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Abstract: The capacity regeneration phenomenon is often overlooked in terms of prediction of the
remaining useful life (RUL) of LIBs for acceptable fitting between real and predicted results. In this
study, we suggest a novel method for quantitative estimation of the associated uncertainty with the
RUL, which is based on adaptive fractional Lévy stable motion (AfLSM) and integrated with the
Mellin–Stieltjes transform and Monte Carlo simulation. The proposed degradation model exhibits
flexibility for capturing long-range dependence, has a non-Gaussian distribution, and accurately
describes heavy-tailed properties. Additionally, the nonlinear drift coefficients of the model can be
adaptively updated on the basis of the degradation trajectory. The performance of the proposed RUL
prediction model was verified by using the University of Maryland CALEC dataset. Our forecasting
results demonstrate the high accuracy of the method and its superiority over other state-of-the-art
methods.

Keywords: lithium-ion battery; remaining useful life; capacity regeneration phenomenon; adaptive
fractional Lévy stable motion; Monte Carlo simulation

1. Introduction

The increasing demand for lithium-ion batteries (LIBs) necessitates high reliability
and safety requirements for their operation. As a result, it is crucial to have an effective
method for predicting the remaining useful life (RUL) [1–3].

A number of studies have investigated the problem of RUL prediction and health state
estimation of LIBs from various viewpoints [4–6]. Many of these studies rely on numerical
prediction and provide a single predicted value. For instance, Zhao et al. [7] developed
a fusion neural network model that combines a generalized learning system algorithm
with a long short-term memory neural network (LSTM) to predict the capacity and RUL of
Li-ion batteries. Li et al. [8] employed convolutional neural networks and transfer learning
to implement online capacity estimation of LIBs. Other researchers developed methods
based on a combination of different RUL models to overcome the limitations of a single
model [9–11].

However, numerical predictions often fail to adapt to different practical application
scenarios. Moreover, battery degradation trajectories are complex and highly nonlinear,
posing challenges in developing accurate RUL prediction models [12]. Then the RUL
prediction model should not only accurately determine the future degradation of LIBs but
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also possess flexibility and adaptability to the specific conditions and provide an assessment
of the uncertainty [13–15].

In order to quantify the uncertainty of prediction results, deep learning methods can
be combined with dropout techniques [13] and Monte Carlo methods [14]. For instance,
Li et al. [16] utilized a long short-term memory neural network for RUL prediction of
LIBs and employed the dropout method to quantify prediction uncertainty. Similarly,
Liu et al. [17] developed a method combining Bayesian model averaging with long- and
short-term memory neural networks. Multiple neural network models were constructed to
obtain different prediction results, and Bayesian model averaging was used to estimate the
posteriori distribution of the predictions, generating confidence intervals that reflect the
uncertainty. However, these techniques rely on a substantial amount of high-quality data
to effectively train the prediction models. Moreover, the interpretability of these models is
limited, and ensuring their generalization ability poses a challenge [18].

Statistics-based approaches for the prediction of RUL rely on probability theory and the
statistical principles of historical data. These approaches provide interpretable prediction
models and can be applied with minimal data quantity requirements and low quality [19].
Additionally, they provide for the quantification of prediction uncertainty in the form of
probability distributions. For example, Xu et al. [20] combined the Wiener process with the
Bayesian method to predict the RUL of LIBs. They established a local fluctuation fitting
model that partitioned the normal degradation trend and the local fluctuation component.
The Bayesian method was then used to update the predicted life probability density function
online. However, these common methods have limitations. One such limitation is that the
degradation increments are considered independent, implying that the degradation process
described by these methods is memoryless [21]. To address this, Wang et al. [22] proposed
a RUL estimation method for LIBs based on fractional Brownian motion (fBM), utilizing
a Drosophila optimization algorithm for the Hurst index. Hong et al. [23] developed a
fractional-order generalized Cauchy process-based fGC model for RUL prediction of Li-ion
batteries and employed Monte Carlo simulation to obtain the lifetime probability density
function. However, these degradation models can only describe degradation processes that
adhere to a Gaussian distribution and lack flexibility for non-Gaussian time series.

Figure 1 illustrates the capacity curve for cell CS2_36, representative of the CALCE
dataset’s CX2 series, under a standard charging regime. The cells experienced a constant
current charge at 0.5 C to 4.2 V, followed by constant voltage until the current declined
to below 0.05 A, and a consistent discharge cut-off at 2.7 V. The blue line in the figure
traces the anticipated monotonic capacity decline under typical degradation conditions. In
contrast, the red line captures deviations from this norm, manifesting as sporadic capacity
increases attributable to regeneration events and stochastic fluctuations. Such patterns
reflect a complex degradation process not confined to Gaussian behavior, hence the appli-
cation of Lévy stable motion to model the observed anomalies. This approach, with its
heavy-tailed statistical properties, effectively captures abrupt transitions in battery capacity
degradation [24]. This technique is suitable for capturing sudden jumps in degradation
processes. Liu et al. [25] employed incremental distribution with fractional Lévy stable
motion to establish an iterative predictive model by using Monte Carlo simulation. This
model primarily addresses non-Gaussian characteristics of the degradation process. How-
ever, a drawback of the model is that it assumes that the drift coefficients follow a normal
distribution and are not dynamically updated. This limitation significantly affects the
accuracy of RUL predictions for lithium-ion battery devices.

