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Abstract: In this paper, we investigate properties of solutions to a space-time fractional variable-
order conformable nonlinear differential equation with a generalized tempered fractional Laplace
operatorby using the maximum principle. We first establish some new important fractional various-
order conformable inequalities. With these inequalities, we prove a new maximum principle with
space-time fractional variable-order conformable derivatives and a generalized tempered fractional
Laplace operator. Moreover, we discuss some results about comparison principles and properties
of solutions for a family of space-time fractional variable-order conformable nonlinear differential
equations with a generalized tempered fractional Laplace operator by maximum principle.

Keywords: maximum principle; fractional variable-order conformable derivative; generalized
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1. Introduction

Owing to fractional calculus linkage with memory, fractional differential equations
have been applied successively to the modeling of physical, chemical, engineer and eco-
nomics processes. Examples include fluctuations of the external pressure fields in the
anomalous diffusion model [1], biological population model [2], process of geographical
data [3], the complex dynamics of financial processes [4], etc.

Maximum principle is a useful tool to study fractional partial differential equations
(FPDE). By using maximum principle, some important properties of solution without
specific expression for FPDE can be indirectly or directly produced. Luchko [5] formulated
a maximum principle for a FPDE in an explicit form in 2009. In 2016, Liu, Zeng and Bai [6]
proved the maximum principle for FPDE with a space-time multi-term Riesz—Caputo
variable-order derivative. They also discussed the uniqueness of solutions for FPDE with
space-time multi-term Riesz-Caputo variable-order derivative and continuous dependence
of solutions for IBVP. In 2020, Zeng et al. [7] established the space-time multi-term fractional
variable-order maximum principles. Applying the maximum principle, they investigated
the generalized time-fractional variable-order Caputo diffusion equations and fractional
variable-order Riesz—Caputo diffusion equations. For other new developments of the
maximum principle, the reader can refer to [8-16] and the references therein.

In 2018, Deng, Li, Tian and Zhang [17] gave the mathematic definition of the tempered
fractional Laplace operator. In 2018, Sun, Nie and Deng [18] advanced the finite difference
discretization for the tempered fractional Laplace operator by the weighted trapezoidal
rule and bilinear interpolation. On this basis, Zhang et al. [19] proposed a new type of
generalized tempered fractional p-Laplace operator in 2020. Zhang, Deng and Fan [20]
established the finite difference schemes for the tempered fractional Laplacian equation
on the generalized Dirichlet type boundary condition. Using the direct method of moving
planes, Wang et al. [21] studied parabolic equation with the tempered fractional Laplacian
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and logarithmic nonlinearity. Zhang, Deng and Karniadakis [22] presented new computa-
tional methods for the tempered fractional Laplacian equation on the homogeneous and
nonhomogeneous generalized Dirichlet type boundary conditions. Other new develop-
ments of the tempered fractional Laplace operator can be found in [23-31]. The conception
and properties of fractional conformable Caputo and Riemann-Liouville derivatives were
formulated by Jarad et al. [32]. However, there are few studies on the maximum principle
and its application to fractional various-order conformable Caputo derivatives. In fact,
the variable-order operator has been applied successively to complex diffusion model-
ing, such as the processing of geographical data [3], signature verification [33], financial
processes [4], etc. In addition, the studies on fractional conformable derivatives did not
mention a generalized tempered fractional Laplace operator.

Intrigued by past works, in this paper we investigate the following space-time frac-
tional variable-order conformable nonlinear differential equation with a generalized tem-
pered fractional Laplace operator on (c,d) x [T, Ty ]:

9,0 €(4,0
(50, Y@, 0) - |(COD5 ™ Yo, + (D" (o, o)]
+(—=A—Ap)2w(9,0) — e(8,0)w(8,0) = F(9,6,w).

