)i)

υ
(σ)
i ∗

 n
Π

j=1
j 6=i

(υ
(σ)
i −

∗
y
(σ)

j)

+ f (υ(σ)i)

,

z(σ)i = u(σ)
i −

(
u(σ)

i

)
∗ f (u(σ)

i)

u(σ)
i ∗

 n
Π

j=1
j 6=i

(u(σ)
i −u(σ)

j)

+ f (u(σ)
i)

,
(24)

Fractal Fract. 2023, 7, 849 8 of 39

where y∗(σ)j = υ
(σ)
j −

(
d(ς + 1)

f (υ(σ)j)

[Ca
ς
ς1] f (υ(σ)j)

)1/ς

. Here, we convert Method (23) into inverse

fractional simultaneous iterative schemes (FINSς∗), as follows:

z(σ)i =

(
u(σ)

i

)2
∗

 n
Π
j=1
j 6=i

(u(σ)
i − u(σ)

j)


u(σ)

i ∗

 n
Π
j=1
j 6=i

(u(σ)
i − u(σ)

j)

+ f (u(σ)
i)

, (25)

where u(σ)
i =

(
υ
(σ)
i

)2
∗

 n
Π

j=1
j 6=i

(
υ
(σ)
i −y∗(σ)j

)
υ
(σ)
i ∗

 n
Π

j=1
j 6=i

(
υ
(σ)
i −y∗(σ)j

)+ f (υ(σ)i)

and y∗(σ)j = υ
(σ)
j −

(
d(ς + 1)

f (υ(σ)j)

[Ca
ς
ς1] f (υ(σ)j)

)1/ς

.

Thus, we construct new iterative schemes, abbreviated as FINSς∗ by including the

correction
∗
y
(σ)

j .

Convergence Framework

The following theorem examines the convergence order of FINSς∗.

Theorem 3. Let ζ1, . . . , ζn be a simple zero of (1), and for a sufficiently close initial distinct
estimation, υ

(0)
1 , . . . , υ

(0)
n , of the roots, then FINSς∗ has a convergence order of 2ς + 4.

Proof. Let εi = υ
(σ)
i − ζi, ε′i = u(σ)

i − ζi, and ε′′i = z(σ)i − ζi be the errors in υi, ui, and zi,
respectively. From the first step in FINSς∗, we have:

u(σ)
i − ζi = υ

(σ)
i − ζi −

υ
(σ)
i f (υ(σ)i)

υ
(σ)
i

 n
Π
j=1
j 6=i

(υ
(σ)
i − ∗y

(σ)

j)

+ f (υ(σ)i)

. (26)

Thus, we obtain

ε′i = εi


1−

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)

1 + f (υ(σ)i)
n
Π

j=1
j 6=i

(υ
(σ)
i −

∗
y
(σ)

j)


= εi



1−
n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)
+

f (υ(σ)i)
n
Π

j=1
j 6=i

(υ
(σ)
i −

∗
y
(σ)

j)

1 + f (υ(σ)i)
n
Π

j=1
j 6=i

(υ
(σ)
i −

∗
y
(σ)

j)


. (27)

Using the expression
n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)
− 1 =

n
∑

k 6=i

ε
ς+1
k

υ
(σ)
i −υ

(σ)
σ

k−1
∏
j 6=i

(υ
(σ)
i −ζk)

(υ
(σ)
i −

∗
y
(σ)

j)
in (27), we have:

Fractal Fract. 2023, 7, 849 9 of 39

ε′i = εi


ε

ς+1
i
υi

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −yj)

−
n
∑

k 6=i

ε
ς+1
k

υ
(σ)
i −yσ

k−1
∏
j 6=i

(υ
(σ)
i −ζk)

(υ
(σ)
i −

∗
y
(σ)

j)

1 + εk

υ
(σ)
i

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
y
(σ)

j)

. (28)

If we assume that all errors are of the same order, i.e., |εi| = |εk| = O(|ε|), then

ε′i = |ε|
ς+2


1

υ
(σ)
i

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
yj)
−

n
∑

k 6=i

1
υ
(σ)
i −yk

k−1
∏
j 6=i

(υ
(σ)
i −ζk)

(υ
(σ)
i −

∗
yj)

1 + εk

υ
(σ)
i

n
∏
j 6=i
j=1

(υ
(σ)
i −ζ j)

(υ
(σ)
i −

∗
yj)

 = O
(
|ε|

ς+2)
. (29)

Taking the second step of FINSς∗, we have

z(σ)i − ζi = u(σ)
i − ζi −

u(σ)
i f (u(σ)

i)

u(σ)
i ∗

 n
Π
j=1
j 6=i

(u(σ)
i − u(σ)

j)

+ f (u(σ)
i)

, (30)

and, as a result, we obtain

ε′′i = ε′i


1−

n
∏
j 6=i
j=1

(u(σ)
i −ζ j)

(u(σ)
i −u(σ)

j)

1 + f (u(σ)
i)

n
Π

j=1
j 6=i

(u(σ)
i −u(σ)

j)


= ε′i


1−

n
∏
j 6=i
j=1

(u(σ)
i −ζ j)

(u(σ)
i −u(σ)

j)
+

f (u(σ)
i)

n
Π

j=1
j 6=i

(u(σ)
i −u(σ)

j)

1 + f (u(σ)
i)

n
Π

j=1
j 6=i

(u(σ)
i −u(σ)

j)


. (31)

Considering the previous argument,
n
∏
j 6=i
j=1

(u(σ)
i −ζ j)

(u(σ)
i −u(σ)

j)
− 1 =

n
∑

k 6=i

(ε′k)
2

u(σ)
i −u(σ)

k

k−1
∏
j 6=i

(u(σ)
i −ζk)

(u(σ)
i −u(σ)

j)
. By ap-

plying it to (31), we have:

ε′′i = ε′i


ε′i
ui

n
∏
j 6=i
j=1

(u(σ)
i −ζ j)

(u(σ)
i −u(σ)

j)
−

n
∑

k 6=i

ε′k
u(σ)

i −u(σ)
k

k−1
∏
j 6=i

(u(σ)
i −ζk)

(u(σ)
i −u(σ)

j)

1 + (ε′k)
u(σ)

i

n
∏
j 6=i
j=1

(u(σ)
i −ζ j)

(u(σ)
i −u(σ)

j)

. (32)

Assuming that all errors are of the same order, i.e.,
∣∣ε′i∣∣ = ∣∣ε′k∣∣ = O(|ε′|), then

ε′′i =
∣∣ε′∣∣2


1

u(σ)
i

n
∏
j 6=i
j=1

(u(σ)
i −ζ j)

(u(σ)
i −u(σ)

j)
−

n
∑

k 6=i

1
u(σ)

i −u(σ)
k

k−1
∏
j 6=i

(u(σ)
i −ζk)

(u(σ)
i −u(σ)

j)

1 + (ε′k)
u(σ)

i

n
∏
j 6=i
j=1

(u(σ)
i −ζ j)

(u(σ)
i −u(σ)

j)

O
(∣∣ε′∣∣2), (33)

= O
((
|ε|

ς+2)2
)
= O

(
|ε|2ς+4

)
. (34)

Fractal Fract. 2023, 7, 849 10 of 39

Hence, the theorem is proved.

In order to achieve a higher order of convergence with simultaneous methods, it is
necessary to compute higher derivatives. Occasional inaccuracies may result from repeated
deflation and segregation toward initial approximations in finite-precision arithmetic,
which is caused by the accumulation of rounding errors. This study investigates the efficacy
and accuracy of a neural network-based algorithm in locating real and complex roots of (1).
This may be feasible due to the widespread recognition of conventional ANNs for their
ability to identify intricate nonlinear input–output mappings.

Several researchers have used ANNs to approximate the roots of polynomial equations,
including Hormis and colleagues [52], who published the first paper in 1995 on the use
of ANN-based methods to locate the roots of a given polynomial. Huang and Chi [53,54]
used the ANN framework in 2001 to find the real and complex roots of a polynomial
and enhanced the training algorithm with prior knowledge of root–coefficient relation-
ships. A dilatation method to locate close arbitrary roots of polynomials was introduced
in 2003 [55]. By increasing the distance between ANNs, their ability to locate close roots
would be improved. In contrast, Huang et al. [56] included Newton identities in the ANN
training algorithm. In this study, we compare ANNs to the inverse simultaneous technique
in order to rapidly and precisely approximate all roots of (1) originating from a variety of
engineering problems.

4. Artificial Neural Network-Based Inverse Parallel Schemes

Artificial neural networks (ANNs) are capable of solving nonlinear equations and
other related issues, and they are relevant in this context for a variety of reasons:

• Versatility: Because they are flexible function approximations, ANNs can express com-
plex and nonlinear interactions between inputs and outputs. They can be used to solve
a wide range of nonlinear equations in physics, engineering, finance, and optimization,
among other domains, due to their versatility.

• Data-driven solutions: ANNs are capable of learning from data. ANNs can be trained
on pre-existing data to provide solutions or approximations for nonlinear equations
that are difficult to analyze or solve numerically. In particular, this data-driven method-
ology proves advantageous in domains where empirical data are easily accessible.

• Inverse Problems: In various real-world scenarios involving data and the need to
determine which variables or inputs provide the best explanation for them, inverse
modeling is used to solve the resulting inverse problems. ANNs are capable of solving
inverse problems by finding the mapping between unknown parameters and data.

• Complex Systems: ANNs can be used to describe the overall system behavior in com-
plex systems where nonlinear equations are coupled and difficult to solve separately.
This methodology can be used by engineers and scientists to gain knowledge, make
predictions, or improve system performance.

• Automation: Once trained, ANNs can provide automatic solutions to nonlinear
problems that require less manual input and specialized mathematical knowledge.

Although ANNs have a number of advantages for dealing with nonlinear equations
and related problems, they are not always the best option, contingent on factors such
as data availability, problem characteristics, and the particular objectives of the analysis.
In certain situations, symbolic mathematics or conventional numerical methods remain
more favorable. Nevertheless, ANNs have proven to be valuable tools for dealing with
difficult nonlinear problems across numerous disciplines.

In this research paper, we propose a neural network-based methodology for locating
real and complex polynomial roots, and we evaluate its computational performance and
accuracy. The approximations obtained by the ANNs are used to build the initialization
scheme for the inverse fractional parallel approach. We trained a neural network with three
layers (input, hidden, and output) using the well-known Levenberg–Marquardt Algorithm
(LMA) [57,58]. The network’s input was a collection of real coefficients from n-degree poly-

Fractal Fract. 2023, 7, 849 11 of 39

nomials, and its output was the set of their roots. Figure 1 depicts a schematic representation
of a neural network that can approximate the roots of an n-th degree polynomial.

Figure 1. A schematic representation of the process of feeding the coefficients of a polynomial into an
ANN, which then yields an approximation for each root of (1).

Data Set: The tables in Appendices A and B present the upper edge-data sets utilized
in the ANN to estimate the real and complex roots of (1) in some engineering applications.
These sets consist of 10,000 archives. In order to illustrate the real and complex parts of
the roots, their values are presented in the odd and even columns, respectively, in the
second set of data in Appendix B. Random polynomial coefficients in the range [0, 1] were
generated in MATLAB using the Symbolic Math Toolbox, and the exact real or complex
roots of the polynomials were determined. The coefficients and roots were computed using
double-precision arithmetic, despite having only four decimal digits. It should be noted
that the ANN algorithm cannot distinguish between complex and real roots. The ANNs
were trained using 70% of the samples from these data sets. The remaining 30% of the data
was used to evaluate the generalization capabilities of the ANNs. In order to compute the
real and imaginary parts of the n roots of each polynomial of degree n, the n + 1 coefficients
were used as the input in the ANNs.

Training Algorithm: The ANNs were trained using the well-known LMA method [57,58],
as previously mentioned. The LMA method integrates the gradient descent method and the
Gauss–Newton method, and is regarded as a highly effective approach for training ANNs,
especially those with medium-sized bits, owing to its fast convergence and effectiveness.
We refer the reader to [59,60] for a comprehensive presentation of the LMA. The method
depends on a positive parameter that is modified adaptively during each iteration in
order to achieve a balance between the effects of the two optimization techniques [61].
The weights of neural connections are modified based on the discrepancy between the
predicted and computed values; the error is computed as follows:

∆(σ+1) = ∆(σ) −
((

̂(σ)
)T
∗ ̂(σ) + λ(σ) ∗ I

)−1((
̂(σ)
)T
∗ e(σ)

)
, (35)

where I is the identity matrix. Finally, ̂ represents the Jacobian matrix of elements ̂i,j =
∂ei
∂∆j

.
The LMA method was used in a batch learning strategy, which means that the network’s
weights and biases were updated after all of the training set samples were presented to it.
The strategy may be viewed as an exact method since it employs derivative information
to adjust the ANN’s weights in order to reduce the error between the precise objective
values and the predicted values. The results are presented for polynomials with real and
complex roots, as well as comparisons of the accuracy measures and execution times of the
FINSς1∗–FINSς5∗ methods’ approximations. The mean squared error (MSE) was employed
as the error metric:

MSE =
1
n

n

∑
i=1

(
ϑi − Ňi

)
, (36)

where ϑi denotes the exact ith root in the test data set, and Ňi is the appropriate estimate
obtained using the FINSς1∗–FINSς5∗ methods or the proposed ANN strategy.

Fractal Fract. 2023, 7, 849 12 of 39

5. Computational Analysis of Inverse Fractional Parallel Schemes

This section discusses the algorithmic complexity and convergence characteristics
of our method. The convergence is influenced by the initial guess of the roots. When
the original estimate is closer to the roots of (1), the method converges more quickly. In
comparison to a single root-finding algorithm, the computational cost of the simultane-
ous technique is dominated by a global convergence behavior. The total complexity of
the simultaneous technique is O(m2), where m is the degree of the polynomial. In this
section, we compare the computational efficiency of the FINSς1∗–FINSς5∗ algorithms as the
parameter values change.

The computational efficiency of an iterative method of convergence order r can be
estimated as [62–64]:

EL(m) =
logr
D

, (37)

where D is the computational cost defined as:

D = D(m) = was ASm + wm Mm + wdDm. (38)

Thus, (37) becomes:

EL(m) =
log r

was ASm + wm Mm + wdDm
. (39)

Using (39) and the data in Table 1, we compute the efficiency ratio $∗((FISMςi∗), (IWDKI)) [65] as:

$∗((FISMςi∗), (IWDKI)) =
(

EL(FISMςi∗)

EL(IWDKI)
− 1
)
× 100. (40)

where the acronym IWDKI represents the inverse Weierstrass method (23) for simultane-
ously locating all roots of nonlinear equations.

Table 1. Cost of operations per cycle, where Λ11 = O(m).