The main results of this study can be summarized as follows:
(1) In order to address the capacity regeneration phenomenon and random fluctuation

in the degradation process of LIBs, fractional Lévy stable motion with an adaptive nonlinear
drift model is proposed. This model takes into account the non-Gaussian nature of the
degradation process and enables adaptive optimization of drift coefficients based on the
degradation path. By considering the influence of historical observation data, the model
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can better capture the complex dynamics of the degradation process and improve the
accuracy of its predictions.
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Figure 1. Degradation process of lithium-ion batteries.

(2) The RUL distribution is provided as a semi-analytical solution by utilizing the
Mellin–Stieltjes transform and the Monte Carlo method. This approach gives accurate
results and saves computational time compared to direct Monte Carlo simulation for
calculating the RUL probability density function. Additionally, a genetic algorithm was
employed to optimize the resampling process in the filtering algorithm. This approach ef-
fectively addresses the issue of particle depletion and significantly improves the prediction
accuracy of the model.

(3) The proposed model is validated on the University of Maryland lithium-ion battery
CACLE dataset. The results demonstrate that the method overcomes other state-of-the-art
techniques in terms of the accuracy of the RUL prediction, specifically considering capacity
regeneration and random fluctuations.

In Section 2, the paper provides a comprehensive explanation of the proposed RUL
prediction model, outlining its key elements and methodology. Section 3 focuses on
discussing the various techniques employed for the parameter estimation of the model. In
Section 4, we describe a case study, showcasing the application of the proposed model and
the estimation of its performance characteristics. Finally, Section 5 summarizes the findings
and conclusions of the study.

2. Proposed Methodology for RUL Prediction
2.1. Long-Range Dependence of Fractional Lévy Stable Motion

Let X be a random variable that is said to follow a Lévy stable distribution if, for
any n independent copies X1, X2, · · · , Xn of X and any positive constants a1, a2, · · · , an,
parameters b > 0 and c ∈ R exists, such that:

a1X1 + a2X2 + · · ·+ anXn , bX + c (1)

Here, b and c are not arbitrary but are calculated to satisfy the distribution’s stable
property. The symbol , signifies that the distribution of the linear combination is identical
to that of X, scaled by b and shifted by c. This stability under linear combinations of
independent copies is the defining characteristic of the Lévy stable distribution, ensuring
that the scaled sum maintains the same probabilistic properties as the original variable X.
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Due to the nature of the Lévy stable distribution, there is no analytical expression
for the probability density function in closed form. As a result, the properties of the Lévy
stable distribution are typically expressed through its characteristic function ϕ(θ; α, β, δ, µ).
which is defined as follows [26]:

ϕ(θ; α, β, δ, µ) = E
[
ejθx]

=


exp
{

jµθ − δ|θ|α
[
1− jβ θ

|θ| tan
(πα

2

)]}
, α 6= 1

exp
{

jµθ − δ|θ|α
[

1 + jβ θ
|θ|

2
π

ln|θ|
]}

, α = 1

(2)

A process described by random variables X ∼ Sα(µ, β, δ) depends on the stable index
α, skew index β, drift coefficient δ, and diffusion parameter µ. Values of α and β influence
the shape of the distribution, whereas δ and µ determine the linear transformation of
the distribution. Recall that the parameters of Equation (2) must satisfy the following
conditions: α ∈ (0, 2], β ∈ [−1, 1], µ ∈ R, and δ > 0. These constraints ensure that the
stable index, skew index, and diffusion parameter are within their valid ranges, allowing
for a meaningful representation of the Lévy stable distribution.

In the degradation process of LIBs, available capacity does not exhibit a strict mono-
tonic decrease. Instead, it alternates between sudden increases and gradual decreases due
to the presence of random fluctuations and capacity regeneration phenomena. Conse-
quently, the decay rate deviates from the Gaussian assumption. Figure 2 shows the fitting
of the capacity degradation rate distribution by using the dataset obtained from the CS2-36
battery [27–29]. Different fitting curves clearly demonstrate that a steady-state distribution
is more relevant for our simulation. This observation emphasizes the importance of Levy
stable distribution for a precise description of the degradation trend.
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Fractional Lévy stable motion can be defined by the following stochastic integral [30],

LH,α(t) =
∫ +∞
−∞

a

(t− s)
H−

1
α

+ − (−s)
H−

1
α

+

+ b

(t− s)
H−

1
α

− − (−s)
H−

1
α

−


M(ds) (3)

where (x+) = (−x)− =

{
x, x > 0
0, x ≤ 0

; a, b ∈ R and |a|+|b|> 0 ; and M is the Lévy stable

measure in the Lebesgue measure space. The fLSM model serves as an extension of the fBM
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model, and they have many similar and different properties; when α = 2, the fLSM model
degenerates to the fBM model. The relevant properties of the fLSM model are determined

by the relationship between H and α. The fLSM model has the LRD property when H >
1
α

;

when H <
1
α

, the fLSM model has the SRD property; and when H =
1
α

, the fLSM model
degenerates to the LSM model.