M

€(9,0)
Cﬁ(l?ﬂ) D,
respect to the variable 6 of order 0 < B(8,0) < 1. are
left and right fractional variable-order conformable Caputo derlvatlves (LFVCCD and
RFVCCD) to the variable ¢ of order 1 < 0(9,0) < 2, respectively. (—A — )Lf)z is a
generalized tempered fractional Laplace operator and e(9, 6) is a continuous function.
In this paper, we focus our attention on the maximum principle for Equation (1).
We emphasize that the introduction of variable-order derivatives and generalized tem-
pered fractional Laplace operator bring the main difficulties to prove our main result,
see Theorem 1. To handle these difficulties, we first propose the fractional variable-order
conformable derivative and extend the constant-order derivative to the variable-order
derivative. Then, we prove the extreme principles of fractional variable-order conformable
derivative (see Lemmas 1 and 2). Finally, we prove the maximum principle of a space-time
fractional variable-order conformable nonlinear differential equation with a generalized
tempered fractional Laplace operator (see Theorem 1). The main result can be stated
as follows.

Here, is left fractional variable-order conformable Caputo derivative with

CU(&G)D e(9,6) and €700 D 6(199)

Lemmal. Let0 < e(9,60) < 1,0 < B(8,0) <1,V60 € [T, Ty]. If f € CL ([T, Ta]), 6 € (T, T1]
is its maximum, then the inequality

e(8, _ (1990) (1990)
<C/;(19,6)D9(799)f> (60) > i /51(19 o <(90€(l9,)90) ) (f(60) — f(T)) >0 (2)

holds.

Lemma2. Let0 < €e(9,0) <1,1<0(8,0) <2,V € [c,d| If f attains its maximum value at
¥ € (T, Ty), then
M) if f € C2.(le,d])

e(80,0)\ ~7(%00)
(005" ) oy < - )= C%‘”wm> (F(80) — £(e)) <0 ®

[(2—-0(80,0)) \  e(%,0)

2)if f € C,(led)
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. . _ €(80,0) a(6o,0)
(Qr(&,a) D, o f> (9) < _ré(fo;t()%, ;)) ((d 6(119929) ) (f(80) — f(d)) <0 4)

hold.

Theorem 1. (Maximum principle) Assume F(8,0,w) < 0and e(9,0) < 0, V(9,0) € U. If
w € H(U) satisfies the space-time fractional variable-order conformable nonlinear differential
equation with a generalized tempered fractional Laplace operator (18), then

9.0) < 9 0 0 8,0
w(9, )_maX{g@;ﬁ( ),93[1%1]571( )'eéﬁ‘ﬁ’%ﬂ@( ),0}, V(8,0) el (5)

holds.

The remainder of this paper is as follows: Some definitions are given in Section 2. The
main results are derived and proved in Section 3. In Section 4, the maximum principles are
utilized to gain the comparison principle, the uniqueness and continuous dependence of
solution of space-time fractional variable-order conformable nonlinear differential equation
with a generalized tempered fractional Laplace operator.

2. Some Definitions

In this section, the definitions of fractional variable-order conformable Caputo deriva-
tives and generalized tempered fractional p-Laplace operator are given.

First, we shall give the definitions of fractional variable-order conformable Caputo
derivatives.

Definition 1. Let e : [c,d] x [T, T;] = Ry = (0,00) and ¢ : [c,d] x [T, Ty| — (m —1,m).
(D If f € CI.([c,d]) with m € N, the definition of LFVCCD on variable-order o (9,6) is

Co(8,8) ~€(80)

c D19 f(ﬁ)
1 8 (9= c)e®8) _ (5 — ¢)e(60) m=o(8,8)-1 mTe(®0) £ (s) ©)
~ T(m—0(9,0)) / e(9,0) (s — c)1-¢(00) ds.

) If f € CZy([e, d]) with m € N, the definition of REVCCD on variable-order o'(8,6) is

Co(8,6) Dd;(ﬂﬂ) £(9) @)
iy (RS (R AR O
- T(m—0(8,0)) Js €(9,0) (d—s)le@n "

with m = [0(8,0)] + 1, [7(8, 8)] is the biggest integer of no more than o'(8, 0), (. T¢(%?) f(9) =
60— C)lfe(z?,e)f/(e)’ T;(M)f(@) =(d- 9)176(0,9)](/(6)’ 1C11T€(19,9) _ CTe(ﬂ,G)CTe(ﬂ,Q). ) .CTe(ﬂ, )

m times
mps0) _ @O e@0) 7O cm i) = {f : [c,d] - R| " ITf € cI[c,d]} and
m times

Coiled] = {f : [cd] = R|"7'Tf € I[c,d]} (Ie[c,d] and ¢I[c,d] are defined in
Definition 3.1 in [34]).