Method Addition and Subtraction Multiplications Divisions

IWDKI 5 m2 + Λ11 4 m2 + Λ11 2 m2 + Λ11
FISNς−FISNς1 5 m2 + Λ11 5 m2 + Λ11 2 m2 + Λ11
FISMς1∗−FISNς1∗ 5 m2 + Λ11 3 m2 + Λ11 2 m2 + Λ11

These percentage ratios are graphically illustrated in Figure 2a–e. It is evident that the
new inverse fractional simultaneous techniques are more efficient compared to the IWDKI
method [66,67].

n

10

10

20

20

30

30

40

40

50

50

225 225

230 230

235 235

240 240

245 245

250 250

(a)

n

10

10

20

20

30

30

40

40

50

50

14 14

14.1 14.1

14.2 14.2

14.3 14.3

14.4 14.4

14.5 14.5

(b)

n

10

10

20

20

30

30

40

40

50

50

84 84

85 85

86 86

87 87

88 88

89 89

90 90

(c)

Figure 2. Cont.

Fractal Fract. 2023, 7, 849 13 of 39

n

10

10

20

20

30

30

40

40

50

50

70 70

71 71

72 72

73 73

74 74

(d)

n

10

10

20

20

30

30

40

40

50

50

11.2 11.2

11.3 11.3

11.4 11.4

11.5 11.5

11.6 11.6

(e)

Figure 2. (a–e) Computational efficiency of FINSς1∗–FINSς5∗ in comparison to the IWDKI method.
(a) Computational efficiency of FINSς1∗ in comparison to the IWDKI method. (b) Computational
efficiency of FINSς2∗ in comparison to the IWDKI method. (c) Computational efficiency of FINSς3∗
in comparison to the IWDKI method. (d) Computational efficiency of FINSς4∗ in comparison to the
IWDKI method. (e) Computational efficiency of FINSς5∗ in comparison to the IWDKI method.

6. Dynamical Analysis of Inverse Fractional Parallel Schemes

In order to solve a polynomial equation using the inverse fractional simultaneous iter-
ative method, it is often useful to examine the basins of attraction [68,69] of the equation’s
roots. The inverse fractional simultaneous scheme will eventually converge to a particular
polynomial root in the basins of attraction of the complex plane. To identify the basins
of attraction for (1) using the inverse fractional simultaneous scheme, we use a grid of
[800× 800]2 points in the domain [−2, 2]× [−2, 2] of the complex plane encompassing the
region of interest. We show the basins of attraction for the polynomial equation

f1(υ) = υ4 + υ2 + υ− 1,

for which the Caputo-type derivative is given as

[
Ca

ς
ς1

]
f1(υ) =

d(5)
d(5− ς)

υ4−ς +
d(3)
d(3− ς)

υ2−ς +
d(2)
d(2− ς)

υ1−ς +
1

d(1− ς)
υ−ς.

We use an inverse numerical scheme to solve the polynomial equation, starting from that
grid of points. We observe the behavior of the iterations for each point until it converges
to one of the roots of the polynomial equation within a tolerance of 10−3 on the error or
until a predetermined number of iteration steps have been performed. Each grid point is
colored or shaded based on the polynomial root to which it converges. This will provide a
visual representation of the basins of attraction of (1). It is important to note that the inverse
simultaneous scheme converges to a root for initial points that are far from any of the
roots or are in a region with complex dynamics. This demonstrates the global convergence
behavior of the numerical scheme.

In Tables 2 and 3, E-Time denotes the elapsed time in seconds, It-N indicates the
number of iterations, TT-Points represents the total number of grid points, C-Points de-
notes the convergent points, D-Points refers to the number of divergent points, and Per-
Convergence and Per-Divergence are the percentage convergence and divergence of the
numerical scheme used to generate the basins of attractions for various functional parame-
ters. Figure 3a,b and Tables 2 and 3 both clearly demonstrate that the rate of convergence
increases from 0.1 to 1.0, showing the global convergence of FINSς1∗ and FINSς, respectively.

Fractal Fract. 2023, 7, 849 14 of 39

Table 2. Results of percentage convergence and divergence in dynamical analysis.

Method FINSς1 FINSς2 FINSς3 FINSς4 FINSς5

E-Time 0.312512 0.125112 0.21453 0.125434 0.0125434
It-N 11 7 6 4 3
TT-Points 64,000.00 64,000.00 64,000.00 64,000.00 64,000.00
C-Points 50,154.00 51,425.12 52,145.00 52,894.56 63,870.31
D-Points 13,846 12,574.88 11,855 11,105.44 129.69
Per-Convergence 78.36% 80.35% 81.47% 82.64% 99.79%
Per-Divergence 21.63% 19.64% 18.52% 17.35% 0.001%

Table 3. Results of percentage convergence and divergence in dynamical analysis.

Method FINSς1∗ FINSς2∗ FINSς3∗ FINSς4∗ FINSς5∗

E-Time 0.21451 0.14521 0.01241 0.01542 0.00124
It-N 9 7 4 3 2
TT-Points 64,000.00 64,000.00 64,000.00 64,000.00 64,000.00
C-Points 57,250.36 59,463.89 60,061.45 63,142.28 63,998.56
D-Points 6749.640 4536.110 3938.550 857.7200 8.440000
Per-Convergence 89.45% 92.91% 93.84% 98.65% 99.990%
Per-Divergence 10.54% 7.100% 6.100% 1.300% 0.0001%

(a) (b)

Figure 3. (a,b) Basins of attraction of the FINSς1∗–FINSς5∗ and FINSς1–FINSς5 methods for various
values of ς. (a) Attraction basins of FINSς1∗–FINSς5∗ for various values of ς. (b) Attraction basins of
FINSς1–FINSς5 for various values of ς.

Fractal Fract. 2023, 7, 849 15 of 39

7. Analysis of Numerical Results

In this section, we illustrate a few numerical experiments to compare the performance
of our proposed simultaneous methods, FINSς−FINSς1 and FINSς1∗−FINSς1∗ of order ten,
to that of the ANN in some real-world applications. The calculations were carried out in
quadruple-precision (128-bit) floating-point arithmetic using Maple 18. The algorithm was
terminated based on the stopping criterion: e (σ)

i =
∣∣∣(υ

(σ+1)
i − υ

(σ)
i

)∣∣∣ <∈= 10−30 where

e(σ)i represents the absolute error. The stopping criteria for both the fractional inverse
numerical simultaneous method and the ANN training were 5000 iterations and e = 10−18.
The elapsed times were obtained using a laptop equipped with a third-generation Intel Core
i3 CPU and 4 GB of RAM. In our experiments, we compare the results of the newly devel-
oped fractional numerical schemes FINSς1–FINSς5 and FINSς1∗–FINSς5∗ to the Weierstrass
method (WDKM), defined as

u(σ)
i = υ

(σ)
i −

f (υ(σ)i)
n
Π
j=1
j 6=i

(υ
(σ)
i − υ

(σ)
j)

,

the convergent method by Zhang et al. (ZPHM), defined as

u(σ)
i = υ

(σ)
i −

2wi(υ
(σ)
i)

1 +
n
∑
j 6=i
j=1

wj(υ
(σ)
i)

υ
(σ)
i −υ

(σ)
j

+

√√√√√√√√√√√√

1 +
n
∑
j 6=i
j=1

wj(υ
(σ)
i)

υ
(σ)
i −υ

(σ)
j


2

+ 4wi(υ
(σ)
i)

n
∑
j 6=i
j=1

wj(υ
(σ)
i)(

υ
(σ)
i −υ

(σ)
j

)(
υ
(σ)
i −wi(υ

(σ)
i)−υ

(σ)
j

)

, (41)

and the Petkovic method (MPM), defined as

u(σ)
i = υ

(σ)
i − 1

1
Ni(υ

(σ)
i)
−

n
∑
j=1
j 6=i

1
(υ

(σ)
i −Z(σ)

j))

, (42)

where Z(σ)
j = υ

(σ)
j −

f (y(σ)j)− f (υ(σ)j)

2 f (y(σ)j)− f (υ(σ)j)

f (υ(σ)j)

f ′(υ(σ)j)
and y(σ)j = υ

(σ)
j −

f (υ(σ)j)

f ′(υ(σ)j)
. We generate random

starting guess values using Algorithms 1 and 2, as shown in Tables A1–A6. The parameter
values utilized in the numerical results are reported below.

The ANN parameter values utilized in examples 1–4.

ς = [0.1, 0.3, 0.7, 0.8, 1.0]
Epochs: [77, 57, 38, 43]
MSE: [3.0611× 10−7, 6.1691× 10−6, 1.1914× 10−9, 6.0489× 10−9]
Gradient: [9.931× 10−6, 9.8016× 10−6, 9.9911× 10−6, 3.0416× 10−4]
Mu: [0.1× 10−4, 1.0× 10−5, 1.1× 10−4, 1.0× 10−6]

Real-World Applications
In this section, we apply our new inverse methods FINSς1−FINSς5 and FINSς1∗−FINSς1∗

to solve some real-world applications.

Fractal Fract. 2023, 7, 849 16 of 39

Algorithm 1 Inverse fractional numerical scheme: FINSς1∗

For preliminary calculations υ
(0)
i (ii = 1, .., N), tolerance ∈> 0 and set jj = 0
for iterations qq

Calculate y∗j = υ
(σ)
j −

(
d(ς + 1)

f (υ(σ)j)

[Ca
ς
ς1] f (υ(σ)j)

)1/ς

.

Update z(σ)i =

(
u(σ)

i

)2
∗

 n
Π

j=1
j 6=i

(u(σ)
i −u(σ)

j)


u(σ)

i ∗

 n
Π

j=1
j 6=i

(u(σ)
i −u(σ)

j)

+ f (u(σ)
i)

,

where u(σ)
i =

(
r(σ)i

)2
∗

 n
Π

j=1
j 6=i

r(σ)i −v(σ)j −

d(ς+1)
f (v(σ)j)

[Caς
ς1] f (υ(σ)j)

1/ς



r(σ)i ∗

 n
Π

j=1
j 6=i

r(σ)i −v(σ)j −
(
d(ς+1) f (v(σ))

[Caς
ς1] f (υ(σ))

)1/ς

+ f (r(σ)i)

.

z(σ)i = υ
(σ)
i (ii = 1, ..., n).

if e(σ)i =
∣∣∣(υ

(σ+1)
i − υ

(σ)
i

)∣∣∣ <∈= 10−30 or σ > qq, then stop.
Set jj = jj + 1and go to first iteration.

End do.

Algorithm 2 Finding the random co-efficient of the polynomial

For (ii = 1, .., N), and set jj = 0 for iterations qq
Calculate p = [1, 2, 3, 4]; polynoiaml coeffieicent

Update r = roots(p);
idx = randi(length(r));

rand_root = r(idx);
Set jj = jj + 1

End do.

Example 1 (Quarter-car suspension model).

The shock absorber, or damper, is a component of the suspension system that is
used to control the transient behavior of the vehicle mass and the suspension mass (see
Pulvirenti [70] and Konieczny [71]). Because of its nonlinear behavior, it is one of the
most complicated suspension system components. The damping force of the damper
is characterized by an asymmetric nonlinear hysteresis loop (Liu [72]). In this example,
the vehicle’s characteristics are simulated using a quarter-car model with two degrees
of freedom, and the damper effect is investigated using linear and nonlinear damping
characteristics. Simpler models, such as linear and independently linear ones, fall short of
explaining the damper’s actions. The mass motion equations are as follows:{

msυ′′s + ks(υs − υu) + F = 0,
muυ′′u − ks(υs − υu)− kσ(υr − υu)− F = 0,

(43)

where ks and kσ are the spring stiffness and suspension coefficients in the tire stiffness sys-
tem; ms and mu are the over- and under-sprung masses; and υs and υu are the displacements
of the over- and under-masses.

The coefficient of damping force F in (43) is approximated by the polynomial [73]:

f2(υ) = −77.14 ∗ υ4 + 23.14 ∗ υ3 + 342.7 ∗ υ2 + 956.7x + 124.5, (44)

Fractal Fract. 2023, 7, 849 17 of 39

measuring the displacement, velocity, and acceleration of a mass over time. Figure 4
illustrates how the model can be used to develop and optimize vehicle systems for a range
of driving situations, including comfort during travel, interacting with others, and stability.

Figure 4. Model of a quarter car.

The Caputo-type derivative of (44) is given as:

[
Ca

ς
ς1

]
f2(υ) = −77.14 ∗ d(5)

d(5− ς)
υ4−ς + 23.14 ∗ d(4)

d(4− ς)
υ3−ς + 342.7 ∗ d(3)

d(3− ς)
υ2−ς

+956.7
d(2)
d(2− ς)

υ1−ς + 124.5
1

d(1− ς)
υ−ς.

The exact roots of Equation (44) are

ζ1 = 3.090556803, ζ2 = −1.326919946 + 1.434668028 ∗ i, ζ3 = −0.1367428388,

ζ4 = −1.32060919946− 1.43046068028 ∗ i.

Next, the convergence rate and computational order of the numerical schemes
FINSς1∗–FINSς5∗ are defined. In order to quantify the global convergence rate of the inverse
parallel fractional scheme, a random initial guess value v = [0.213, 0.124, 1.02, 1425]
is generated using the built-in MATLAB rand() function. With a random initial estimate,
FINSς1∗ converges to the exact roots after 9, 8, 7, and 7 iterations and requires, respectively,
0.04564, 0.07144, 0.07514, 0.01247, and 0.045451 s to converge for different fractional pa-
rameters, i.e., 0.1, 0.3, 0.5, 0.8, and 1.0. The results in Table 4 clearly indicate that as the
value of ς grows from 0.1 to 1.0, the rate of convergence of FINSς1∗ increases. Unlike ANNs,
our newly developed algorithm converges to the exact roots for a range of random initial
guesses, confirming a global convergence behavior.

When the initial approximation is close to the exact roots, the rate of convergence
increases significantly, as illustrated in Tables 5 and 6.

Table 4. Approximation of all polynomial equation roots using FINSς1∗–FINSς5∗ methods.

Method Iter e(σ)
1 e(σ)

2 e(σ)
3 e(σ)

4 ρ
(σ−1)
ςi

C-Time

v = [0.213,0.124,1.02,1425]: Random initial approximation
FINSς1∗ 9 0.12× 10−3 9.72× 10−3 6.62× 10−10 0.29× 10−8 1.09915 0.04564
FINSς2∗ 8 1.24× 10−6 6.78× 10−7 7.27× 10−7 0.46× 10−8 1.24512 0.07144
FINSς3∗ 8 4.32× 10−9 9.25× 10−7 9.25× 10−3 0.76× 10−10 1.46514 0.07514
FINSς4∗ 7 6.17× 10−3 5.17× 10−5 6.15× 10−4 0.61× 10−11 1.78945 0.01247
FINSς5∗ 7 0.91× 10−2 1.71× 10−8 0.16× 10−5 3.54× 10−9 2.01241 0.04545

Fractal Fract. 2023, 7, 849 18 of 39

Table 5. Simultaneous approximation of all polynomial equation roots.