2.2. Analysis of Performance Degradation

In our study, Equation (4) serves as a generalized form of fractional Brownian mo-
tion [25], tailored to capture the dynamics of fractional Lévy stable motion:

dX(t) = µBdt + δBdZH(t) (4)

where X(t) denotes the degenerative process, µB is the drift coefficient, δB is the diffusion
parameter, and both µB and δB are constants. {ZH(t), t ≥ 0} is an fLSM, where dZH(t) de-
notes the increment of Lévy movement. This formulation is particularly adept at modeling
the non-Gaussian behaviors observed in complex systems, showcasing the utility of fLSM
in exploring and understanding the intricate dynamics that traditional Gaussian models
may fail to capture [26].

The overall trend of the capacity degradation process implies that the drift term is a
time-dependent function. Additionally, the degradation process is influenced by uncertain
LRD fluctuations, characterized by the diffusion term. Consequently, the drift and diffusion
terms in Equation (5) can be generalized as follows:

X(t) = X(0) + λ(t)
∫ t

0 µ(s; Θ)ds + ηLH,α(t) (5)

where X(0) is the initial value of degradation and µ(s; Θ) is the drift coefficient at time t,
indicating the degradation rate. The diffusion term is driven by the fLSM with a diffusion
coefficient of η and takes into account the effect of signal noise.

In order to estimate the parameters in the model and the subsequent RUL predictions,
the form of the incremental distribution of the degenerate model is to be derived. The first
differencing of the degenerate model leads to the following equation [31]:

X(tk + ∆tk) = X(tk) + λ(t)
∫ tk+∆tk

tk
µ(s; Θ)ds + ηω(∆tk) (6)

ω(∆tk) = LH,α(tk + ∆tk)− LH,α(tk) (7)

In order to obtain a concrete expression of the degenerate model, it is necessary to
specify ω(∆tk). Because fLSM increment is also a self-similar process and satisfies the
following equation:

In order to obtain an expression of the degenerate model, it is necessary to specify
ω(∆tk). Since fLSM increment is a self-similar process and satisfies the identity

LH,α(at)− LH,α(0) , aH [LH,α(t)− LH,α(0)] (8)

according to the Maruyama model:∫ t
0 f (τ)(dτ)a = a

∫ τ
0 (t− τ)a−1 f (τ)dτ (9)

dx = f (t)(dt)a (10)

and according to Equations (22) and (23), it can be concluded that

LH,α(tk + ∆tk)− LH,α(tk) = ωα(t)(∆tk)
H−

1
2
+

1
α

(11)
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where ωα(t) is the Lévy stable distribution of white noise, whose distribution obeys
Sα(1, 0, 0).

Furthermore, based on the linear nature of the symmetric Lévy stable distribution of
white noise ωα(t), the following operation relationship must be introduced:

Cωα(t) + D ∼ Sα(C, 0, D) (12)

where C and D are the nonzero constant and real numbers, respectively. According to the
property description of (12), Equation (13) below holds:

X(tk + ∆tk)− X(t) v Sα

η(∆tk)
H−

1
2
+

1
α , 0, λ(t)

∫ t
0 µ(s; Θ)dt

 (13)

2.3. Adaptive Evaluation of Nonlinear Drift Coefficient

In order to improve the accuracy of the RUL prediction, it is essential to update
the time-dependent value of the drift coefficient. To achieve this goal, we construct the
following state-space model:

λtk = λtk−1 + ν (14)

Xtk = Xtk−1 +
∫ tk

0 λtk µ(s; Θ)ds−
∫ tk−1

0 λtk µ(s; Θ)ds + η[LH,α(tk)− LH,α(tk−1)] (15)

where Equation (14) represents the state equation and Equation (15) represents the observa-
tion equation. ν is the Gaussian-distributed state noise with variance Q. The choice of the
drift term function µ(s; Θ) depends on the historical degradation trajectory. In this paper,
the power-law drift model µ(s; Θ) = ABtB−1 is adopted, where parameters A and B are
determined by nonlinear least-squares estimation. The superscript or subscript tk indicates
the observation time.

The following describes how the drift term is adaptively updated:
Step 1. Initialization
Initialize the prior distribution ν v N(0, Q), the number of particles M, the number

of iterations N. Set k = 1, λt1 = νt1 , Zm
1:M
1 v N(0, Q), ωt1 ∼ Sα(η(∆tk)

H−
1
2
+

1
α , 0, 0),

XPt1 = λt1 + ωt1 . Here, Zm
1:M
1 is the M× N particle set matrix, ωt is the diffusion term,

and XPt is the vector of predicted values, related to the observed values vector Xt.
Step 2. Generation of particle set matrix
The particle set matrix are calculated as follows:

Zm
i
k v q

(
λtk

∣∣∣Zm
i
0:k−1, Xt1;k

)
= Zm

i−1
k + υti (16)

where q
(

λtk

∣∣∣Zm
i
0:k−1, Xt1;k

)
is the importance density, which avoids the difficulty of sam-

pling directly from the prior PDF, and Zm
i
k represents the i-th particle of the k-th iteration.