Remark 1. If variable-order o(8,0) = B(constant) in the Definition 1, the LFVCCD became left
fractional conformable Caputo of order B [32], i.e.,
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pf e = L [F(O=T)F = =T\ T
o - (e ) e

If variable-order o (8,0) = o (constant) in the Definition 1, the LFVCCD and RFVCCD became
left and right fractional conformable Caputo derivatives of order o [32], i.e.,

€ 1 O /(9 —c)f—(s—c)e\" T mTef(s
COL0) = oy [ ()

I'(m—o
and
op € gy — (D" A (d=8) = (d—s)T\"TT MTEf(s)
DL = g (e ) e
respectively.

Very recently, Zhang, Hou, Ahmad and Wang [19] proposed a new type of generalized
tempered fractional p-Laplace operator defined by

[9(8) — pW) P 2[p(8) — 9(v)]
CnspP.V. . e/\f(|§*y|)|l9_y|”+sp

(=D = Ap)pp(9) = dy.

When p = 2 and f is an identity map, the above-mentioned generalized tempered fractional
p-Laplace operator becomes the tempered fractional Laplace operator (—A — Ay) . When

¢ € C'L N L%, the tempered fractional Laplace operator defined by

loc

A AN (9 — ¢(9) — ()
(—A—Ap)3p(9) = C”""P'V‘/REAMy>|ﬂ—y|1+fxdy’ ®)
1
with @ € (0,2), Cpa = % P.V. refers to the Cauchy principal value, A is a
sufficiently small positive number, f is nondecreasing with respect to |¢ — y| and
_ 1 1+ ¢@)l
X — {(peLloc Rmdy<oo . )

3. Main Result

In this part, the extreme principles of these variable-order derivatives and the maxi-
mum principles of Equation (18) are established and proved.

Next, we will establish some extremum principles of LFVCCD and RFVCCD to prove
our maximum principle.

Proof of Theorem 1. Let

h(8) = f(6o) — f(8) >0, 0 € [T, Tl (10)
Obviously,
(1) h(0) T([ ,T1]),h(0) > 0,0 € [T, Tn];
) h(90 = (1990 =0; 0o
3) < 9,0) ;( 1) (o) = (C?(ﬁ,G)D;( , )f> (6).
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By calculation, we notice that
C 19,9 5(19,9)
( FP9p, h) (60)
6
1 (0 = Ty o) — (g —yelom\ P
= T = (8,80)) (8, 60) ©
T (11)

I ICA /90 (8 — T)E(®80) — (7 — T)e(@0) \ PO
I'(1-p(", 60)) e(9,60o)

(¢ —T))"Tp(2)dg.

_ 1 (8o — T)€(80) —B(8,60)
_1"(1—[5(19,90))< 06(19,90) ) h(T)

B B(3,60) /90 (6 — T)¢ (8,60) _ (- T)e(lwo) —B(9,00)—1
I(1-p(", 90)) e(8,60)

(¢ — T)8)1p(0)dg

1 (9 7,1—.)6(19,90) 7ﬁ(19/90)
<_T(1—l3(l9/90))( o0 ) o

<0.

We obtain

(9, _ ye(8.00) \ ~PO)
(C?”'G)Dg(w)f)wo)_r@_;w,eo))((%ew,éo) ) ((B0) ~ F(T)) > 0.