Method FINSς1 FINSς2 FINSς3 FINSς4 FINSς5

Error it 4 4 16 16 16
CPU 0.0756 0.0566 0.0345 0.0213 0.01761

e(σ)1 0.26× 10−5 0.75× 10−6 0.26× 10−9 0.2× 10−36 5.6× 10−31

e(σ)2 7.1× 10−6 0.56× 10−7 5.17× 10−7 0.51× 10−27 4.5× 10−38

e(σ)3 8.18× 10−10 1.16× 10−26 8.18× 10−37 4.1× 10−82 4.1× 10−98

e(σ)4 3.17× 10−20 3.18× 10−5 3.71× 10−20 3.51× 10−29 3.4× 10−35

ρ
(σ−1)
ςi 2.01412 2.235423 2.453641 2.87187 3.14154

Table 6. Simultaneous approximation of all polynomial equation roots.

Method FINSς1∗ FINSς2∗ FINSς3∗ FINSς4∗ FINSς5∗

Error it 5 4 4 3 2
CPU 0.054185 0.03612 0.04412 0.06774 0.065785

e(σ)1 0.2× 10−7 0.29× 10−15 0.2× 10−31 0.2× 10−39 0.2× 10−65

e(σ)2 0.14× 10−8 8.91× 10−20 0.1× 10−36 0.1× 10−45 0.1× 10−90

e(σ)3 1.14× 10−15 1.19× 10−29 1.1× 10−38 1.1× 10−52 1.1× 10−86

e(σ)4 3.91× 10−8 3.18× 10−12 3.1× 10−40 3.1× 10−32 3.1× 10−76

ρ
(σ−1)
ςi 2.09812 2.09231 2.671 3.0341 3.34423

The following initial estimate values increase the convergence rates:

(0)
υ1 = 2.0,

(0)
υ2 = −1 + 5i,

(0)
υ 3 = −0.5,

(0)
υ 4 = −1− 5i.

The outcomes of the ANN-based inverse simultaneous schemes (ANNFNς1∗–ANNFNς5∗)
are shown in Table 7. The real coefficients of the nonlinear equations utilized in engineering
application 1 were fed into the ANNs, and the output was the exact roots of the relevant
nonlinear equations, as shown in Figure 1. The head of the data set utilized in the ANNs is
shown in Tables A1 and A5, which provides the approximate root of the nonlinear equation
used in engineering application 1 as an output. To generate the data sets, polynomial
coefficients were produced at random in the interval [0, 1], and the exact roots were
calculated using Matlab. According to Appendix A Table A1, the ANNs are currently
unaware of which roots are real and which roots are complex; therefore, the ANNs were
trained using 70% of the samples from these data sets. The remaining 30% was utilized to
assess the ANNs’ generalization skills by computing a performance metric on the samples
that were not used to train the ANNs. For a polynomial of degree 4, the ANN required 5
input data points, two hidden layers, and 10 output data points (the real and imaginary
parts of the calculated root). In order to represent all the roots of engineering application 1,
Figures 5a–9a display the error histogram (EPH), mean square error (MSE), regression plot
(RP), transition statistics (TS), and fitness overlapping graphs of the target and outcomes
of the LMA-ANN for each instance’s training, testing, and validation. Table 7 provides a
summary of the performance of ANNFNς1∗–ANNFNς5∗ in terms of the mean square error
(MSE), percentage effectiveness (Per-E), execution time in seconds (Ex-time), and iteration
number (Error-it).

The numerical results of the simultaneous schemes with initial guess values that vary
close to the exact roots are shown in Table 8. In terms of the residual error, CPU time,
and maximum error (Max-Error), our new methods exhibit better results compared to the
existing methods after the same number of iterations.

Fractal Fract. 2023, 7, 849 19 of 39

Table 7. Numerical results using an artificial neural network on application 1.

Method ANNFNς1∗ ANNFNς2∗ ANNFNς3∗ ANNFNς4∗ ANNFNς5∗

Error it 15 10 11 12 9
Ex-Time 0.016 0.054 0.067 0.065 0.071

e(σ)1 6.62× 10−3 8.62× 10−6 9.52× 10−5 8.82× 10−8 3.3× 10−20

e(σ)2 4.51× 10−4 9.15× 10−7 9.91× 10−4 0.17× 10−9 6.1× 10−26

e(σ)3 7.16× 10−4 7.15× 10−8 1.41× 10−8 1.91× 10−8 1.1× 10−22

e(σ)4 3.15× 10−2 3.13× 10−8 3.31× 10−9 3.61× 10−7 3.7× 10−23

MSE 6.15× 10−7 9.13× 10−8 3.31× 10−3 0.61× 10−4 4.71× 10−5

Per-E 99.12% 98.87% 97.74% 98.31% 99.98%

0

100

200

300

400

500

600

700

800

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets − Outputs

−
0

.0
0

1
9

7

−
0

.0
0

1
5

5

−
0

.0
0

1
1

2

−
0

.0
0

0
7

−
0

.0
0

0
2

8

0
.0

0
0

1
4

7

0
.0

0
0

5
7

1

0
.0

0
0

9
9

4

0
.0

0
1

4
1

7

0
.0

0
1

8
4

0
.0

0
2

2
6

4

0
.0

0
2

6
8

7

0
.0

0
3

1
1

0
.0

0
3

5
3

4

0
.0

0
3

9
5

7

0
.0

0
4

3
8

0
.0

0
4

8
0

4

0
.0

0
5

2
2

7

0
.0

0
5

6
5

0
.0

0
6

0
7

3

data1 Test Validation Zero Error Training

(a) EPH for example 1

0

100

200

300

400

500

600

Error Histogram with 20 Bins

In
s
ta

n
c
e

s

Errors = Targets − Outputs

−
0

.0
0

0
2

1

−
0

.0
0

0
1

9

−
0

.0
0

0
1

6

−
0

.0
0

0
1

4

−
0

.0
0

0
1

2

−
0

.0
0

0
1

−
8

e
−

0
0

5

−
6

e
−

0
0

5

−
4

e
−

0
0

5

−
2

e
−

0
0

5

6
e

−
0

0
6

2
.7

e
−

0
0

5

4
.8

e
−

0
0

5

7
e

−
0

0
5

9
.1

e
−

0
0

5

0
.0

0
0

1
1

2

0
.0

0
0

1
3

3

0
.0

0
0

1
5

5

0
.0

0
0

1
7

6

0
.0

0
0

1
9

7

data1 Test Validation Zero Error Training

(b) EPH for example 2

0

2

4

6

8

10

12

14

16

18

Error Histogram with 20 Bins

In
s
ta

n
c
e

s

Errors = Targets − Outputs

−
0

.7
1

2
7

−
0

.6
4

3
6

−
0

.5
7

4
6

−
0

.5
0

5
5

−
0

.4
3

6
4

−
0

.3
6

7
4

−
0

.2
9

8
3

−
0

.2
2

9
2

−
0

.1
6

0
1

−
0

.0
9

1
0

8

−
0

.0
2

2

0
.0

4
7

0
7

0
.1

1
6

1

0
.1

8
5

2

0
.2

5
4

3

0
.3

2
3

4

0
.3

9
2

4

0
.4

6
1

5

0
.5

3
0

6

0
.5

9
9

6

data1 Test Validation Zero Error Training

(c) EPH for example 3

0

100

200

300

400

500

600

700

800

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets − Outputs

−
0

.0
0

1
9

7

−
0

.0
0

1
5

5

−
0

.0
0

1
1

2

−
0

.0
0

0
7

−
0

.0
0

0
2

8

0
.0

0
0

1
4

7

0
.0

0
0

5
7

1

0
.0

0
0

9
9

4

0
.0

0
1

4
1

7

0
.0

0
1

8
4

0
.0

0
2

2
6

4

0
.0

0
2

6
8

7

0
.0

0
3

1
1

0
.0

0
3

5
3

4

0
.0

0
3

9
5

7

0
.0

0
4

3
8

0
.0

0
4

8
0

4

0
.0

0
5

2
2

7

0
.0

0
5

6
5

0
.0

0
6

0
7

3

data1 Test Validation Zero Error Training

(d) EPH for example 4

Figure 5. (a–d) LMA-ANNs are utilized to represent error histograms (EHP), which are subsequently
used to approximate the roots of the polynomial equations used in engineering applications 1–4. Ac-
cording to the histograms, the errors are approximately 6.2× 10−2, 0.51, 6.43× 10−3, and 1.08× 10−6,
respectively. These graphs demonstrate the consistency of the proposed solver.

Fractal Fract. 2023, 7, 849 20 of 39

Table 8. A comparison of the simultaneous schemes’ numerical results utilizing initial guess values
that are close to the exact roots.

Method WDKM FINSς ZPHM MPCM ANNFNς5∗ FINSς5∗

CPU Time 0.06001 0.02404 0.03118 0.02515 0.01254 0.01104

e(5)1 0.02× 10−3 8.62× 10−24 9.52× 10−35 8.02× 10−45 0.12× 10−27 0.12× 10−65

e(5)2 4.51× 10−4 9.25× 10−35 0.91× 10−24 0.07× 10−59 6.16× 10−28 6.16× 10−63

e(5)3 4.16× 10−4 6.15× 10−14 1.62× 10−38 0.91× 10−8 0.16× 10−37 2.16× 10−64

e(5)4 4.35× 10−2 2.03× 10−21 4.31× 10−33 8.68× 10−43 3.01× 10−34 7.71× 10−55

Max-Error 0.15× 10−8 9.13× 10−26 2.31× 10−36 0.61× 10−55 0.75× 10−25 0.00
ρ(4) 1.812125 3.01224 5.013212 5.212312 3.4000245 6.0125417

0 20 40 60 80 100

10
−8

10
−6

10
−4

10
−2

10
0

Best Validation Performance is 6.6649e−009 at epoch 112

M
e
a

n
 S

q
u
a

re
d
 E

rr
o
r

 (
m

s
e
)

112 Epochs

Train Validation Test Best

(a) MSE for example 1

0 5 10 15 20 25 30 35 40 45

10
−8

10
−6

10
−4

10
−2

10
0

Best Validation Performance is 1.1914e−009 at epoch 49

M
ea

n
 S

q
u
ar

ed
 E

rr
o
r

 (
m

se
)

49 Epochs

Train Validation Test Best

(b) MSE for example 2

0 20 40 60 80 100

10
−8

10
−6

10
−4

10
−2

10
0

Best Validation Performance is 6.6649e−009 at epoch 112

M
e

a
n

 S
q

u
a
re

d
 E

rr
o

r
 (

m
s
e

)

112 Epochs

Train Validation Test Best

(c) MSE for example 3

0 5 10 15 20 25 30 35 40 45

10
−8

10
−6

10
−4

10
−2

10
0

Best Validation Performance is 1.1914e−009 at epoch 49

M
ea

n
 S

q
u
ar

ed
 E

rr
o
r

 (
m

se
)

49 Epochs

Train Validation Test Best

(d) MSE for example 4

Figure 6. (a–d) Mean square error (MSE) of the LMA-ANN methods utilized to approximate each
root of the polynomial equations in engineering applications 1–4. The best outcomes are achieved
at epochs 112, 49, 112, and 49, with MSE values of 6.6649× 10−9, 1.1914× 10−9, 6.1914× 10−9, and
1.0469× 10−9, respectively. A small MSE suggests a good match between the target solutions and
expected outcomes.

The proposed root-finding method, represented in Figure 1, is based on the Levenberg–
Marquardt technique of artificial neural networks. The “nftool” fitting tool, which is
included in the ANN toolkit in MATLAB, is used to approximate roots of polynomials with
randomly generated coefficients.

For training, testing, and validation, the input and output results of the LMA-ANNs’
fitness overlapping graphs are shown in Figure 5a. According to the histogram, the error

Fractal Fract. 2023, 7, 849 21 of 39

is 6.2 × 10−2, demonstrating the consistency of the suggested solver. For engineering
application 1, the MSE of the LMA-ANNs when comparing the expected outcome to the
target solution is 6.6649× 10−9 at epoch 112, as shown in Figure 6a. The expected and actual
results of the LMA-ANNs are linearly related, as shown in Figure 7a. Figure 8a illustrates
the efficiency, consistency, and reliability of the engineering application 1 simulation, where
Mu is the adaptation parameter for the algorithm that trained the LMA-ANNs. The choice
of Mu directly affects the error convergence and maintains its value in the range [0, 1].
For engineering application 1, the gradient value is 9.9314× 10−6 with a Mu parameter of
1.0× 10−4. Figure 8a shows how the results for the minimal Mu and gradient converge
closer as the network becomes more efficient at training and testing. In turn, the fitness
curve simulations and regression analysis simulations are displayed in Figure 9a. When R
is near 1, the correlation is strong; however, it becomes unreliable when R approaches 0.
A reduced MSE causes a decreased response time. Figure 10a–e depict the root trajectories
for various initial estimate values.

−1 −0.5 0 0.5
−1

−0.5

0

0.5

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 −
4
e
−

0
0
6

Training: R=1

Data

Fit

Y = T

−1 −0.5 0 0.5
−1

−0.5

0

0.5

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 −
2
.3

e
−

0
0
6

Validation: R=1

Data

Fit

Y = T

−1 −0.5 0 0.5
−1

−0.5

0

0.5

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 1
.7

e
−

0
0
5

Test: R=1

Data

Fit

Y = T

−1 −0.5 0 0.5
−1

−0.5

0

0.5

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 −
7
.1

e
−

0
0
7

All: R=1

Data

Fit

Y = T

(a) RP for example 1

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 0
.0

0
0
4
8

Training: R=0.99934

Data

Fit

Y = T

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 −
0
.0

0
5
9

Validation: R=0.99849

Data

Fit

Y = T

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 −
0
.0

0
7
9

Test: R=0.99965

Data

Fit

Y = T

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 −
0
.0

0
2
6

All: R=0.99921

Data

Fit

Y = T

(b) RP for example 2

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 0
.0

0
0
3
7

Training: R=0.99959

Data

Fit

Y = T

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 −
0
.0

0
3
8

Validation: R=0.99934

Data

Fit

Y = T

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 0
.0

0
1
4

Test: R=0.99974

Data

Fit

Y = T

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 0
.0

0
0
5

All: R=0.99958

Data

Fit

Y = T

(c) RP for example 3

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 0
.0

0
0
4

Training: R=0.99924

Data

Fit

Y = T

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 −
0
.0

0
1
2

Validation: R=0.999

Data

Fit

Y = T

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 0
.0

0
0
6
2

Test: R=0.99901

Data

Fit

Y = T

0.22 0.24 0.26

0.22

0.23

0.24

0.25

0.26

0.27

Target

O
u
tp

u
t
~

=
 1

*T
a
rg

e
t
+

 0
.0

0
0
1
9

All: R=0.99917

Data

Fit

Y = T

(d) RP for example 4

Figure 7. (a–d) Regression plots (RPs) for LMA-ANN methods utilized to approximate the roots of
the polynomial equations. Regression diagrams show the linear relationship between the expected
and actual outcomes. The visualizations include all of the training, validation, and test data. The data
exhibit the highest degree of correlation with a curve or line when the regression value is R = 1 [74].