Step 3. Prediction of particle sets based on observations
The prediction based on the observation, for each particle is computed as

Xm
i
k = Xtk−1 + Zm

i
k

(∫ tk
0 µ(s; Θ)ds−

∫ tk−1
0 µ(s; Θ)ds

)
(17)

where Xm
i
k is the i-th predicted value of the k-th iteration for the current particle.

Step 4. Calculation of particles weights
The weight of each particle is calculated as

Wi
k = Wi−1

k

P
(

Xtk

∣∣∣Zm
i
k

)
P
(

Zm
i
k

∣∣∣Zm
i
k−1

)
q
(

Zm
i
k

∣∣∣Zm
i
k−1, Xt1;k

) = exp
(
−
(

Xtk − Xm
i
k

)2
)
+ ε. (18)
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Here, Wi
k is the weight for the i-th particle of the k-th iteration, and ε is a small positive

real number.
Then, the normalization of each weight is computed as follows:

∼
Wi

k =
∑M

1 Wi
k

Wi
k

(19)

where
∼

Wi
k is the normalized weight for the i-th particle of the k-th iteration.

Step 5. Resampling based on genetic algorithm optimization

The normalized particle weights
∼

Wi
k obtained in step 4 are first processed by binary

coding. Selection operations can avoid reducing good genes and improve global conver-
gence. In this paper, we choose the roulette selection method, i.e., generate a random
number fi between 0 and 1. When fi falls in the particle interval, the particle will be copied
as a parent particle. In the selection operator operation, αF is the adaptation rate, and the
following equation holds:

M = N ∗ αF. (20)

The following crossover operation is performed, and the crossover method used in
this section is a single-point crossover, by performing this operation, the searching ability

of the genetic algorithm can be greatly improved. In this operation, two particles
∼

Wk
k and

∼
Wn

k exchange some of their genes with each other in a single-point manner to produce two
new offspring particles, where k satisfy k = 1 : M and n satisfy n = 1 : N −M. αc is the
crossover rate and satisfies the following equation:

N −M = αc ∗ N. (21)

After performing the mutation creation, a decimal decoding operation is performed
on the parent and child particles to obtain the weights Zmk .

Step 6. Output
The estimated value of the adaptive drift coefficient λ is calculated as

λtk = E
(
Zmk

)
(22)

where λtk is the estimated drift coefficient at time tk and E() denotes the expectation.
Based on the estimated adaptive drift coefficient at moment tk, the predicted value of the
degradation process can be expressed as

Xpk = Xpk−1 + λtk

(∫ tk
0 µ(s; Θ)ds−

∫ tk−1
0 µ(s; Θ)ds

)
+ ωtk . (23)

Here, Xpk is the predicted value for the degradation process at the time tk.

2.4. Semi-Analytic Solution of the RUL Distribution for AfLSM Prediction Models

The accurate selection of appropriate operating parameters for LIBs is essential, as
these parameters indirectly impact the prediction accuracy of RUL and the applicability
of the prediction model. In this paper, the capacity regeneration and random fluctuation
phenomena observed in the degradation process of LIBs are taken into account. To define
a health factor that considers these phenomena, the capacity degradation rate is utilized
after normalizing the available capacity. The capacity degradation rate, in this context,
represents the rate at which the capacity of the battery decreases over time, reflecting its
health condition, which is defined as follows:

SOHi =
Capi

Capini
(24)
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where SOHi denotes the health state of the lithium-ion battery of the i-th cycle, Capi denotes
the available capacity in the i-th cycle, and Capini denotes the initial capacity.

y = 1− SOHi =
Capini −Capi

Capini
× 100% (25)

In the above equation, y denotes the capacity degradation rate of the lithium-ion
battery.

In this paper, we define the RUL based on the first arrival time:

Tr = in f
{

tr : X(tc + tr) ≥ y
(

Tf

)∣∣∣y(Te) ≤ X(tc) ≤ y
(

Tf

)}
(26)

where tc is the current time of the degradation process, tr is the time of RUL, y(Te) is the
prediction starting point FPT, and y

(
Tf

)
is the set fault threshold.

Form Equations (13) and (26), it can be obtained as

ηωα(tc)(tr)
H−

1
2
+

1
α + λ(tc)

∫ tc+tr
tc

µ(s; Θ)ds ≥ y
(

Tf

)
− X(tc),

(27)

where λ(tc) is the hidden state variable at time tc, and it can be updated based on monitor-
ing data. Therefore, in order to facilitate the solution of the RUL of the prediction model,
the boundary values of the RUL should be considered, i.e., equal on the left and right sides
of Equation (27).

Therefore, our goal becomes to solve for tr in the equation

ηωα(tc)(tr)
H−

1
2
+

1
α + λ(tc)

∫ tc+tr
tc

µ(s; Θ)ds = y
(

Tf

)
− X(tc).