O

Remark 2. If €(9,0) and B(9,0) reduce to constants 0 < € < 1and 0 < p < 1, Guan and
Wang [15] obtained a similar result as

€ 1 (g —T)<\ P
(Boar) @) > gy (D) (@) (1) 20

€
Proof of Theorem 2. Let
h(9) = f(0) — f(®) >0, &€ [cd]. (12)

Obviously,
(1) 1(8) € C2.([c,d]),h(8) > 0,9 € [c,d];
(2) h(8o) = ' ( 190)) =0;

3) <C17199 Mh (9) =

<C¢7 (9, 9 6 h)

<CU (29 19(ﬂ,9)f> (9),

(C” ¢9p ,%“‘”f) ().
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By calculation, we notice that

9,0
(CZ @) )h) (80)

-1 (80 — )@ — (g — )0 \ IO e
T (2"(190"’))( e(9,0) (¢ — o)t =N/ ()

1—0(8,0) /l’o ((190 —c)¢(f) — (7 — c)<(®of) > ~(o0f) WD)

[(2—0(8,0)) Je €(0,0)

B r(z - 0(190/ 9)) 6(190/ 9)

0(9,6)(c(80,8) — 1) %0 [ (8 — )00 — (7 — c)etoo)\ 7O
T2 = 0(%,0)) / e(80,0)

(6 =)™ h()dg
o(0,0) -1 <(190 — ¢)(®00) ) —‘7(190,9)}1((:)

. _ e(® ’9) *‘7(190/9)
B d%ﬂ)](Woc)O ) ho)

ST2—0c(0,0)\  €(0,0)
> 0.

We obtain

. . B _e(80,0)\ "7 (%00)
& (”)Da(“)f)wwsr?z(f();-g()am;))((ﬂoew?,e) ) i =e

<C(T 199 e h

4 (14)

170’(190,9)
d 190 d g) —e(00,0) 1,
( 190, ) (d =) In(g)

2 g 190,
%

1—0(8,0) d((d—9 )6(1909 (d— Q) (60,6) —0(8,0) /
CT(2- (7(1;)0,9)) ./190< : (8, 0) ) h'()dg.

e(0,0)\ (%0 P)
(8, 6) — 1 ((d— %) (;’ 9)> h(d)

T T2 —0(80,0)) (8,6

+

(80,0)(c(80,0) —1) [ [ (d — )08 — (d — g)e(B0b) —o(80,0)~1
r(2—17(190 6)) /190 e(80,0)

(d — ) =1p()dg
e(do, —0(89,0)
o(8,6) 1 <<d—ﬂo> <)ﬁ 9)> n(d)

- 1"(2—0*(190,9)) 6(190,9
> 0.
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We obtain

) B o \e(80.0) —0(%,0)
(ch,e)DM<ﬂf9>f>wo><—rg'2<f°;f9({90,;))<<d . ) (F(20) = f(@) <0.

O

Remark 3. If €(9,6) and o(9,0) reduce to constants 0 < € < land 1 < ¢ < 2, Guan and
Wang [16] obtained a similar result as

(051 0) < s (B

)U(f(ﬂo) () <0

and

-1 ((d—ﬂo)e

(D4ar) (00) <~ (L) () = s <.

Lemma3. Let0 < €(9,60) < 1,0 < B(8,0) <1,V60 € [T, Ty]. If f € CL ([T, Ta]), 6 € (T, T1]
is its minimum, then the inequality

(6, - 6(19/90) _,3(‘9190)
(C?”'”De(wf><9°)§r(1/slw,eo))((eoe(ﬂT,)ew ) lBo) =71} =0 )

holds.
Lemma4. Let0 < e(8,0) <1,1 < 0(8,0) <2,V9 € [c,d]. If f attains its minimum value at

0 € (T, Tq), then
W' f € C.(lc,d)

(9, . _ \e(80,0) —o(d09)
(Cé’”'%ﬁ(”)f><ﬁo)2—r('z(ljoif%o,eg)<(ﬂoe<af)),e> ) i) =0 -

2)if f € C2,(led)

. B - e(80,0) —0o(89,0)
(CW’”Dd,ﬂ“"”f)(ﬂo>2rfz(foif%&;))((d ) ) i = = "

hold.