Fractal Fract. 2023, 7, 849 22 of 39

10
−10

10
−5

10
0

10
5

g
ra

d
ie

n
t

Gradient = 9.9314e−006, at epoch 77

10
−4

10
−3

m
u

Mu = 0.0001, at epoch 77

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1

v
a
l
fa

il

77 Epochs

Validation Checks = 0, at epoch 77

(a) TS for example 1

10
−10

10
−5

10
0

10
5

g
ra

d
ie

n
t

Gradient = 9.8016e−006, at epoch 57

10
−5

10
−4

10
−3

m
u

Mu = 1e−005, at epoch 57

0 10 20 30 40 50
0

0.5

1

v
a
l
fa

il

57 Epochs

Validation Checks = 0, at epoch 57

(b) TS for example 2

10
−5

10
0

10
5

g
ra

d
ie

n
t

Gradient = 9.9911e−006, at epoch 38

10
−4

10
−3

10
−2

m
u

Mu = 0.0001, at epoch 38

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

v
a
l
fa

il

38 Epochs

Validation Checks = 0, at epoch 38

(c) TS for example 3

10
−5

10
0

10
5

g
ra

d
ie

n
t

Gradient = 0.00034018, at epoch 43

10
−6

10
−5

10
−4

10
−3

m
u

Mu = 1e−006, at epoch 43

0 5 10 15 20 25 30 35 40
0

2

4

6

v
a
l
fa

il

43 Epochs

Validation Checks = 6, at epoch 43

(d) TS for example 4

Figure 8. (a–d) Transition statistics (TS) for the LMA-ANN methods utilized to approximate the
roots of the polynomial equations. Statistical results for engineering models 1–4 are shown in (a–d).
The gradient values are 9.9314× 10−6, 9.8016× 10−6, 9.9911× 10−6, 3.0416× 10−4 and the Mu values
are 1.0× 10−4, 1.0× 10−5, 1.0× 10−4, 1.0× 10−6 for all four examples. The results of the transition
statistics reflect the effective convergence rate of the LMA-ANNs. The gradient and Mu should be set
to their lowest values for convergence to occur.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
Function Fit for Output Element 1

O
u

tp
u

t
a

n
d

 T
a

rg
e

t

−1

−0.5

0

0.5

1
x 10

−3

E
rr

o
r

Input

Training Targets

Training Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

Errors

Fit

Targets − Outputs

(a) FC for example 1

0.1 0.15 0.2 0.25

0.15

0.2

0.25

0.3
Function Fit for Output Element 1

O
u

tp
u

t
a

n
d

 T
a

rg
e

t

−2

0

2

4
x 10

−3

E
rr

o
r

Input

Training Targets

Training Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

Errors

Fit

Targets − Outputs

(b) FC for example 2

Figure 9. Cont.

Fractal Fract. 2023, 7, 849 23 of 39

0.1 0.15 0.2 0.25
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29
Function Fit for Output Element 1

O
u

tp
u

t
a

n
d

 T
a

rg
e

t

−2

−1

0

1

2
x 10

−3

E
rr

o
r

Input

Training Targets

Training Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

Errors

Fit

Targets − Outputs

(c) FC for example 3

0.1 0.15 0.2 0.25
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3
Function Fit for Output Element 1

O
u

tp
u

t
a

n
d

 T
a

rg
e

t

−2

−1

0

1

2
x 10

−3

E
rr

o
r

Input

Training Targets

Training Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

Errors

Fit

Targets − Outputs

(d) FC for example 4

Figure 9. (a–d) Fitness curves (FCs) for the LMA-ANN methods utilized to approximate the roots
of Equation (1). The way the fitness curves overlap demonstrates the accuracy and stability of
the methods.

Example 2 (Blood Rheology Model [75]).

Nanofluids are synthetic fluids made of nanoparticles dispersed in a liquid such as
water or oil that are typically less than 100 nanometers in size. These nanoparticles can be
used to improve the heat transfer capabilities or other properties of the base fluid. They
are frequently chosen for their special thermal, electrical, or optical characteristics. Casson
nanofluid, like other nanofluids, can be used in a variety of contexts, such as heat-transfer
systems, the cooling of electronics, and even medical applications. The introduction of
nanoparticles into a fluid can enhance its thermal conductivity and other characteristics,
potentially leading to enhanced heat exchange or other intended results in specific appli-
cations. A basic fluid such as water or plasma will flow in a tube so that its center core
travels as a plug with very little deflection and a velocity variance toward the tube wall
according to the Casson fluid model. In our experiment, the plug flow of Casson fluids was
described as:

G = 1− 16
7
√

υ +
4
3

υ− 1
21

υ4. (45)

Using G = 0.40 in Equation (45), we have:

f3(υ) =
1

441
υ8 − 8

63
υ5 − 0.05714285714x4 +

16
9

υ2 − 3.624489796x + 0.36. (46)

The Caputo-type derivative of (46) is given as:

[
Ca

ς
ς1

]
f3(υ) =

1
441

d(9)
d(9− ς)

υ8−ς − 8
63

d(6)
d(6− ς)

υ5−ς − 0.05714285714
d(5)
d(5− ς)

υ4−ς

+
16
9
d(3)
d(3− ς)

υ2−ς − 3.624489796
d(2)
d(2− ς)

υ1−ς + 0.36
1

d(1− υ)
υ−ς.

The exact roots of Equation (46) are:

ζ1 = 0.1046986515, ζ2 = 3.822389235, ζ3 = 1.553919850 + 0.9404149899i,

ζ4 = −1.238769105 + 3.408523568i, ζ5 = −2.278694688 + 1.987476450i,

ζ6 = −2.278694688− 1.987476450i, ζ7 = −1.238769105− 3.408523568,

ζ8 = 1.553919850− 0.9404149899.

Fractal Fract. 2023, 7, 849 24 of 39

In order to quantify the global convergence rate of the inverse parallel fractional
schemes FINSς1∗–FINSς5∗ , a random initial guess value v = [12.01, 14.56, 4.01, 45.5, 3.45, 78.9,
14.56, 47.89] is generated by the built-in MATLAB rand() function. With a random initial
estimate, FINSς1∗ converges to the exact roots after 9, 8, 7, 6, and 5 iterations and requires,
respectively, 0.04564, 0.07144, 0.07514, 0.01247, and 0.045451 s to converge for different
fractional parameters, namely 0.1, 0.3, 0.5, 0.8, and 1.0. The results in Table 9 clearly indicate
that as the value of ς grows from 0.1 to 1.0, the rate of convergence of FINSς1∗ increases.
Unlike ANNs, our newly developed algorithm converges to the exact roots for a range of
random initial guesses, confirming a global convergence behavior. Figure 11a–e depict
the root trajectories for various initial estimate values. When the initial approximation
is close to the exact roots, the rate of convergence increases significantly, as illustrated in
Tables 10 and 11.

Table 9. Simultaneous approximation of all polynomial equation roots using FINSς1∗–FINSς5∗.

Method e(σ)
1 e(σ)

2 e(σ)
3 e(σ)

4 e(σ)
5 e(σ)

6 e(σ)
7 e(σ)

8 ρ
(σ−1)
ςi C-Time

v = [12.01, 14.56, 4.01, 45.5, 3.45, 78.9, 14.56, 47.89]: Random initial approximation
FINSς1∗ 7.2× 10−1 2.7× 10−3 8.7× 10−5 0.2× 10−4 8.2× 10−8 0.3× 10−7 2.2× 10−8 9.2× 10−7 1.120 3.453
FINSς2∗ 4.8× 10−4 5.6× 10−3 9.5× 10−5 7.2× 10−8 0.9× 10−7 0.3× 10−4 8.2× 10−3 8.2× 10−8 1.789 2.573
FINSς3∗ 0.9× 10−3 0.5× 10−3 8.3× 10−7 4.2× 10−4 0.8× 10−8 3.2× 10−4 2.2× 10−8 6.2× 10−8 2.012 1.934
FINSς4∗ 4.1× 10−5 4.1× 10−4 2.3× 10−8 1.1× 10−3 5.1× 10−7 7.1× 10−6 7.1× 10−4 5.1× 10−7 1.215 1.543
FINSς5∗ 8.1× 10−8 8.1× 10−5 1.2× 10−9 1.1× 10−5 1.1× 10−8 1.1× 10−4 1.1× 10−7 1.1× 10−8 2.415 1.012

Table 10. Approximation of all polynomial equation roots.

Method FINSς1 FINSς2 FINSς3 FINSς4 FINSς5

Error it 10 8 8 7 6
CPU 0.0141 0.016 0.054 0.067 0.065

e(σ)1 3.30× 10−6 3.76× 10−16 3.5× 10−26 0.01× 10−36 3.6× 10−37

e(σ)2 1.62× 10−4 1.26× 10−14 4.23× 10−24 1.72× 10−34 6.2× 10−34

e(σ)3 3.3× 10−3 1.83× 10−13 6.23× 10−23 9.3× 10−33 1.7× 10−39

e(σ)4 1.04× 10−3 9.68× 10−13 5.44× 10−23 7.84× 10−33 1.6× 10−38

e(σ)5 8.05× 10−3 0.65× 10−10 5.5× 10−10 7.5× 10−22 8.5× 10−35

e(σ)6 2.05× 10−4 0.66× 10−11 5.75× 10−21 0.76× 10−31 6.6× 10−45

e(σ)7 1.06× 10−3 0.62× 10−12 5.65× 10−23 4.74× 10−33 1.2× 10−56

e(σ)8 4.04× 10−3 4.6× 10−3 7.45× 10−23 7.43× 10−43 4.3× 10−55

ρ
(σ−1)
ςi 2.1275 2.2374 2.5145 3.07445 3.5445

The following initial estimate value results in an increase in the convergence rates:

(0)
υ1 = 0.1,

(0)
υ2 = 3.8,

(0)
υ 3 = 1.5 + 0.9i,

(0)
υ 4 = 1.2 + 3.4i,

(0)
υ5 = −2.2 + 1.9i,

(0)
υ6 = −2.2− 1.9i

(0)
υ7 = −1.2− 3.4i,

(0)
υ 8 = 1.5 + 0.9i.

Table 12 displays the results of inverse simultaneous methods based on artificial neural
networks. The ANNs were trained using 70% of the data set samples, with the remaining
30% used to assess their ability to generalize using a performance metric. For a polynomial
of degree 8, the ANN required 9 input data points, two hidden layers, and 18 output data
points. In order to represent all the roots of engineering application 2, Figures 5b–9b display
the EPH, MSE, RP, TS, and fitness overlapping graphs of the target and outcomes of the
LMA-ANN algorithm for the training, testing, and validation of each instance. Table 12

Fractal Fract. 2023, 7, 849 25 of 39

provides a summary of the performance of ANNFNς1∗–ANNFNς5∗ in terms of the MSE,
Per-E, Ex-time, and Error-it.

Table 11. Approximation of all polynomial equation roots.

Method FINSς1∗ FINSς2∗ FINSς3∗ FINSς4∗ FINSς5∗

Error it 7 5 3 3 2
CPU 0.01678 0.05465 0.06745 0.06545 0.07154

e(σ)1 0.36× 10−12 3.40× 10−26 6.33× 10−33 0.26× 10−46 1.55× 10−62

e(σ)2 2.51× 10−16 1.62× 10−24 5.32× 10−31 2.16× 10−43 1.26× 10−61

e(σ)3 3.62× 10−16 1.83× 10−23 9.23× 10−33 1.56× 10−42 4.15× 10−61

e(σ)4 4.51× 10−16 1.47× 10−23 3.32× 10−37 3.05× 10−53 2.23× 10−62

e(σ)5 6.54× 10−16 0.75× 10−20 1.25× 10−48 2.65× 10−54 3.14× 10−61

e(σ)6 4.02× 10−17 0.86× 10−21 2.53× 10−48 4.16× 10−55 1.24× 10−61

e(σ)7 3.03× 10−16 1.28× 10−23 3.13× 10−47 1.31× 10−56 4.55× 10−51

e(σ)8 2.07× 10−16 4.38× 10−23 0.22× 10−31 2.35× 10−43 3.42× 10−52

ρ
(σ−1)
ςi 4.2374 3.9147 3.5112 3.142 2.151

For training, testing, and validation, the input and output results of the LMA-ANNs’
fitness overlapping graphs are shown in Figure 5b. According to the histogram, the error
is 0.51, demonstrating the consistency of the suggested solver. For engineering application 2,
the MSE of the LMA-ANNs compares the expected outcomes to the target solution,
as shown in Figure 6b. The MSE for example 2 is 1.1914× 10−6 at epoch 49. The expected
and actual results of the LMA-ANNs are linearly related, as shown in Figure 7b. Figure 8b
illustrates the efficiency, consistency, and reliability of the engineering application 2 simula-
tion. For engineering application 2, the gradient value is 9.8016× 10−6 with a Mu parameter
of 1.0× 10−5. Figure 8b shows how the results for the minimal Mu and gradient converge
closer as the network becomes more efficient at training and testing. The fitness curve and
regression analysis results are displayed in Figure 9b. When R is near 1, the correlation
parameter is close; however, it becomes unreliable when R is near 0. A reduced MSE causes
a decreased response time.

Table 12. Numerical results using artificial neural networks.