(28)

Transcendental Equation (28) has no analytical solution.

By using the Mellin–Stieltjes transform [32], the p-order moments of ηωα(tc)(tr)
H−

1
2
+

1
α

can be expressed as

E

∣∣∣∣∣∣ηωα(tc)(tr)
H−

1
2
+

1
α

∣∣∣∣∣∣
p

=

∣∣∣∣∣∣η(tr)
H−

1
2
+

1
α

∣∣∣∣∣∣
p

G(p, α)γ

p
α 0 < p < α, α 6= 1 (29)

where

G(p, α) =

2p+1Γ
(

p + 1
2

)
Γ
(
−p

α

)
α
√

πΓ
(
−p

2

) . (30)

Γ(.) denotes the gamma function. The gamma function is defined as
Γ(x) =

∫ +∞
0 tx−1e−tdt(x > 0).

The first-order moments of ηωα(tc)(tr)
H−

1
2
+

1
α are considered as ideal solutions and

can be obtained as

ηωα(tc)(tr)
H−

1
2
+

1
α = E

∣∣∣∣∣∣ηωα(tc)(tr)
H−

1
2
+

1
α

∣∣∣∣∣∣
1

=

∣∣∣∣∣∣η(tr)
H−

1
2
+

1
α

∣∣∣∣∣∣
1

G(1, α)γ

1
α α 6= 1. (31)

The second term on the left side of Equation (28) can be expressed as

λ(tc)
∫ tc+tr

tc
µ(s; Θ)ds = λ(tc)

[
A(tc + tr)

B − A(tc)
B
]

(32)
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where the power-law drift model µ(s; Θ) = ABtB−1 is used as the nonlinear drift function
for the performance degradation model. Then, we can solve for the PDF of the RUL tr by
calculating Equations (31) and (32), followed by the Monte Carlo simulation.

Due to the absence of a closed-form PDF for the Lévy distribution, the random
sequence generated by the fLSM is non-stationary. As a result, generating RUL values
using this random sequence and performing a Monte Carlo simulation can introduce a
significant bias. To address this issue, a transcendental equation is considered based on
the definition of the first passage time. In this approach, the PDF of the final RUL is
obtained through a combination of semi-analytical and numerical Monte Carlo simulation
techniques. This allows for a more accurate estimation of the RUL values while accounting
for the non-stationarity of the random sequence generated by the fLSM. Figure 3 provides
a schematic diagram of the approach, referred to as the AfLSM for RUL prediction. It
visually represents the steps involved in obtaining accurate RUL predictions using the
proposed methodology.
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3. Estimation of Degradation Model Parameters

Estimation of long-range dependent and self-similar processes is carried out by the
Hurst index H, which is independent of other degradation parameters. Thus, the estimation
of the Hurst index is carried out independently of other parameters. In this paper, a method
called the generalized Hurst exponent method is introduced to estimate the Hurst index
accurately. This method provides narrower confidence intervals for the estimation. The
generalized Hurst exponent is utilized to examine the scaling properties of the data by
considering the q-order moments of the incremental distribution. These moments are
associated with long-term dependence and are less influenced by outliers in the data. The
expression for the calculation of the Hurst exponent by using the q-order moment method
reads as follows [33]:

H(q) =
1
q

log

〈
|X(t + τ)− X(t)|q

〉〈
|X(t)|q

〉 (33)

where X(t) is the time series, 〈·〉 denotes the average value over the dataset, and τ denotes
the time interval. The generalized Hurst exponent becomes the Hurst exponent for q = 1.

The observed values set at [t1, t2, · · · , tk] are X = [x1, x2, · · · , xk], where k is the
number of observations. The incremental process Y of X can be written as Y1:N = [x 2 −
x1, x3 − x2, . . . . . . , xk − xk−1]. From Equation (13) combined with the new eigenfunction
method [34], the parameters of the degradation model of AfLSM can be derived. Estimates
of the parameters α, η, and µ are obtained:

α̂ = logθ0

(
ln
∣∣E(eiθ0Y1:N

)∣∣
ln
∣∣E(ei·Y1:N

)∣∣
)

= logθ0

 ln
∣∣∣∣ 1

N ∑N
i=1 eiθ0Y1:N

∣∣∣∣
ln
∣∣∣∣ 1

N ∑N
i=1 eiY1:N

∣∣∣∣
 (34)
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η̂ =
−ln|ϕ̂(1; α, β, µ, δ)|

(∆t)
H+

1
2
−

1
α

=

−ln
∣∣∣∣ 1

N ∑N
i=1 ei·Y1:N

∣∣∣∣
(∆t)

H+
1
2
−

1
α

(35)

µ̂ =
Im
{

θ0
α̂ ln|ϕ̂ (1; α, β, µ, δ)|− ln|ϕ̂ (θ0; α, β, µ, δ)|

}
θ0

α − θ0

(36)

where
ln(2θ0)

θ0
2 − θ0

= −ln
∣∣∣∣ 1

N

N
∑

i=1
ei·Y1:N

∣∣∣∣ and Im{·} indicates the imaginary part of the number.