Remark 4. If €(9,60) and B(9,60) in Lemma 3 reduce to constants 0 < € < 1and 0 < p < 1,
Guan and Wang [15] obtained a similar result as

€ 1 (g — T)\ P
(B0br) @) < s () (@) - sy <o

Ife(9,60) and (9, 0) in Lemma 4 reduce to constants 0 < € < land 1 < o < 2, Guan, Wang and
Xu [16] obtained a similar result as

(i) e 2 ~ 2= (=) irte - e 20
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and

-1 ((dﬁo)e

(“Dasf) 00) 2 = () st - ap 2o

Now, we will discuss the following space-time fractional variable-order conformable
nonlinear differential equation with a generalized tempered fractional Laplace operator on
the initial-boundary-value condition

9,0 ,0
(CW'G)DZ( )> w(8,0) - [(C”(‘? Mpy" )) w(9,0) + (Cff(l’ﬂ)Dd,fsw’e))w(ﬁ, 9)}

+(=A—Ap)2w(8,0) — e(9,0)w(8,0) = F(8,6,w). (8,0) e U
w(8,T) = §(8), 9 € (c,d), (19
w(c,0) =g1(0), 0 € [T, T,
w(d,0) = g2(6), 6 € [T, Ti].
where ¢(8,0) is bounded on [c,d] x [T, T1], U = (¢,d) x (T, Ty], U = [c,d] x [T, T1] and
§ = ([e,d] x{T} U{e} x [T, Ty] U{d} x [T, Ty)).

Next, we will prove the maximum and minimum principle of Equation (18). Denote

H(U) = {w(¥,0)| w(8,0) € C*'(U),w(8,0) € C(U)}. (19)

Proof of Theorem 1 (Maximum principle). Arguing by contradiction, if (5) is false, then
w(¥, 0) attains its maximum at point (8,0) € U and

8,0) > 9), ),0} =N >0. 20
w(9,0) > max { max $(8), max g1(0), max 2(0),0} = (20)
Define the auxiliary function

0T —(0-T)

2(9,60) = w(0,0) + 51—,

(9,0) e U.

where 6 = w(9,0) — N > 0.
From the definition of &(8,0), we obtain

£(9,0) < w(8,0) + g (9,0) € T,

and
2(8,6) > w(3,0) = N+6> 0 +w(8,6) > £(6,0) + 2, ¥(8,6) €S,

According to the last inequality, ¢(9,6) cannot be attain a maximum on S. Let
§(61,61) = max_g(8,0), then
(8,0)el

&(91,01) >¢(8,0) >56+N > 0.

A2 _ (81,601) — ¢(9,61)
(-A=Ap)2E@®,0)| , ) =CuaP V. [ Ao l9|wdy > 0. (1)

From the results of Lemmas 1 and 2, we obtain

CB(8,0) (00 S
PN D" (9,0 2
o0 a9 0 <o, (22)
(81,61)
@0 p, a9, ) <o.
(81,61)
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By calculation, we obtain

cpea <) (6T —(0-T)
T 0 2 T;

(23)
— _e(,0)P®O1 (g _ )1-<(20)B(20) 0 ['(2—¢€(9,0)) .
/ 2T, T(3—€(9,8) — B(8,0))
Applying (21)—=(23), we obtain
e(8,0 0,0
(C?‘”)De( )>w(19,9) = KC? @0) b >)w(19,9) + (C”WDd;(‘“’))w(ﬁ,e)]
(191,91) (l9lr91)
+ (=D —Ap)2w(9,0) — e(8,0)w(8,0) — F(9,0,w)
_ _ 1) F(Z*G(ﬁl,el))
> e(0q,0,)P0101) -1 (g, — T)1-e(01.01)p(61,61) —_ (24)
= ey =T 2T, T(3—e(81,01) — B(61,01))
T, —(6,—T
- 6(191,91)(5(1 - 1éTll)>
>0,

which is not in accordance with (18). Theorem 1 holds. [

Analogously, the following minimum principle holds.

Theorem 2. Assume F(8,0,w) > 0and e(9,0) > 0,V(8,0) € U. If w € H(U) satisfies the
space-time fractional variable-order conformable nonlinear differential equation with a generalized
tempered fractional Laplace operator (18), then

w(9,0) > min{ min ¢(¢), min f), min 0),0}, V(8,0)ecU
( ) ! {ﬂe[i,d} ( ) 96[7},T1]g1< ) Ge[I}L]gz( ) } ( )
holds.