Method ANNFNς1∗ ANNFNς2∗ ANNFNς3∗ ANNFNς4∗ ANNFNς5∗

Error it 18 20 25 13 16
Ex-Time 0.016 0.054 0.067 0.065 0.071

e(σ)1 3.65× 10−6 3.60× 10−6 8.0× 10−11 7.0× 10−14 6.0× 10−16

e(σ)2 1.52× 10−4 1.2× 10−4 4.2× 10−11 1.52× 10−8 1.6× 10−14

e(σ)3 1.35× 10−3 8.3× 10−3 7.3× 10−12 8.33× 10−9 6.3× 10−13

e(σ)4 1.64× 10−3 1.4× 10−3 3.4× 10−9 7.42× 10−11 8.4× 10−13

e(σ)5 0.45× 10−11 0.57× 10−21 3.5× 10−8 0.55× 10−10 9.5× 10−10

e(σ)6 0.66× 10−3 0.76× 10−4 0.56× 10−88 0.66× 10−12 0.8× 10−11

e(σ)7 1.62× 10−3 1.72× 10−8 1.26× 10−11 1.62× 10−12 1.2× 10−23

e(σ)8 4.37× 10−4 4.38× 10−7 4.43× 10−8 4.63× 10−12 4.3× 10−17

ρ
(σ−1)
ςi 4.2312 3.9112 3.5145 3.1421 2.1545

MSE 4.37× 10−9 4.38× 10−9 4.43× 10−11 4.63× 10−12 4.3× 10−20

Per-E 99.41% 9935% 99.41% 99.87% 99.78%

The ANNs for various values of the fractional parameter, namely 0.1, 0.3, 0.5, 0.7, 0.8,
and 1.0, are shown in Table 12 as ANNFNς1∗ through ANNFNς5∗ .

Fractal Fract. 2023, 7, 849 26 of 39

The numerical results of the simultaneous schemes with initial guess values that vary
close to the exact roots are shown in Table 13. In terms of the residual error, CPU time,
and maximum error (Max-Error), our newly developed strategies surpass the existing
methods on the same number of iterations.

Table 13. A comparison of simultaneous schemes’ numerical results utilizing initial guess values that
are close to the exact roots.

Method WDKM FINSς ZPHM MPCM ANNFNς5∗ FINSς5∗

CPU Time 0.06023 0.04401 0.078898 0.05665 0.04224 0.02331

e(5)1 0.02× 10−2 0.12× 10−23 3.12× 10−34 7.72× 10−46 1.02× 10−29 0.32× 10−59

e(5)2 0.51× 10−5 0.15× 10−37 9.91× 10−24 0.17× 10−59 0.10× 10−29 0.26× 10−65

e(5)3 0.19× 10−3 9.19× 10−15 1.01× 10−33 0.91× 10−37 1.10× 10−39 5.16× 10−66

e(5)4 0.19× 10−4 0.13× 10−25 3.31× 10−33 3.61× 10−47 0.70× 10−31 3.71× 10−65

e(5)1 0.12× 10−3 9.69× 10−22 9.52× 10−35 8.82× 10−45 0.32× 10−26 0.32× 10−61

e(5)2 0.51× 10−3 5.15× 10−38 9.91× 10−24 0.17× 10−59 7.17× 10−24 2.12× 10−63

e(5)3 9.10× 10−4 7.15× 10−14 1.91× 10−33 1.91× 10−36 1.10× 10−37 1.56× 10−64

e(5)4 5.15× 10−2 3.63× 10−28 3.31× 10−33 3.61× 10−43 3.71× 10−33 3.71× 10−55

Max-Error 0.15× 10−7 0.13× 10−27 3.31× 10−39 0.61× 10−65 4.74× 10−27 0.00
ρ(4) 1.8494105 3.410054 5.012512 5.372312 3.6511145 6.032141

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−2

−1

0

1

2

3

4

5

6

7

8
x 10

−3

Real

Im
a

g
in

a
ry

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Real

Im
a

g
in

a
ry

(b)

−2 −1.5 −1 −0.5 0 0.5 1
−6

−5

−4

−3

−2

−1

0

1

2

Real

Im
a

g
in

a
ry

(c)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−2

−1

0

1

2

3

4

5

6

7

8
x 10

−3

Real

Im
a

g
in

a
ry

(d)

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−10

−8

−6

−4

−2

0

2

4
x 10

−4

Real

Im
a

g
in

a
ry

(e)

Figure 10. (a–e) Root trajectories of the inverse fractional numerical schemes used in engineering
application 1 for approximating all roots of polynomial equations for various fractional parameter
values, namely ς = 0.1, 0.3, 0.7, 0.8, 1.0. (a) Root trajectory for parameter = 0.1. (b) Root trajectory
for parameter = 0.3. (c) Root trajectory for parameter=0.7. (d) Root trajectory for parameter = 0.8.
(e) Root trajectory for parameter = 1.0.

Fractal Fract. 2023, 7, 849 27 of 39

−120 −100 −80 −60 −40 −20 0 20
−20

0

20

40

60

80

100

120

Real

Im
a

g
in

a
ry

(a)

−120 −100 −80 −60 −40 −20 0 20
−10

0

10

20

30

40

50

60

70

Real
Im

a
g
in

a
ry

(b)

−25 −20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

Real

Im
a

g
in

a
ry

(c)

−25 −20 −15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

Real

Im
a
g

in
a
ry

(d)

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000
−6000

−4000

−2000

0

2000

4000

6000

8000

10000

Real

Im
a
g

in
a
ry

(e)

Figure 11. (a–e) Root trajectories of the inverse fractional numerical schemes used in engineering
application 2 for approximating all roots of polynomial equations for various fractional parameter
values, namely ς = 0.1, 0.3, 0.7, 0.8, 1.0. (a) Root trajectory for parameter = 0.1. (b) Root trajectory
for parameter = 0.3. (c) Root trajectory for parameter = 0.7. (d) Root trajectory for parameter = 0.8.
(e) Root trajectory for parameter = 1.0.

Example 3 (Hydrogen atom’s Schrödinger wave equation [76]).

The Schrödinger wave equation is a fundamental equation in quantum mechanics
that was invented in 1925 by Austrian physicist Erwin Schrödinger and specifies how the
quantum state of a physical system changes over time. It is used to predict the behavior of
particles, such as electrons in atomic and molecular systems. The equation is defined for a
single particle of mass m moving in a central potential as follows:

h2

2µ
∇2Ψ− k

e2

r
Ψ =∈ Ψ, (47)

where r is the distance of the electron from the core and ∈ is the energy. In spherical
coordinates, (47) has the following form:

− h2

2µ

[
1
r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Ψ
∂θ

)
+

1
r2 sin2 θ

∂2Ψ
∂φ2

]
+

e2

r
Ψ =∈ Ψ. (48)

The general solution can be obtained by decomposing the final equation into angular
and radial components. The angular component can be further reduced into two equations
(see, e.g., [77]), one of which leads to the Legendre equation:

(
1− υ2

)
f ′′(υ)− 2x f ′(υ) +

(
l(l + 1) +

m2

1− υ2

)
∗ f (υ) = 0. (49)

Fractal Fract. 2023, 7, 849 28 of 39

In the case of azimuth symmetry, m = 0, the solution of (49) can be expressed using
Legendre polynomials. In our example, we computed the zeros of the members of the
aforementioned family of polynomials (49) all at once. Specifically, we used

f4(υ) = 46198υ10 − 109395υ8 + 90090υ6 − 30030υ4 + 3456υ2 − 63. (50)

The Caputo-type derivative of (50) is given as:

[
Ca

ς
ς1

]
f4(υ) = 46198

d(11)
d(11− ς)

υ10−ς − 109395
d(9)
d(9− ς)

υ8−ς + 90090
d(7)
d(7− ς)

υ6−ς

−30030
d(5)
d(5− ς)

υ4−ς + 3456
d(3)
d(3− ς)

υ2−ς − 63
1

d(1− ς)
υ−ς.

In order to quantify the global convergence rate of the inverse parallel fractional
schemes FINSς1∗–FINSς5∗ , a random initial guess value v = [2.32, 5.12, 2.65, 4.56, 2.55, 2.36,
9.35, 5.12, 5.23, 4.12] is generated by the built-in MATLAB rand() function. With a random
initial estimate, FINSς1∗ converges to the exact roots after 9, 8, 7, 7, and 6 iterations and
requires, respectively, 0.04564, 0.07144, 0.07514, 0.01247, and 0.045451 s to converge for
different fractional parameters, namely 0.1, 0.3, 0.5, 0.8, and 1.0. The results in Table 14
clearly indicate that as the value of ς grows from 0.1 to 1.0, the rate of convergence of
FINSς1∗ increases. Unlike ANNs, our newly developed algorithm converges to the exact
roots for a range of random initial guesses, confirming a global convergence behavior.
Figure 12a–e depict the root trajectories for various initial estimate values. When the initial
approximation is close to the exact roots, the rate of convergence increases significantly,
as illustrated in Tables 15 and 16.

Table 14. Simultaneous approximation of all polynomial equation roots using FINSς1∗–FINSς5∗.

Method FINSς1∗ FINSς2∗ FINSς3∗ FINSς4∗ FINSς5∗

v = [2.32, 5.12, 2.65, 4.56, 2.55, 2.36, 9.35, 5.12, 5.23, 4.12]: Random initial approximations

CPU 0.0141 0.016 0.054 0.067 0.065

e(σ)1 0.34× 10−2 0.38× 10−2 0.43× 10−2 8.43× 10−7 0.43× 10−12

e(σ)2 0.03× 10−5 0.17× 10−6 4.14× 10−6 2.13× 10−8 2.12× 10−16

e(σ)3 1.12× 10−6 9.82× 10−6 3.24× 10−6 6.42× 10−8 3.52× 10−16

e(σ)4 0.10× 10−6 4.71× 10−6 4.12× 10−6 4.14× 10−6 4.15× 10−16

e(σ)5 7.15× 10−6 3.05× 10−6 2.625× 10−6 6.65× 10−6 6.55× 10−16

e(σ)6 4.01× 10−6 0.14× 10−7 4.06× 10−7 4.04× 10−7 4.05× 10−17

e(σ)7 3.12× 10−5 0.50× 10−6 1.03× 10−6 3.60× 10−6 3.07× 10−16

e(σ)8 2.56× 10−5 1.10× 10−6 2.13× 10−4 2.40× 10−6 2.07× 10−26

e(σ)9 2.05× 10−6 1.72× 10−6 4.54× 10−6 2.40× 10−6 2.05× 10−16

e(σ)10 2.40× 10−6 2.26× 10−6 4.42× 10−6 2.04× 10−6 2.07× 10−16

ρ
(σ−1)
ςi 01.1214454578 01.23124785 01.91127845 01.514785 02.141784545

Table 15. Approximation of all polynomial equation roots.

Method FINSς1 FINSς2 FINSς3 FINSς4 FINSς5

Error it n = 9 n = 9 n = 8 n = 8 n = 5

CPU 0.0141 0.016 0.054 0.067 0.065

e(σ)1 2.12× 10−3 0.73× 10−3 0.39× 10−12 0.73× 10−32 0.3× 10−42

e(σ)2 5.21× 10−2 2.61× 10−4 9.18× 10−16 2.18× 10−26 2.8× 10−46

Fractal Fract. 2023, 7, 849 29 of 39

Table 15. Cont.

Method FINSς1 FINSς2 FINSς3 FINSς4 FINSς5

e(σ)3 2.14× 10−2 3.27× 10−3 3.28× 10−16 3.27× 10−36 3.5× 10−46

e(σ)4 3.14× 10−2 4.16× 10−6 4.19× 10−16 4.18× 10−26 4.1× 10−46

e(σ)5 6.1× 10−2 6.75× 10−6 6.58× 10−16 6.56× 10−26 6.5× 10−46

e(σ)6 2.50× 10−2 4.30× 10−7 4.80× 10−17 4.05× 10−27 4.0× 10−47

e(σ)7 1.60× 10−2 3.0× 10−6 3.09× 10−16 7.04× 10−36 3.0× 10−46

e(σ)8 3.45× 10−2 2.99× 10−6 2.05× 10−16 2.04× 10−36 2.4× 10−46

e(σ)9 3.55× 10−2 2.89× 10−6 2.05× 10−16 2.70× 10−35 3.0× 10−46

e(σ)10 3.54× 10−2 2.06× 10−6 9.0× 10−16 2.09× 10−39 2.0× 10−46

ρ
(σ−1)
ςi 2.1212 2.2312 2.0451 2.5112 3.14212

Table 16. Approximation of all polynomial equation roots.

Method FINSς1∗ FINSς2∗ FINSς3∗ FINSς4∗ FINSς5∗

Error it n = 6 n = 5 n = 5 n = 4 n = 4

CPU 0.0141 0.016 0.054 0.067 0.065

e(σ)1 5.42× 10−30 0.35× 10−12 3.03× 10−36 6.35× 10−43 0.2× 10−66

e(σ)2 4.15× 10−6 2.18× 10−16 1.62× 10−34 5.24× 10−41 2.1× 10−63

e(σ)3 1.10× 10−6 3.27× 10−16 1.35× 10−33 9.43× 10−43 1.4× 10−62

e(σ)4 3.41× 10−6 4.71× 10−20 1.64× 10−33 3.32× 10−47 3.5× 10−63

e(σ)5 0.51× 10−6 6.56× 10−20 0.57× 10−30 4.11× 10−48 3.4× 10−64

e(σ)6 2.05× 10−6 4.05× 10−17 4.62× 10−31 3.5× 10−48 4.4× 10−65

e(σ)7 1.04× 10−6 5.50× 10−26 1.23× 10−33 3.51× 10−47 1.5× 10−66

e(σ)8 6.55× 10−6 2.60× 10−16 4.34× 10−23 0.52× 10−41 2.2× 10−63

e(σ)9 3.75× 10−6 6.07× 10−16 5.33× 10−23 6.25× 10−41 1.5× 10−63

e(σ)10 3.56× 10−6 8.03× 10−16 4.45× 10−23 6.25× 10−41 8.5× 10−63

ρ
(σ−1)
ςi 2.1122 3.23 4.914 5.99451 6.14124

The ANNs for various values of the fractional parameter, namely 0.1, 0.3, 0.5, 0.7, 0.8,
and 1.0, are shown in Table 17 as ANNFNς1∗ through ANNFNς5∗ . The following initial
guess value results in an increase in convergence rates:

(0)
υ1 = 0.1,

(0)
υ2 = 3.8,

(0)
υ 3 = 1.5 + 0.9i,

(0)
υ 4 = 1.2 + 3.4i,

(0)
υ5 = −2.2 + 1.9i,

(0)
υ6 = −2.2− 1.9i

(0)
υ7 = −1.2− 3.4i,

(0)
υ 8 = 1.5 + 0.9i.

Table 17 displays the results of the inverse simultaneous methods based on artificial
neural networks. The ANNs were trained using 70% of the data set samples, with the
remaining 30% used to assess their ability to generalize using a performance metric. For a
polynomial of degree 10, the ANN required 11 input data points, two hidden layers,
and 22 output data points. In order to represent all the roots of engineering application 3,
Figures 5c–9c display the EPH, MSE, RP, TS, and fitness overlapping graphs of the target
and outcomes of the LMA-ANN algorithm for the training, testing, and validation. Table 17
provides a summary of the performance of ANNFNς1∗–ANNFNς5∗ in terms of the MSE,
Per-E, Ex-time, and Error-it.