The flowchart of the RUL prediction framework is shown in Figure 4.
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4. Case Study
4.1. Data Sets and Predictive Evaluation Indicators

In order to implement our model, we referred to open-source data from the Univer-
sity of Maryland CALCE. These datasets were obtained from an accelerated aging test
conducted on a batch of LIBs with a calibrated capacity of 1.1 Ah.

The cathode of the LIBs in the dataset is composed of lithium-ion cobalt oxide (LiCoO2),
while the anode consists of layered graphite with polyvinylidene fluoride. During the
accelerated aging test, all the Li-ion batteries were charged at a constant current of 0.55 A
until the voltage reached 4.2 V. Subsequently, they were charged at a constant current to
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maintain the voltage at 4.2 V until the charging current dropped below 50 mA. After the
above charging process, batteries CS2_33 and CS2_34 were discharged at a constant current
of 0.55 A, while CS2_35, CS2_36, and CS2_38 were discharged at a constant current of
1.1 A until the voltage of the LIBs dropped to 2.7 V. The test concluded when the capacity
of the LIBs reached the end-of-life threshold, indicating the point at which they were no
longer usable.

In the context of the paper, it is stated that when the capacity of a lithium-ion battery
decreases by 20–30%, its performance experiences an exponential decline. As a result, the
battery is deemed unreliable once it reaches this threshold. For the purpose of this study,
the end-of-life threshold for the LIBs is defined as 76%. This means that when the capacity
of a lithium-ion battery drops to 76% of its initial capacity, it is considered to have reached
the end of its useful life and is no longer reliable for practical applications.

In order to assess the effect of the RUL prediction model, four evaluation criteria,
including health degree, cosine similarity, mean absolute error, and root mean square error,
are calculated to reflect the accuracy of RUL results.

The HD is calculated from Equation (37). Higher values of the health degree corre-
spond to better results of the RUL prediction model:

HD = 1− ∑num
i=1
(
ri − ri

*)2

∑num
i=1 (ri − r)2

(37)

where ri represents the predicted value of RUL from the ith predictive starting point, ri
* is

the actual value of RUL at the ith predictive starting point, r is the mean value of ri, and
num is the number of predictions.

To measure the degree of similarity, we use the cosine similarity method, which
calculates the cosine between two vectors, i.e.,

COS =
∑num

i=1
(
ri × ri

*)√
(∑num

i=1 ri)
2 ×

√
(∑num

i=1 ri
*)

2
. (38)

The MAE is calculated using Equation (39); the smaller its value, the higher the
prediction accuracy of the RUL model:

MAE =
1

num

num
∑

i=1

∣∣ri − ri
*
∣∣ (39)

Smaller values of the RMSE indicate higher accuracy:

RMSE =

√
1

num

num
∑

i=1
(ri − ri

*)
2. (40)

4.2. RUL Prediction Based on the AfLSM Model

The RUL of the lithium-ion battery is predicted at specific cycle intervals: 321, 361, 401,
441, and 481 cycles. To account for the uncertainty associated with randomly fluctuating
health state data, we employ Monte Carlo simulation with 500 simulation trials.

In order to assess the impact of updating the nonlinear drift coefficient on the predic-
tions of the RUL, two models are considered. The first model, referred to as M1, corresponds
to the model proposed in Section 2. The second model, denoted as M2, does not consider
the nonlinear coefficient drift. The determination of the nonlinear drift coefficient for the
M2 model can be referenced from literature sources [25,26].

Figure 5 displays the prediction results of the two models, and Table 1 presents detailed
data related to these results. The parameter estimation outcomes for both models are listed
in Table 2. Furthermore, Table 3 provides the results of the evaluation indicators.
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Table 1. Prediction results of the algorithm based on CS2_36 lithium-ion battery data.

Start Cycle Method Actual RUL Predicted RUL 95% Confidence Interval Error

321 M1 216 221 [207,236] 6
321 M2 216 229 [214,245] 13
321 M3 216 289 [238,372] 73
321 M4 216 278 [238,402] 62
321 M5 216 264 [207,236] 48
321 M6 216 262 [214,245] 46

361 M1 176 180 [167,192] 4
361 M2 176 189 [175,203] 13
361 M3 176 231 [192,310] 55
361 M4 176 239 [196,348] 63
361 M5 176 168 [175,203] −6
361 M6 176 241 [186,298] 65

401 M1 136 141 [129,151] 5
401 M2 136 149 [138,157] 13
401 M3 136 174 [136,230] 38
401 M4 136 172 [128,238] 36
401 M5 136 162 [133,187] 26
401 M6 136 168 [130,240] 32

441 M1 96 101 [92,110] 5
441 M2 96 88 [80,97] −8
441 M3 96 117 [91,157] 21
441 M4 96 110 [80,172] 14
441 M5 96 93 [79,106] −3
441 M6 96 121 [100,156] 25

481 M1 56 61 [54,68] 5
481 M2 56 52 [46,59] −4
481 M3 56 70 [60,92] 14
481 M4 56 75 [70,98] 19
481 M5 56 46 [34,61] −10
481 M6 56 76 [54,68] 20

Table 2. Parameter estimates for the AfLSM prediction model with power-law drift term.