4. Application of Maximum Principle

In this part, some results of space-time fractional variable-order conformable nonlinear
differential equation with a generalized tempered fractional Laplace operator will be
obtained by the maximum principle.

Theorem 3. Let ¢p(8) < 0,8 € (c,d) and g1(0) < 0,£2(0) < 0,0 € [T, Ty1]. If F(8,6,w) <O,
e(9,0) <0,Y(8,0) € Uand w(9,0) € H(U) is a solution of (18), then

w(8,0) < 0,(8,0) € L.

Theorem 4. Let ¢p(8) > 0,9 € (c,d) and g1(0) > 0,£2(6) > 0,0 € [T, Ty1]. If F(8,6,w) > 0,
e(8,0) > 0,V(8,0) € Uand w(9,0) € H(U) is a solution of (18), then

w(9,0) >0,(8,0) € U.
According to Theorem 3 and 4, the following Remark holds.

Remark 5. Let ¢(0) = 0,9 € [a,b] and g1(0) = g2(0) = 0,0 € [T, Ty]. If F(9,0,w) = 0,
e(9,0) =0,Y(8,0) € Uand w(9,0) € H(U) is a solution of (18), then

w(8,0) =0, (8,0) € U.

Theorem 5. Let 371; +e(8,0) <0,Y(9,0) € U. Then, (18) has at most one solution w(x,0) €
H(U).
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Proof. Let wy, w, € H(U) be two solutions of (18) and

w(8,0) = w1 (9,0) — wa(8,0), (8,0) €U

Then,
9,0
(C?(ﬁ,@)D;( )>Z()(l9, 9) — |:<Cg(l9 9) Dﬂ( ) _I_ (C(T ) (19 9):|
+(—=A=Ap)2w(8,0) — e(8,0)w(8,0) = F(8,60,w;) — F(8,9, wz) (8,0) € U,
w(8,T) =0, g€ (cd), (25)
w(c,0) =0, 6 € [T, T,
w(d,0) =0, 0 € [T, T1].
By the mean value theorem, we obtain
oF , _
F(8,6,w1) — F(8,6,w2) = 5 (@) (w1 — w2) (26)
where @ = pw; + (1 —p)wp, 0 <p < 1.
. OF gy
Since 5% (@) +e(9,0) < 0and Theorem 3, combining (25) and (26), we have
w(9,0) <0, (8,0)¢eU. (27)
Analogously, employing Theorem 3 to —w(%, 0), then
—w(8,0) <0, (8,0)¢el. (28)
Therefore,
w(8,0) =0, (8,0) €U,
holds. O

Theorem 6. Let g—i +e(8,0) < 0,V(8,0) € U. If wy(8,0) and wy(8,0) are two solutions
of (18) and F (8,0, w1) < F(8,0,wy), then w1(8,0) < wy(8,6).

Theorem 7. Let w1 (9,0) and wy(98,6) be two solutions of (18) on the initial-boundary-value

conditions
w1(8,T)=¢((0), V€(cd),
wi(c,0) = g1(0), 6 € [T, T1],
wl(d, 9) = g2(0), 0 e [T, Tl],
and

wy(9,T) = ¢*(8), 9 € (c,d),
c,0)=gi6), 6c[T T,
) ), 0€lTl, T

respectively, and e(9,0) < 0. Then,

max | (,0) ~wa(8,60)] < { max I9(0) —(/)*(19)\,91?7@;1] 31(6) ~ i (0)],

ag[??] |g2(6 (0)[}

holds.
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Proof. Let w(9,0) = w(9,0) — wy(0,0), then

(Ci(l"")DZw’G)) w(8,6) — [ (CZ (2) DZ(M)) w(8,0) + (Cv(zw) D d;(ﬁ'e)) w(8, 9)}
(=A—=Ap)2w(8,0) — e(8,0)w(9,0) =0, (8,6) € U,
w(8,T) = §(8) — ¢*(6), 8 (cd), ®)
w(c,0) = g1(0) — g7 (6), 0 € [T, T,
w(d,0) = g2(0) — 83(6), 0 € [T, Tl