Fractal Fract. 2023, 7, 849 30 of 39

For training, testing, and validation, the input and output results of the LMA-ANNs’
fitness overlapping graphs are shown in Figure 5c. According to the histogram, the error
is 6.43× 10−3, demonstrating the consistency of the suggested solver. For engineering
application 3, the MSE of the LMA-ANNs compares the expected outcomes to the tar-
get solution, as shown in Figure 6c. The MSE for example 3 is 6.6649× 10−9 at epoch
112. The expected and actual results of the LMA-ANNs are linearly related, as shown in
Figure 7c. Figure 8c illustrates the efficiency, consistency, and reliability of the engineering
application 3 simulation. The gradient value is 9.9911× 10−6 with a Mu parameter of
1.0× 10−4. Figure 8c shows how the results for the minimal Mu and gradient converge
closer as the network becomes more efficient in training and testing. The fitness curve and
regression analysis results are displayed in Figure 9c. When R is near 1, the correlation
parameter is close; however, it becomes unreliable when R is near 0. A reduced MSE causes
a decreased response time.

Table 17. Numerical results using artificial neural networks.

Method ANNFNς1∗ ANNFNς2∗ ANNFNς3∗ ANNFNς4∗ ANNFNς5∗

Error it n = 85 n = 70 n = 67 n = 59 n = 54

Ex-Time 0.016 0.054 0.067 0.065 0.071

e(σ)1 0.53× 10−2 3.05× 10−6 6.37× 10−13 0.62× 10−6 1.8× 10−2

e(σ)2 6.14× 10−6 1.24× 10−4 5.26× 10−11 2.13× 10−3 1.2× 10−3

e(σ)3 8.52× 10−6 8.53× 10−3 9.73× 10−13 1.56× 10−2 4.16× 10−8

e(σ)4 4.15× 10−6 6.54× 10−3 3.72× 10−7 3.08× 10−3 2.3× 10−2

e(σ)5 6.57× 10−6 5.54× 10−4 1.57× 10−8 2.85× 10−4 3.1× 10−9

e(σ)6 4.04× 10−7 0.36× 10−1 2.56× 10−8 4.17× 10−5 1.5× 10−8

e(σ)7 3.33× 10−6 1.21× 10−3 3.71× 10−7 1.61× 10−6 4.5× 10−12

e(σ)8 2.10× 10−6 4.13× 10−3 0.27× 10−11 2.65× 10−3 3.2× 10−22

e(σ)9 3.33× 10−6 1.21× 10−3 3.71× 10−7 1.61× 10−6 4.5× 10−12

e(σ)10 2.10× 10−6 4.13× 10−3 0.27× 10−11 2.65× 10−3 3.2× 10−20

MSE 2.10× 10−16 4.13× 10−23 0.27× 10−11 2.65× 10−13 3.2× 10−22

Per-E 99.23% 99.45% 99.85% 99.78% 99.45%

The ANNs for various values of the fractional parameter, namely 0.1, 0.3, 0.5, 0.7, 0.8,
and 1.0, are shown in Table 17 as ANNFNς1∗ through ANNFNς5∗ .

The numerical results of the simultaneous schemes with initial guess values that vary
close to the precise roots are shown in Table 18. In terms of the residual error, CPU time,
and maximum error (Max-Error), our newly developed strategies surpass the existing
methods on the same number of iterations.

Table 18. A comparison of the simultaneous schemes’ numerical results utilizing initial guess values
that are close to the exact roots.

Method WDKM FINSς ZPHM MPCM ANNFNς5∗ FINSς5∗

CPU Time 0.06334 0.05412 0.070018 0.06515 0.05002 0.01344

e(σ)1 0.62× 10−4 1.11× 10−23 0.52× 10−30 7.72× 10−48 0.32× 10−20 5.52× 10−67

e(σ)2 0.01× 10−5 9.15× 10−31 9.91× 10−29 0.17× 10−59 0.17× 10−28 8.18× 10−63

e(σ)3 5.16× 10−4 1.15× 10−14 1.41× 10−31 1.91× 10−35 1.16× 10−36 1.16× 10−64

e(σ)4 0.15× 10−4 5.13× 10−28 7.31× 10−39 0.61× 10−43 3.71× 10−33 3.71× 10−65

Fractal Fract. 2023, 7, 849 31 of 39

Table 18. Cont.

Method WDKM FINSς ZPHM MPCM ANNFNς5∗ FINSς5∗

e(σ)5 0.62× 10−5 7.62× 10−24 9.52× 10−35 8.82× 10−45 8.32× 10−27 3.02× 10−65

e(σ)6 4.51× 10−4 9.15× 10−38 3.91× 10−24 4.17× 10−59 6.16× 10−28 6.16× 10−63

e(σ)7 6.16× 10−4 7.15× 10−14 1.41× 10−38 1.91× 10−38 8.16× 10−38 1.16× 10−64

e(σ)8 7.15× 10−3 3.13× 10−21 0.31× 10−33 3.61× 10−43 3.71× 10−33 3.71× 10−55

e(σ)9 0.16× 10−4 6.15× 10−14 5.41× 10−38 1.91× 10−38 1.16× 10−38 8.16× 10−68

e(σ)10 9.99× 10−3 3.13× 10−21 3.31× 10−38 3.61× 10−43 3.71× 10−30 3.88× 10−51

Max-Error 6.10× 10−7 0.13× 10−25 3.31× 10−35 0.01× 10−55 4.71× 10−25 0.00

ρ(4) 1.844999 3.043114 5.013301 5.699912 3.4514245 6.010014

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

Real

Im
a
g
in

a
ry

(a)

−3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real

Im
a
g
in

a
ry

(b)

−3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Real
Im

a
g
in

a
ry

(c)

−3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

Real

Im
a
g
in

a
ry

(d)

−3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Real

Im
a
g
in

a
ry

(e)

Figure 12. (a–e) Root trajectories of the inverse fractional numerical schemes used in engineering
application 3 for approximating all roots of polynomial equations for various fractional parameter
values, namely ς = 0.1, 0.3, 0.7, 0.8, 1.0. (a) Root trajectory for parameter = 0.1. (b) Root trajectory
for parameter = 0.3. (c) Root trajectory for parameter = 0.7. (d) Root trajectory for parameter = 0.8.
(e) Root trajectory for parameter=1.0.

Example 4 (Mechanical Engineering Application).

Mechanical engineering, like most other sciences, makes extensive use of thermody-
namics [78]. The temperature of dry air is related to its zero-pressure specific heat, denoted
as Cρ, through the following polynomial:

Cρ = 1.9520× 10−14υ4 − 9.5838× 10−11υ3 + 9.7215× 10−8υ2 + 1.671× 10−4υ + 0.99403− 1.2. (51)

To calculate the temperature at which a heat capacity of, say, 1.2 kJ/kgK occurs, we replace
Crho = 1.2 in the equation above and obtain the following polynomial:

f5(υ) = 1.9520× 10−14υ4 − 9.5838× 10−11υ3 + 9.7215× 10−8υ2 + 1.671× 10−4υ− 0.20597 (52)

Fractal Fract. 2023, 7, 849 32 of 39

with the exact roots

ζ1 = 1126.009751, ζ2 = 2536.837119 + 910.5010371i, ζ3 = −1289.950382,

ζ4 = 2536.837119− 910.5010371i.

The Caputo-type derivative of (52) is given as:

[
Ca

ς
ς1

]
f5(υ) = 1.9520× 10−14 d(5)

d(5− ς)
υ4−ς − 9.5838× 10−11 d(4)

d(4− ς)
υ3−ς + (53)

9.7215× 10−8 d(3)
d(3− ς)

υ3−ς + 1.671× 10−4 d(2)
d(2− ς)

υ1−ς −

0.20597
1

d(9− ς)
υ−ς,

In order to quantify the global convergence rate of the inverse parallel fractional
schemes FINSς1∗–FINSς5∗ , a random initial guess value v = [0.24,0.124,1.23,1.45.2.35] is
generated by the built-in MATLAB rand() function. With a random initial estimate, FINSς1∗
converges to the exact roots after 9, 8, 7, 5, and 4 iterations and requires, respectively, 0.04164,
0.07144, 0.02514, 0.012017, and 0.015251 s to converge for different fractional parameters,
namely 0.1, 0.3, 0.5, 0.8, and 1.0. The results in Table 19 clearly indicate that as the value of ς
grows from 0.1 to 1.0, the rate of convergence of FINSς1∗ increases. Unlike ANNs, our newly
developed algorithm converges to the exact roots for a range of random initial guesses,
confirming a global convergence behavior. Figure 13a–e depict the root trajectories for
various initial estimate values. When the initial approximation is close to the exact roots,
the rate of convergence increases significantly, as illustrated in Tables 20 and 21.

Table 19. Approximation of all polynomial equation roots using FINSς1∗–FINSς5∗.

Method e(σ)
1 e(σ)

2 e(σ)
3 e(σ)

4 ρ
(σ−1)
ςi C-Time

v = [0.24,0.124,1.23,1.45.2.35], Random initial approximations
FINSς1∗ 4.8× 10−31 8.28× 10−31 8.35× 10−31 5.23× 10−31 4.27× 10−31 n=16
FINSς2∗ 3.52× 10−31 6.86× 10−29 5.52× 10−32 2.52× 10−31 2.47× 10−30 0.1231
FINSς3∗ 8.28× 10−31 5.25× 10−30 8.8× 10−31 6.52× 10−31 6.46× 10−29 0.1023
FINSς4∗ 4.51× 10−26 8.1× 10−26 0.15× 10−26 5.13× 10−26 4.16× 10−26 0.1237
FINSς5∗ 1.1× 10−26 1.1× 10−26 1.1× 10−26 1.1× 10−26 1.1× 10−26 0.0012

Table 20. Approximation of all polynomial equation roots.

Method FINSς1 FINSς2 FINSς3 FINSς4 FINSς5

Error it 6 6 5 5 4
CPU 0.3141 0.316 0.167 0.0165 0.0111

e(σ)1 5.2× 10−4 3.32× 10−3 0.3× 10−11 7.2× 10−21 7.2× 10−31

e(σ)2 4.51× 10−2 7.51× 10−3 1.12× 10−16 0.15× 10−26 3.8× 10−46

e(σ)3 1.61× 10−3 2.31× 10−5 1.16× 10−16 1.17× 10−26 6.9× 10−36

e(σ)4 3.21× 10−3 3.31× 10−6 3.16× 10−16 3.41× 10−36 3.6× 10−56

ρ
(σ−1)
ςi 1.1212 2.2312 2.512 3.1412 3.2125

The following initial guess value results in an increase in the convergence rates:

(0)
υ1 = 3,

(0)
υ2 = −1 + 1i,

(0)
υ 3 = −0.1,

(0)
υ 4 = −1 + 1i.

Fractal Fract. 2023, 7, 849 33 of 39

Table 21. Approximation of all polynomial equation roots.

Method FINSς1∗ FINSς2∗ FINSς3∗ FINSς4∗ FINSς5∗

Error it 4 4 4 3 2
CPU 0.0141 0.016 0.054 0.067 0.065

e(σ)1 0.2× 10−9 0.2× 10−15 0.2× 10−31 0.2× 10−41 0.2× 10−65

e(σ)2 0.1× 10−7 0.1× 10−13 0.1× 10−26 0.1× 10−46 0.1× 10−66

e(σ)3 1.1× 10−5 1.1× 10−26 1.1× 10−46 1.1× 10−46 1.1× 10−66

e(σ)4 3.1× 10−5 3.1× 10−16 3.1× 10−26 3.1× 10−46 3.1× 10−69

ρ
(σ−1)
ςi 2.1212 3.2312 3.9123 4.5123 4.74123

The initial estimates of (40) are as follows:

(0)
υ1 = 1126,

(0)
υ2 = 2536 + 910i,

(0)
υ 3 = −1289,

(0)
υ 4 = 2536− 910i.

Table 22 displays the results of the inverse simultaneous methods based on artificial
neural networks. The ANNs were trained using 70% of the data set samples, with the
remaining 30% used to assess their ability to generalize using a performance metric. For a
polynomial of degree 4, the ANN required 5 input data points, two hidden layers, and
10 output data points. In order to represent all the roots of engineering application 4,
Figures 5d–9d display the EPH, MSE, RP, TS, and fitness overlapping graphs of the target
and outcomes of the LMA-ANN algorithm for the training, testing, and validation. Table 17
provides a summary of the performance of ANNFNς1∗–ANNFNς5∗ in terms of the MSE,
Per-E, Ex-time, and Error-it.

For training, testing, and validation, the input and output results of the LMA-ANNs’
fitness overlapping graphs are shown in Figure 5d. According to the histogram, the error
is 1.08×10−6, demonstrating the consistency of the suggested solver. For engineering
application 4, the MSE of the LMA-ANNs compares the expected outcomes to the target
solution, as shown in Figure 6d. The MSE for example 4 is 6.0469× 10−9 at epoch 49. The
expected and actual results of the LMA-ANNs are linearly related, as shown in Figure 7d.
Figure 8d illustrates the efficiency, consistency, and reliability of the engineering applica-
tion 4 simulation. The gradient value is 3.0416×10−4 with a Mu parameter of 1.0×10−6.
Figure 8d shows how the results for the minimal Mu and gradient converge closer as the
network becomes more efficient in training and testing. The fitness curve and regression
analysis results are displayed in Figure 9d. When R is near 1, the correlation parameter is
close; however, it becomes unreliable when R is near 0. A reduced MSE causes a decreased
response time.

The ANNs for various values of the fractional parameter, namely 0.1, 0.3, 0.5, 0.7, 0.8,
and 1.0, are shown in Table 22 as ANNFNς1∗ through ANNFNς5∗ .

Table 23 presents the numerical results of the simultaneous schemes when the initial
guess values approach the exact roots. When evaluating the same number of iterations, our
newly devised strategies outperform the existing methods in terms of the maximum error
(Max-Error), residual error, and CPU time. When evaluating the same number of iterations,
our newly proposed strategies outperform the existing methods in terms of the residual
error, CPU time, and maximum error (Max-Error).

The root trajectories of the nonlinear equations arising from engineering applications
1–4 clearly demonstrate that our FINSς1∗–FINSς5∗ schemes converge to the exact roots
starting from random initial guesses, and the rate of convergence increases as the value of
ς increases from 0.1 to 1.0.

Fractal Fract. 2023, 7, 849 34 of 39

Table 22. Numerical results using artificial neural networks.