Start Cycle A B H α β η µ

321 0.006699 0.508152 0.9090 1.999982 0 7.5267 × 10−06 0.0003946
361 0.005570 0.545937 0.9300 1.999835 0 7.6433 × 10−06 0.0004058
401 0.003967 0.613273 0.9500 1.999986 0 8.2174 × 10−06 0.0004322
441 0.002917 0.672244 0.9624 1.999985 0 8.6561 × 10−06 0.0004889
481 0.001761 0.766351 0.9693 1.999987 0 8.4561 × 10−06 0.0004891
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Table 3. RUL prediction results evaluation for different methods.

HD COS RMSE MAE

M1 0.9885 0.9999 6.0663 6.0000
M2 0.9617 0.9990 11.0725 10.2000
M3 0.4148 0.9981 43.2759 36.4000
M4 0.2868 0.9996 47.7724 43.0000
M5 0.7973 0.9933 25.4716 18.4000
M6 0.4247 0.9983 42.9045 40.0000

From Figure 5, it is evident that the predicted RUL values closely align with the
actual RUL values, with the majority of estimated RULs falling within the 90% confidence
interval. As the observation time increases, the predicted RUL values converge towards the
actual RUL values, and the corresponding PDF curves become increasingly elevated. This
indicates that as more observational information and historical data are incorporated, the
RUL prediction accuracy improves. Additionally, the higher confidence level associated
with the same length of confidence interval enhances the reliability of the prediction results,
facilitating real-time RUL prediction.

According to Table 3, model M1, which takes into account the adaptive drift of
nonlinear coefficients, exhibits smaller values of RMSE and MAE, as well as larger values
of COS and HD, compared to the M2 model, which does not consider the nonlinear drift.
These results indicate that the prediction model’s overall performance is improved when
the nonlinear coefficients are adaptively updated along the degradation path.

4.3. Comparison and Discussion with Other Methods

In order to emphasize the objectivity and superiority of our results, the method of RUL
prediction is compared with representative state-of-the-art methods based on stochastic
processes and advanced deep learning models. The corresponding prediction models are
shown below.

(1) Method 3 (M3): This is the EMD-LSTM model [35,36], and we also quantify the
uncertainty of the MMA-LSTM model by using the Dropout method. The optimal
value of Dropout was set to 0.3, the initial learning rate was set to 0.01, the maximum
step size was 210, the learning rate reduction factor was 0.4, and the learning rate
period was 40.

(2) Method 4 (M4): This is the DCNN model [37,38], and we have also quantified the
uncertainty of the DCNN model by using the Dropout method. The optimal value of
Dropout is set to 0.2.

(3) Method 5 (M5): This is the fBM model without adaptive drift coefficient λ, and the drift
function is µ(s; Θ) = ABtB−1. The degradation model satisfies the following formula,

X(t) = X(0) + λ(t)
∫ t

0 ϕ(s; Θ)ds + ηBH(t). (41)

Here, BH(t) represents the fractional Brownian motion, η is the constant diffusion
coefficient, and λ(t) is an adaptive time-varying drift coefficient.

(4) Method 6 (M6): This is the Wiener model with adaptive drift coefficient λ, and the drift
function is µ(s; Θ) = ABtB−1. The degradation model satisfies the following formula:

X(t) = X(0) + λ(t)
∫ t

0 ϕ(s; Θ)ds + ηB(t) (42)

where B(t) represents standard Brownian motion, The related diffusion coefficient η is
assumed to be a constant, and the drift coefficient λ(t) can be updated based on the damage
evolution process.

Figure 6 illustrates the prediction results of the different models, whereas Table 1
provides corresponding data. The values of the various model assessment indicators are
presented in Table 3. The qualitative assessment of the RUL prediction results in Figure 6
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indicates that the M1 model provides estimates closer to the true values compared to
the other three models. Table 3 confirms this, as the M1 model achieves the smallest
MAE and RMSE metrics among all models, indicating higher accuracy in RUL predictions
compared to the other models (M3–6). The larger HD value for the M1 model suggests
better fitting of the predictions. Additionally, the COS value obtained by M1, closer to 1,
indicates greater similarity between the predicted and actual RUL values, resulting in a
more stable prediction performance. Furthermore, in Figure 6b, the λ-performance region
demonstrates improved prediction accuracy of the AfLSM degradation model for RUL
prediction incorporating capacity regeneration and random fluctuation phenomena.
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Moreover, to assess the uncertainty of the RUL prediction results quantitatively, the
PDF curves of the prediction outcomes are thoroughly analyzed and compared throughout
the entire performance degradation process of LIBs. The comparison results between the
RUL predictions of M1 and those of M3, M4, M5, and M6 are presented in Figures 6 and 7.
Observing these figures, it is evident that the PDF curve of the proposed method, referred
to as M0, exhibits greater height and steepness compared to the corresponding PDF curves
of the other methods. This observation suggests that the RUL prediction model proposed
in this paper achieves higher prediction accuracy and reliability.