By Theorems 1 and 2, then

< *(9 * 0) — o* (@ , ,
(;I;?guww ,0) maX{ﬂrg(% P(8) — o™ ( )’9§‘?¥1]g 1(0) — £1(0), max & 2(0) — g5(6),0}

9,0) > * 0) — g1 0) —g5(0),0},
Join, w(9,0) > min{ min ¢(9) —¢"(z), min 1(6) —gi(6), min 2(6) - g5(6),0}
From the two above inequalities, we obtain
4,0 4,0)| = 4,0
(max, [©1(8,6) —w(9,6)] = max_ |w(86)

< max { max [9(0) ~ 9" (9)], max 51(6) ~i(6)}, max |3(6) ~ 3 (0)]}

O

Theorem 8 (Comparison Theorem). Let w(d,6) be a solution of Equation (18), suppose pow +
g2(x) < F(8,0,w) < pyw+ q1(x), p1, p2 > 0. Let w1(8,0), wo(8,0) € H(U) satisfy

(Cﬁwﬂ)DZw’e))wl (9,6) KC ) wi(8,6) + (C"“'@Dd,%”'”)w1(z9,9>}

+(=A = Ap) 2wy (8, 9)—6 ,0)w1 (8, )—lel( 0)+q(x),  (8,0)el,
w1 (8, T) = ¢y (8), 8 € (c,d), (30)
wl(c,e) = glwl (9), 0 e [T, Tﬂ,
wl(d, 6) = gzwl (9), 0 e [T, Tl]/

and

(Cﬁw’e)D;w'e)>wz (9,0) ch @9 p )wz(ﬁ,G) + (C”w"’)Dd;(ﬂ'g))w2(19/9)]
+(—A— Af)zwz(ﬂ 9) —e(8,0)w, (9, 9) = prwy(9,0) + g2(x). (8,0) e U,
ZU2<I9, T) (sz( )/ (C/ )/ (31)
ws(c,0) = 81w, (0), 0 €T, T],
wy(d,0) = 8,,(0), 0 €[T,Th].

If oy (8) = ¢(9) = Py (8), 81, (6) = 81(0) = 81, (0) and g2, (0) > 82(6) = g2,,, (6), then
wy(8,0) < w(8,0) <wi(9,0),(9,0) e U

hold.

Proof. We shall prove that w(d9,0) < w;(9,6) and by applying analogous steps one can

show that w;(8,60) < w(9,6).
Let @(9,0) = wy(9,0) — w(d,0). By (30) minus (18), we obtain
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References

9,0 9,0 €
(50, Jato,0) - | (T005™ Yoo, 0) + (D" Yoio,0)]
+

(—=A— /\f)%w(ﬂ,G) —e(8,0)w(8,0) = prw1(8,0) +q1(x) — F(3,0,w) > p1@0(9,0),
T) = ¢puw, (8) —p(8) >0, 9 € (cd), (32)

(8, (
(c,0) = g1, (0) —£1(6) =0, 0 € [T, Ty,
®(d,0) = g2, (6) — £2(0) > 0, 6 € [T,Ty).

Since p; > 0, by Theorem 3, @ > 0, the proof is complete. [

5. Conclusions

The space-time fractional variable-order conformable nonlinear differential equation
with a generalized tempered fractional Laplace operator is considered in this paper. We
have given the definition of LFVCCD and RFVCCD and some extreme principles. By
these extreme principles, a new maximum principle of space-time fractional variable-order
conformable nonlinear differential equation with a generalized tempered fractional Laplace
operator is derived. Based on the maximum principles, the comparison principle, the
uniqueness and continuous dependence of the solution of space-time fractional variable-
order conformable nonlinear differential equation with a generalized tempered fractional
Laplace operator are proved. Abdulazeez and Modanli [35] used the modified double
Laplace transform method to study the Pseudo-Hyperbolic Telegraph partial differential
equation. This is an interesting analysis method that is completely different from our
method. In the future, we will attempt to apply this method to study space-time fractional
variable-order conformable nonlinear differential equations.
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