Methods ANNFNς1∗ ANNFNς2∗ ANNFNς3∗ ANNFNς4∗ ANNFNς5∗

Error it 24 26 21 18 16
Ex-Time 1.45161 6.25412 4.06712 2.06545 3.07145

e(σ)1 9.52× 10−4 7.2× 10−3 0.32× 10−11 3.2× 10−11 4.9× 10−11

e(σ)2 7.1× 10−6 6.51× 10−2 0.31× 10−16 0.67× 10−16 9.1× 10−16

e(σ)3 1.31× 10−3 4.15× 10−3 1.15× 10−16 1.15× 10−16 1.1× 10−16

e(σ)4 3.1× 10−3 3.15× 10−4 3.13× 10−16 3.17× 10−16 3.1× 10−16

MSE 3.1× 10−13 3.15× 10−14 3.13× 10−16 3.17× 10−16 3.1× 10−16

Per-E 99.31% 99.45% 96.45% 98.45% 96.87%

Table 23. A comparison of the numerical results of the simultaneous schemes utilizing initial guess
values that are close to the exact roots.

Method WDKM FINSς ZPHM MPCM ANNFNς5∗ FINSς5∗

CPU Time 0.05414 0.03004 0.07178 0.04085 0.03151 0.01554

e(5)1 6.62× 10−4 8.62× 10−24 9.52× 10−35 8.82× 10−45 0.32× 10−27 3.32× 10−65

e(5)2 4.51× 10−4 1.15× 10−35 9.91× 10−24 0.17× 10−59 0.16× 10−28 6.16× 10−63

e(5)3 0.16× 10−4 7.15× 10−14 1.41× 10−38 0.91× 10−38 1.16× 10−38 1.11× 10−64

e(5)4 3.15× 10−3 3.13× 10−21 3.31× 10−33 3.61× 10−43 3.71× 10−33 3.71× 10−65

Max-Error 6.15× 10−7 9.13× 10−25 3.31× 10−35 0.61× 10−55 4.71× 10−25 0.00
ρ(4) 1.944125 3.013554 5.014512 5.812312 3.5514245 6.0144247

−5 −4 −3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Real

Im
a

g
in

a
ry

(a)

−1 −0.5 0 0.5 1 1.5 2 2.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Real

Im
a

g
in

a
ry

(b)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1.5

−1

−0.5

0

0.5

1

1.5

Real

Im
a
g
in

a
ry

(c)

−1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
a

g
in

a
ry

(d)

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
a
g
in

a
ry

(e)

Figure 13. (a–e) Root trajectories of the inverse fractional numerical schemes used in engineering
application 4 for approximating all roots of polynomial equations for various fractional parameter
values, namely ς = 0.1, 0.3, 0.7, 0.8, 1.0. (a) Root trajectory for parameter = 0.1. (b) Root trajectory
for parameter = 0.3. (c) Root trajectory for parameter = 0.7. (d) Root trajectory for parameter = 0.8.
(e) Root trajectory for parameter = 1.0.

Fractal Fract. 2023, 7, 849 35 of 39

8. Conclusions

In this research, two new fractional inverse simultaneous schemes of convergence
orders ς + 2 and 2ς + 4 are presented to approximate all nonlinear equation roots. Some
engineering applications are solved for various random initial approximations to demon-
strate the global convergence of the newly developed fractional schemes. In order to
prove the claim of global convergence, dynamical planes and root trajectories are gen-
erated, as shown in Figure 3a,b, Figures 10a–e–13a–e, and Tables 4, 9, 14, and 19. In
Tables 2 and 3, the elapsed time, percentage convergence, and divergence points of the
dynamical planes generated by FINSς1–FINSς5 and FINSς1∗–FINSς5∗ demonstrate the
efficiency and stability of the new class of root-finding methods. As demonstrated in
Tables 5, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, and 23, the rate of convergence increases when we
choose initial guesses that are close to the exact root.

The ANNs were initially trained using the LMA technique and the coefficients of the
examined polynomials. The differences between the values generated by each ANN, i.e., the
polynomial root estimations and the values of the exact roots, were used to adjust the weights
of each ANN. The results in Tables 7, 12, 17, and 21 show that ANNFNς1∗–ANNFNς5∗ out-
performed the conventional ANNs in terms of accuracy. For the various fractional parameter
values, the FINSς1–FINSς5 , FINSς1∗–FINSς5∗ , and ANNFNς1∗–ANNFNς5∗ methods exhibited
better performance compared to other existing root-finding methods, such as WDKM, ZPHM,
and MPCM, in terms of computational efficiency, order of convergence, residual error, elapsed
time, MSE, and percentage convergence rate (see, e.g., Tables 4–23).

Further studies will focus on developing higher-order inverse fractional simultaneous
iterative methods for computing all nonlinear equation roots that arise in more complex
engineering applications [79–81].

Author Contributions: Conceptualization, M.S. and B.C.; methodology, M.S.; software, M.S.; val-
idation, M.S.; formal analysis, B.C.; investigation, M.S.; resources, B.C.; writing—original draft
preparation, M.S. and B.C.; writing—review and editing, B.C.; visualization, M.S. and B.C.; supervi-
sion, B.C.; project administration, B.C.; funding acquisition, B.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is supported by “Provincia autonoma di Bolzano/Alto Adigeâ euro” Ripartizione
Innovazione, Ricerca, Universitá e Musei (contract nr. 19/34). Bruno Carpentieri is a member of the
Gruppo Nazionale per it Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematia (INdAM),
and this work was partially supported by INdAM-GNCS under Progetti di Ricerca 2022.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding the publica-
tion of this article.

Abbreviations
This article uses the following abbreviations:
WDKI Weierstrass–Dochev–Kaucher–Iliev (Weierstrass method)
ANNs Artificial Neural Networks
FINSς1∗ Fractional Inverse Numerical Scheme
Error it Number of error iterations
Ex-Time Execution time (in seconds)
MSE Mean Square Error
E- 10−()

ρ
(σ−1)
ςi Computational local order of convergence

Per-E Percentage effectiveness of the ANNs

ANNFNς1∗ Artificial Neural Network-based Fractional Numerical (schemes for different
values of ς)

LMA Levenberg–Marquardt Algorithm

Fractal Fract. 2023, 7, 849 36 of 39

Appendix A

Table A1. The ANN is trained using the head of the input data set to locate the real and imaginary
roots of polynomial equations in engineering application 1.

a0 a1 a2 a3 a4

1.000 −0.160 0.643 0.967 0.085
0.757 0.743 0.392 0.655 0.171
0.121 −0.145 0.874 0.475 0.876
...

...
...

...
...

Table A2. The ANN is trained using the head of the input data set to locate the real and imaginary
roots of polynomial equations in engineering application 2.

a0 a1 a2 a3 a4 a5 a6 a7 a8

1.000 −0.760 0.643 0.967 0.881 0.760 0.643 0.967 0.085
0.757 −0.153 0.392 0.615 0.171 0.743 0.392 0.855 0.071
0.934 −0.905 0.874 0.473 0.076 0.145 0.874 0.775 0.076
...

...
...

...
...

...
...

...
...

Table A3. The ANN is trained using the head of the input data set to locate the real and imaginary
roots of polynomial equations in engineering application 3.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

0.21× 10−4 4.87× 10−4 5.66× 10−3 9.5× 10−5 7.2× 10−8 0.9× 10−7 0.3× 10−4 8.2× 10−3 8.2× 10−8 1.78914 2.5733
3.01× 10−4 0.98× 10−3 0.56× 10−3 8.3× 10−7 4.2× 10−4 0.8× 10−8 3.2× 10−4 2.2× 10−8 6.2× 10−8 2.01241 1.9342
0.14× 10−3 4.14× 10−5 4.1× 10−4 2.34× 10−8 1.1× 10−3 5.1× 10−7 7.1× 10−6 7.1× 10−4 5.1× 10−7 1.21540 1.5435
...

...
...

...
...

...
...

...
...

...
...

Table A4. The ANN is trained using the head of the input data set to locate the real and imaginary
roots of polynomial equations in engineering application 4.

a0 a1 a2 a3 a4

0.001 −0.760 0.043 0.967 0.085
0.857 0.743 0.392 0.159 0.171
0.021 −0.145 0.874 0.475 0.876
...

...
...

...
...

Appendix B

The ANN is trained using the head of the output data set to locate the real and imagi-
nary roots of polynomial equations in engineering applications 1 to 4 using Algorithm 2 in
CAS-MATLAB@2012.

Table A5. The ANN is trained using the head of the output data set to locate the real and imaginary
roots of polynomial equations in engineering application 1.

a0 a1 a2 a3 a4

Re(a0) Im(a0) Re(a1) Im(a1) Re(a2) Im(a2) Re(a3) Im(a3) Re(a4) Im(a4)
0.124 0.98 0.56 8.31 4.25 0.124 0.98 0.56 8.31 4.25
0.145 4.14 4.11 2.31 1.14 0.145 4.14 4.11 2.31 1.14
...

...
...

...
...

...
...

...
...

...

Fractal Fract. 2023, 7, 849 37 of 39

Table A6. The ANN is trained using the head of the output data set to locate the real and imaginary
roots of polynomial equations in engineering application 4.

a0 a1 a2 a3 a4

Re(a0) Im(a0) Re(a1) Im(a1) Re(a2) Im(a2) Re(a3) Im(a3) Re(a4) Im(a4)
0.124 0.98 0.56 8.31 4.25 0.124 0.98 0.56 8.31 4.25
0.145 4.14 4.11 2.31 1.14 0.145 4.14 4.11 2.31 1.14
...

...
...

...
...

...
...

...
...

...

References
1. Alekseev, V.B. Abel’s Theorem in Problems and Solutions: Based on the Lectures of Professor VI Arnold; Springer: Dordrecht, The

Netherlands, 2004.
2. Sjogren, J.A.; Li, X.; Zhao, M.; Lu, C. Computable implementation of “Fundamental Theorem of Algebra”. Int. J. Pure Appl. Math.

2013, 86, 95–131. [CrossRef]
3. Consnard, M.; Fraigniaud, P. Finding the roots of a polynomial on an MIMD multicomputer. Parallel Comput. 1990, 15, 75–85.

[CrossRef]
4. Chun, C.; Kim, Y.I. Several new third-order iterative methods for solving nonlinear equations. Acta Appl. Math. 2010, 109,

1053–1063. [CrossRef]
5. Madhu, K.; Jayaraman, J. Higher order methods for nonlinear equations and their basins of attraction. Mathematics 2016, 4, 22.

[CrossRef]
6. Kiran, R.; Khandelwal, K. On the application of multipoint Root-Solvers for improving global convergence of fracture problems.

Eng. Fract. Mech. 2018, 193, 77–95. [CrossRef]
7. Weierstrass, K. Neuer Beweis des Satzes, dass jede ganze rationale Function einer Verän derlichen dargestellt werden kann als

ein Product aus linearen Functionen derselben Verän derlichen. Sitzungsberichte KöNiglich Preuss. Akad. Der Wiss. Berl. 1981,
2, 1085–1101.

8. Kerner, I.O. Ein gesamtschrittverfahren zur berechnung der nullstellen von polynomen. Numer. Math. 1966, 8, 290–294. [CrossRef]
9. Durand, E. Solutions numériques des équations algébriques: Systèmes de plusieurs équations. Val. Propres Matrices Masson 1962,

2, 1–10.
10. Dochev, M. Modified Newton method for the simultaneous computation of all roots of a given algebraic equation. Phys. Math. J.

Bulg. Acad. Sci. 1962, 5, 136–139. (In Bulgarian)
11. Presic, S. Un procédé itératif pour la factorisation des polynômes. CR Acad. Sci. Paris 1966, 262, 862–863.
12. Alefeld, G.; Herzberger, J. On the convergence speed of some algorithms for the simultaneous approximation of polynomial roots.

SIAM J. Numer. Anal. 1974, 11, 237–243. [CrossRef]
13. Petkovic, M. Iterative methods for simultaneous inclusion of polynomial zeros. Lect. Notes Math. 1989, 1387, X-263.
14. Börsch-Supan, W. Residuenabschätzung für Polynom-Nullstellen mittels Lagrange-Interpolation. Numer. Math. 1970, 14, 287–296.

[CrossRef]
15. Rafiq, N.; Mir, N.A.; Yasmin, N. Some two-step simultaneous methods for determining all the roots of a non-linear equation. Life

Sci. J. 2013, 10, 54–59.
16. Proinov, P.D.; Petkova, M.D. Convergence of the two-point Weierstrass root-finding method. Jpn. J. Ind. Appl. Math. 2014, 31,

279–292. [CrossRef]
17. Zhang, X.; Peng, H.; Hu, G. A high order iteration formula for the simultaneous inclusion of polynomial zeros. Appl. Math.

Comput. 2006, 179, 545–552. [CrossRef]
18. Aberth, O. Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comput. 1973, 27, 339–344. [CrossRef]
19. Milovanovic, G.V.; Petkovic, M.S. On computational efficiency of the iterative methods for the simultaneous approximation of

polynomial zeros. ACM Trans. Math. Softw. 1986, 12, 295–306. [CrossRef]
20. Nourein, A.W. An improvement on Nourein’s method for the simultaneous determination of the zeroes of a polynomial (an

algorithm). J. Comput. Appl. Math. 1977, 3, 109–112. [CrossRef]
21. Petković, M.S.; Petković, L.D.; Džunić, J. On an efficient method for the simultaneous approximation of polynomial multiple roots.

Appl. Anal. Discrete Math. 2014, 8, 73–94. [CrossRef]
22. Farmer, M.R. Computing the Zeros of Polynomials Using the Divide and Conquer Approach; Department of Computer Science and

Information Systems, Birkbeck, University of London: London, UK, 2014.
23. Proinov, P.D. General convergence theorems for iterative processes and applications to the Weierstrass root-finding method. J.

Complex. 2016, 33, 118–144. [CrossRef]
24. Nedzhibov, G.H. Improved local convergence analysis of the Inverse Weierstrass method for simultaneous approximation of

polynomial zeros. In Proceedings of the MATTEX 2018 Conference, Targovishte, Bulgaria, 16–17 November 2018; Volume 1,
pp. 66–73.