To conduct a comprehensive comparison of the single-point RUL prediction results
across different methods, the predictions and corresponding PDF curves are separately
analyzed at various observation moments during the degradation of LIBs. The analysis
results are depicted in Figure 7. Specifically, Figure 7a–e present the prediction results for
five different observation cycle periods: 321, 361, 401, 441, and 481. Upon examining these
figures, it is evident that the M1 model proposed outperforms the four models M3–6. This
superiority is reflected in the M1 model RUL predictions, which are closer to the actual
values indicated by the black dashed lines.

To quantitatively compare and analyze the prediction performance of different models,
the logarithmic relative error of the prediction outcomes is calculated using Equation (43):

LRE = ln

(∣∣ri − ri
*
∣∣

ri
*

)
(43)

where ln(.) is the natural logarithm operation. LRE (logarithmic relative error) represents
the logarithmic relative error of the i-th observation. A smaller value of LRE indicates a
lower level of prediction error, thus indicating a higher degree of precision in the prediction
outcome. To conduct a systematic analysis of the LRE errors of the prediction results, box
plots were generated to illustrate the distribution of LRE errors for the four prediction
models. The box-and-whisker plot representing this analysis is displayed in Figure 8.
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Figure 7. RUL prediction and PDF analysis for M1, M3, M4, M5, and M6 at different observation
times. (a) RUL prediction and PDF analysis with a prediction starting point of 321 cycles; (b) RUL
prediction and PDF analysis with a prediction starting point of 361 cycles; (c) RUL prediction and
PDF analysis with a prediction starting point of 401 cycles; (d) RUL prediction and PDF analysis
with a prediction starting point of 441 cycles; (e) RUL prediction and PDF analysis with a prediction
starting point of 481 cycles.
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To conduct a systematic analysis of LRE in the prediction results, box plots were
generated to illustrate the distribution of LRE errors for the four prediction models. The
box-and-line plot is presented in Figure 8. Notably, the SELF method proposed in this
paper exhibits a clear minimum median in the box plot and a smaller interquartile range,
indicating a more concentrated central tendency and lower volatility in the prediction error
distribution compared to the other three assessment methods. Conversely, although the
DCNN method has the smallest box plot, the presence of outliers suggests high fluctuations
in the prediction errors, leading to unstable prediction results. The EMD-LSTM method
and the Wiener method demonstrate larger central values, despite having slightly smaller
box plots compared to our proposed method, indicating relatively lower overall accuracy.

The EMD-LSTM method, while capable of capturing the degradation trend from
historical data, produces smooth predictions that fail to reflect the characteristics of capacity
regeneration and stochastic fluctuation phenomena. The DCNN method typically relies
on abundant training data and structured patterns for effective learning and prediction,
making it more challenging to handle data with significant stochastic fluctuations. More-
over, the classical stochastic process methods, such as the fBM model and Wiener model,
overlook non-Gaussian degradation resulting from the capacity regeneration phenomenon
in lithium-ion battery processes. As the number of cycling cycles increases, the accuracy of
all methods improves. However, the proposed method consistently demonstrates higher
accuracy in comparison with other methods, thereby establishing its superiority in RUL
prediction.

5. Conclusions

Numerous studies have been conducted to predict the RUL of LIBs. However, the
degradation process of battery capacity is non-monotonic during charging and discharging,
posing challenges to the accuracy of RUL prediction for LIBs. The presence of self-capacity
regeneration and stochastic fluctuations further complicates the prediction by affecting the
average degradation trend of the battery. Moreover, these phenomena are inherent in the
daily usage of each battery.

To address these challenges, we propose a lithium-ion battery performance degrada-
tion model based on AfLSM optimized by a genetic algorithm. This model offers more
flexibility in characterizing properties such as long-range dependence, non-Gaussianity,
and heavy-tailed distributions of the stochastic incremental process. Additionally, the
model enables adaptive updates of nonlinear drift coefficients based on the degradation
path to accommodate different operating conditions. The PDFs of RUL obtained using the
Mellin–Stieltjes transform combined with Monte Carlo simulation are more accurate than
the results obtained from direct Monte Carlo simulation.

The results obtained from comparative experiments demonstrate that the proposed
model achieves higher RUL prediction accuracy for Li-ion batteries, taking into account
the capacity regeneration phenomenon and stochastic fluctuation phenomenon, when
compared with stochastic process-based and deep learning-based methods. These findings
highlight the effectiveness of the proposed model in addressing the unique challenges
associated with lithium-ion battery degradation and improving RUL prediction accuracy.
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Abbreviations

RUL Remaining useful life
LIBs Lithium-ion batteries
LRD Long-range dependence
PDF Probability density function
AfLSM Adaptive fractional Lévy stable motion
LSTM Long short-term memory networks
fBM Fractional Brownian motion
DCNN Deep convolutional neural networks
fGC Fractional generalized Cauchy
EMD Empirical Mode Decomposition
HD Health degree
COS Cosine similarity
RMSE Root mean square error
MAE Mean absolute error
SRD Short-range dependence
fLSM Fractional Lévy stable motion
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