25. Marcheva, P.I.; Ivanov, S.I. Convergence analysis of a modified Weierstrass method for the simultaneous determination of
polynomial zeros. Symmetry 2020, 12, 1408. [CrossRef]

http://doi.org/10.12732/ijpam.v86i1.9
http://dx.doi.org/10.1016/0167-8191(90)90032-5
http://dx.doi.org/10.1007/s10440-008-9359-3
http://dx.doi.org/10.3390/math4020022
http://dx.doi.org/10.1016/j.engfracmech.2018.02.031
http://dx.doi.org/10.1007/BF02162564
http://dx.doi.org/10.1137/0711023
http://dx.doi.org/10.1007/BF02163336
http://dx.doi.org/10.1007/s13160-014-0138-4
http://dx.doi.org/10.1016/j.amc.2005.11.117
http://dx.doi.org/10.1090/S0025-5718-1973-0329236-7
http://dx.doi.org/10.1145/22721.8932
http://dx.doi.org/10.1016/0771-050X(77)90006-7
http://dx.doi.org/10.2298/AADM140310005P
http://dx.doi.org/10.1016/j.jco.2015.10.001
http://dx.doi.org/10.3390/sym12091408

Fractal Fract. 2023, 7, 849 38 of 39

26. Shams, M.; Ahmad Mir, N.; Rafiq, N.; Almatroud, A.O.; Akram, S. On dynamics of iterative techniques for nonlinear equation
with applications in engineering. Math. Probl. Eng. 2020, 2020, 5853296. [CrossRef]

27. Shams, M.; Rafiq, N.; Kausar, N.; Agarwal, P.; Park, C.; Mir, N.A. On iterative techniques for estimating all roots of nonlinear
equation and its system with application in differential equation. Adv. Differ. Equ. 2021, 2021, 480. [CrossRef]

28. Shams, M.; Rafiq, N.; Kausar, N.; Agarwal, P.; Mir, N.A.; Li, Y.M. On Highly Efficient Simultaneous Schemes for Finding all
Polynomial Roots. Fractals 2022, 30, 2240198. [CrossRef]

29. Chinesta, F.; Cordero, A.; Garrido, N.; Torregrosa, J.R.; Triguero-Navarro, P. Simultaneous roots for vectorial problems. Comput.
Appl. Math. 2023, 42, 227. [CrossRef]

30. Triguero Navarro, P. High Performance Multidimensional Iterative Processes for Solving Nonlinear Equations. Doctoral Disserta-
tion, Universitat Politècnica de València, València, Spain, 2023.

31. Luk, W.S. Finding roots of a real polynomial simultaneously by means of Bairstow’s method. BIT Numer. Math. 1996, 36, 302–308.
[CrossRef]

32. Cholakov, S.I. Local and semilocal convergence of Wang-Zheng’s method for simultaneous finding polynomial zeros. Symmetry
2019, 11, 736. [CrossRef]

33. Mir, N.A.; Shams, M.; Rafiq, N.; Akram, S.; Rizwan, M. Derivative free iterative simultaneous method for finding distinct roots of
polynomial equation. Alex. Eng. J. 2020, 59, 1629–1636. [CrossRef]

34. Gdawiec, K.; Kotarski, W.; Lisowska, A. Newton’s method with fractional derivatives and various iteration processes via visual
analysis. Numer. Algorithms 2021, 86, 953–1010. [CrossRef]

35. Bayrak, M.A.; Demir, A.; Ozbilge, E. On fractional Newton-type method for nonlinear problems. J. Math. 2022, 2022, 7070253.
[CrossRef]

36. Odibat, Z.M.; Shawagfeh, N.T. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293. [CrossRef]
37. Akgül, A.; Cordero, A.; Torregrosa, J.R. A fractional Newton method with α-th order of convergence and its stability. Appl. Math.

Lett. 2019, 98, 344–351. [CrossRef]
38. Torres-Hernandez, A.; Brambila-Paz, F. Sets of fractional operators and numerical estimation of the order of convergence of a

family of fractional fixed-point methods. Fractal Fract. 2021, 5, 240. [CrossRef]
39. Cajori, F. Historical note on the Newton-Raphson method of approximation. Am. Math. Mon. 1911, 18, 29–32. [CrossRef]
40. Kumar, P.; Agrawal, O.P. An approximate method for numerical solution of fractional differential equations. Signal Process. 2006,

86, 2602–2610. [CrossRef]
41. Candelario, G.; Cordero, A.; Torregrosa, J.R. Multipoint fractional iterative methods with (2α + 1)th-order of convergence for

solving nonlinear problems. Mathematics 2020, 8, 452. [CrossRef]
42. Shams, M.; Kausar, N.; Agarwal, P.; Oros, G.I. Efficient iterative scheme for solving non-linear equations with engineering

applications. Appl. Math. Sci. Eng. 2022, 30, 708–735. [CrossRef]
43. Attary, M.; Agarwal, P. On developing an optimal Jarratt-like class for solving nonlinear equations. Forum-Ed. Udinese SRL 2020,

43, 523–530.
44. Akram, S.; Akram, F.; Junjua, M.U.D.; Arshad, M.; Afzal, T. A family of optimal Eighth order iteration functions for multiple roots

and its dynamics. J. Math. 2021, 2021, 5597186. [CrossRef]
45. Cordero, A.; Neta, B.; Torregrosa, J.R. Memorizing Schröder’s method as an efficient strategy for estimating roots of unknown

multiplicity. Mathematics 2021, 9, 2570. [CrossRef]
46. Shams, M.; Rafiq, N.; Kausar, N.; Agarwal, P.; Park, C.; Mir, N.A. On highly efficient derivative-free family of numerical methods

for solving polynomial equation simultaneously. Adv. Differ. Equ. 2021, 2021, 465. [CrossRef]
47. Shams, M.; Rafiq, N.; Kausar, N.; Agarwal, P.; Mir, N.A.; El-Kanj, N. On Inverse Iteration process for finding all roots of nonlinear

equations with applications. Fractals 2022, 30, 2240265. [CrossRef]
48. Rafiq, N.; Akram, S.; Shams, M.; Mir, N.A. Computer geometries for finding all real zeros of polynomial equations simultaneously.

Comput. Mater. Contin. 2021, 69, 2636–2651. [CrossRef]
49. Nedzhibov, G.H. On semilocal convergence analysis of the Inverse Weierstrass method for simultaneous computing of polynomial

zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2019, 11, 247–258.
50. Proinov, P.D.; Petkova, M.D. Local and semilocal convergence of a family of multi-point Weierstrass-type root-finding methods.

Mediterr. J. Math. 2020, 17, 107. [CrossRef]
51. Shams, M.; Rafiq, N.; Ahmad, B.; Mir, N.A. Inverse numerical iterative technique for finding all roots of nonlinear equations with

engineering applications. J. Math. 2021, 2021, 6643514. [CrossRef]
52. Hormis, R.; Antoniou, G.; Mentzelopoulou, S. Separation of two-dimensional polynomials via a sigma-pi neural net. In Proceedings

of the IASTED International Conference Modelling and Simulation, Colombo, Sri Lanka, 26–28 July 1995; pp. 304–306.
53. Huang, D.S.; Chi, Z. Finding complex roots of polynomials by feedforward neural networks. In Proceedings of the IJCNN’01.

International Joint Conference on Neural Networks, Cat. No. 01CH37222, Washington, DC, USA, 15–19 July 2001; p. A13.
54. Huang, D.S.; Chi, Z. Neural networks with problem decomposition for finding real roots of polynomials. In Proceedings of the

IJCNN’01. International Joint Conference on Neural Networks, (Cat. No. 01CH37222), Washington, DC, USA, 15–19 July 2001;
p. A25.

55. Huang, D.S.; Ip, H.H.; Chi, Z.; Wong, H.S. Dilation method for finding close roots of polynomials based on constrained learning
neural networks. Phys. Lett. A 2003, 309, 443–451. [CrossRef]

http://dx.doi.org/10.1155/2020/5853296
http://dx.doi.org/10.1186/s13662-021-03636-x
http://dx.doi.org/10.1142/S0218348X22401983
http://dx.doi.org/10.1007/s40314-023-02366-y
http://dx.doi.org/10.1007/BF01731985
http://dx.doi.org/10.3390/sym11060736
http://dx.doi.org/10.1016/j.aej.2020.04.009
http://dx.doi.org/10.1007/s11075-020-00919-4
http://dx.doi.org/10.1155/2022/7070253
http://dx.doi.org/10.1016/j.amc.2006.07.102
http://dx.doi.org/10.1016/j.aml.2019.06.028
http://dx.doi.org/10.3390/fractalfract5040240
http://dx.doi.org/10.1080/00029890.1911.11997596
http://dx.doi.org/10.1016/j.sigpro.2006.02.007
http://dx.doi.org/10.3390/math8030452
http://dx.doi.org/10.1080/27690911.2022.2130914
http://dx.doi.org/10.1155/2021/5597186
http://dx.doi.org/10.3390/math9202570
http://dx.doi.org/10.1186/s13662-021-03616-1
http://dx.doi.org/10.1142/S0218348X22402654
http://dx.doi.org/10.32604/cmc.2021.018955
http://dx.doi.org/10.1007/s00009-020-01545-z
http://dx.doi.org/10.1155/2021/6643514
http://dx.doi.org/10.1016/S0375-9601(03)00216-0

Fractal Fract. 2023, 7, 849 39 of 39

56. Huang, D.S. A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Trans. Neural Netw. 2004,
15, 477–491. [CrossRef]

57. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [CrossRef]
58. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 1963, 11,431–441.

[CrossRef]
59. Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5,

989–993. [CrossRef]
60. Hagan, M.T.; Demuth, H.B.; Beale, M. Neural Network Design; PWS Publishing Co.: Boston, MA, USA, 1997.
61. Heaton, J. Artificial Intelligence for Humans: Deep Learning and Neural; Heaton Research, Incorporated: Chesterfield, UK, 2015.
62. Shams, M.; Rafiq, N.; Kausar, N.; Agarwal, P.; Park, C.; Momani, S. Efficient iterative methods for finding simultaneously all the

multiple roots of polynomial equation. Adv. Differ. Equ. 2021, 2021, 495. [CrossRef]
63. Proinov, P.D. On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple

polynomial zeros. J. Nonlinear Sci. Appl. 2018, 11, 1045–1055. [CrossRef]
64. Mir, N.A.; Shams, M.; Rafiq, N.; Akram, S.; Ahmed, R. On Family of Simultaneous Method for Finding Distinct as Well as Multiple

Roots of Non-linear Equation. Punjab Univ. J. Math. 2020, 52, 31–44.
65. Petković, M.S.; Petković, L.D.; Džunić, J. On an efficient simultaneous method for finding polynomial zeros. Appl. Math. Lett. 2014,

28, 60–65. [CrossRef]
66. Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. ACM 1974, 21, 643–651. [CrossRef]
67. Dong, C. A family of multiopoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math.1987, 21, 363–367.

[CrossRef]
68. Scott, M.; Neta, B.; Chun, C. Basin attractors for various methods. Appl. Math. Comput. 2011, 218, 2584–2599. [CrossRef]
69. Chicharro, F.; Cordero, A.; Gutiérrez, J.M.; Torregrosa, J.R. Complex dynamics of derivative-free methods for nonlinear equations.

Appl. Math. Comput. 2013, 219, 7023–7035. [CrossRef]
70. Pulvirenti, G.; Faria, C. Influence of Housing Wall Compliance on Shock Absorbers in the Context of Vehicle Dynamics. IOP Conf.

Ser. Mater. Sci. Eng. 2017, 252, 012026. [CrossRef]
71. Konieczny, L. Analysis of simplifications applied in vibration damping modelling for a passive car shock absorber. Shock Vib. 2016,

2016, 6182847. [CrossRef]
72. Liu, Y.; Zhang, J. Nonlinear dynamic responses of twin-tube hydraulic shock absorber. Mech. Res. Commun. 2002, 29, 359–365.

[CrossRef]
73. Barethiye, V.M.; Pohit, G.; Mitra, A. Analysis of a quarter car suspension system based on nonlinear shock absorber damping

models. Int. J. Automot. Mech. 2017, 14, 4401–4418. [CrossRef]
74. Ali, B.A.; Salit, M.S.; Zainudin, E.S.; Othman, M. Integration of artificial neural network and expert system for material classification

of natural fibre reinforced polymer composites. Am. J. Appl. Sci. 2015, 12, 174.
75. Fournier, R.L. Basic Transport Phenomena in Biomedical Engineering; Taylor & Franics: New York:, NY, USA, 2007.
76. Bronshtein, I.N.; Semendyayev, K.A. Handbook of Mathematics; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2013.
77. Polyanin, A.D.; Manzhirov, A.V. Handbook of Mathematics for Engineers and Scientists; CRC Press: Boca Raton, FL, USA, 2006.
78. Chu, Y.; Rafiq, N.; Shams, M.; Akram, S.; Mir, N.A.; Kalsoom, H. Computer methodologies for the comparison of some efficient

derivative free simultaneous iterative methods for finding roots of non-linear equations. Comput. Mater. Contin. 2020, 66, 275–290.
[CrossRef]

79. Shams, M.; Kausar, N.; Samaniego, C.; Agarwal, P.; Ahmed, S. F.; Momani, S. On Efficient Fractional Caputo-type Simultaneous
Scheme for Finding all Roots of Polynomial Equations with Biomedical Engineering Applications. Fractals 2023, 2340075. [CrossRef]

80. Jay, L.O. A note on Q-order of convergence. BIT Numer. Math. 2001, 41, 422–429. [CrossRef]
81. Argyros, I.K.; Magreñán, Á.A.; Orcos, L. Local convergence and a chemical application of derivative free root finding methods

with one parameter based on interpolation. J. Math. Chem. 2016, 54, 1404–1416. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNN.2004.824424
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1109/72.329697
http://dx.doi.org/10.1186/s13662-021-03649-6
http://dx.doi.org/10.22436/jnsa.011.09.03
http://dx.doi.org/10.1016/j.aml.2013.09.011
http://dx.doi.org/10.1145/321850.321860
http://dx.doi.org/10.1080/00207168708803576
http://dx.doi.org/10.1016/j.amc.2011.07.076
http://dx.doi.org/10.1016/j.amc.2012.12.075
http://dx.doi.org/10.1088/1757-899X/252/1/012026
http://dx.doi.org/10.1155/2016/6182847
http://dx.doi.org/10.1016/S0093-6413(02)00260-4
http://dx.doi.org/10.15282/ijame.14.3.2017.2.0349
http://dx.doi.org/10.32604/cmc.2020.011907
http://dx.doi.org/10.1142/S0218348X23400753
http://dx.doi.org/10.1023/A:1021902825707
http://dx.doi.org/10.1007/s10910-016-0605-z

	Introduction
	Preliminaries
	Construction of Inverse Fractional Parallel Schemes
	Construction of Inverse Fractional Parallel Scheme of Order +2
	Construction of Inverse Fractional Parallel Scheme of Order 2+4

	Artificial Neural Network-Based Inverse Parallel Schemes
	Computational Analysis of Inverse Fractional Parallel Schemes
	Dynamical Analysis of Inverse Fractional Parallel Schemes
	Analysis of Numerical Results
	Conclusions
	Appendix A
	Appendix B
	References

