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Abstract: Dielectric Elastomer (DE) has been recognized for its remarkable potential in actuation
and sensing applications. However, the functionality of most DE materials is restricted by their high
viscoelastic effects. Currently, there is a lack of dynamic models that consider both viscoelasticity
and stiffening effects. To address this research gap, we propose a fractional-order model in this
study. Specifically, the model comprehensively integrates both viscoelastic and stiffening effects
under electromechanical coupling, utilizing the principle of virtual work. Further, the effects of the
system parameters are analyzed. The results indicate that the fractional-order derivative influences
the hysteresis behaviors during the transient state and affects the duration of the transient process.
Furthermore, when the system’s energy surpasses a certain threshold, the steady-state response can
transition between two distinct potential wells. Through the manipulation of electromechanical
coupling parameters, bifurcation can be induced, and the occurrence of snap-through and snap-
back behaviors can be controlled. These findings have significant implications for the design and
optimization of DE materials in various applications.

Keywords: dielectric elastomer; fractional viscoelasticity; stiffening effects; nonlinear dynamics

1. Introduction

As a new smart material, DE has garnered significant attention owing to its unique
attributes, including remarkable deformability, rapid responsiveness, light weight, highly
efficient electromechanical conversion, and robust environmental adaptability. These
distinctive attributes have led to its extensive application in diverse domains, such as
artificial intelligence, aerospace, bio-simulation mechanisms, and bio-medicine [1–7].

The concept of electromechanical coupling in DE was first proposed by Stark and
Garton [8]. Since then, numerous studies have been conducted to explore the behaviors of
DE under electromechanical coupling both experimentally and theoretically [9–13]. Due
to the potential applications of DE materials, a comprehensive analysis of inertia’s impact
on their dynamic performance is essential [14,15]. For instance, Zhu et al. conducted a
theoretical analysis of the nonlinear oscillation of DE balloons, delving into the parametric
responses [16]. Son et al. developed a dynamic model of tubular DE transducers, utilizing
the finite difference method to explore dynamic responses [17]. Yong et al. focused on the
nonlinear vibration response of thick spherical shells, analyzing their dynamic behaviors
and deriving the critical voltage [18]. Yin et al. performed a nonlinear dynamic analysis and
scrutinized the effects of electrostriction on free oscillation and parametric excitation [19].
However, the majority of these investigations primarily focused on small stable stretches.

The emergence of Very High Bond (VHB) material has revolutionized the deformation
scale of DE materials, as is widely known [20]. Numerous experiments have consistently
demonstrated that DE exhibits strain-stiffening under large deformations [21–24]. As a
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result, any analysis of DE behaviors must inherently account for the impact of strain-
stiffening [25,26]. Wang et al. were pioneers in developing a theoretical model and in-
vestigating the effect of strain-stiffening on the dynamic characteristics of a circular DE
membranes [27]. However, Wang did not incorporate viscoelastic damping into the model.
Subsequently, Lv et al. proposed a model that encompassed both stiffening and damping
effects, analyzing the dynamic performance [28]. Nevertheless, Lv only characterized the
viscoelastic effect as a damping force, which fell short of fully capturing the significant
viscoelasticity inherent to DE. Hence, there is still a need for further research to delve into
the combined impact of viscoelasticity and strain-stiffening on the dynamic responses of
DE materials.

Substantial experimental studies have shown that under electromechanical coupling,
the response of DE is highly rate-dependent, indicating that DE materials possess significant
viscoelastic properties [20,29]. However, such rate-dependence can result in application
failures and reduced coupling efficiency [30,31]. As a result, many scholars have focused
on developing viscoelastic models for DE. For example, Yang et al. established a nonlin-
ear viscoelastic model for finite deformations using Christensen’s viscoelastic theory [32].
Hong and Foo et al. adopted a rheological model featuring two parallel elements to
characterize viscoelasticity while investigating dynamic response and hysteresis behav-
iors [33,34]. Afterwards, Zhang et al. utilized a combined Kelvin–Voigt–Maxwell model
to describe the viscoelastic behavior, although they did not examine the performance of
DE [35]. Later, Somayeh et al. derived fractional and non-fractional viscoelastic models
for DE [36]. Moreover, the fractional Kelvin–Voigt model was employed to determine
the elastic and/or viscous material properties. However, its applicability is confined to
small strain states [37,38]. Given the significant viscoelasticity of DE, a viscoelastic model
that integrates infinite elastic and viscous elements is highly sought after. Hence, the pur-
suit of the most superior viscoelastic model remains a crucial research area. In this paper,
we propose to modify the characterization of viscoelasticity by using the fractional-order
dashpot model. In the literature [39,40], such an element is called a Scott–Blair element and
is graphically represented by a rhombus.

Extensive research has been conducted in the field of solving fractional order differen-
tial equations leading to the development of various numerical techniques. These methods
encompass Adomian’s decomposition method [41], the Homotopy perturbation method [42],
method of discretization approximation [43,44], finite element analysis [45], etc.

Despite recent advancements on DE, there are a limited number of modeling works
regarding the dynamic response of DE. This is especially noticeable when considering
the strain-stiffening effect and viscoelasticity. These intricate behaviors exhibited by DE
materials present substantial challenges for modeling endeavors. To bridge this research
gap, this paper proposes a dynamic model that comprehensively incorporates both the
strain-stiffening effect and viscoelasticity. The aim of using this model is to investigate
the dynamic response of DE under electromechanical coupling loading. This paper is
structured as follows: In Section 2, the governing equation is derived utilizing the method
of virtual work. In Section 3, an investigation is conducted to examine the influence of
fractional order and electromechanical coupling parameters on the response of circular
DE. Finally, we present our conclusions. To summarize, this paper provides a innovative
approach for modeling the dynamic response of DE, encompassing both strain-stiffening
and viscoelasticity. By investigating the impact of fractional order and electromechani-
cal coupling parameters on circular DE’s response, this study offers invaluable insights
pertinent the design and optimization of DE-based devices.

2. Governing Equation Incorporating Stiffening and Viscoelasticity

Here, we consider a circular DE membrane that has two compliant electrodes on each
surface. When subjected to voltage Φ and radial force P, the DE membrane undergoes
compression in its thickness while expanding its surface area. The behavior is depicted in
Figure 1. Taking into account the assumption of incompressibility, the stretch ratio and the
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deformation thickness are defined as λ(t) = r(t)/R and h(t) = H/λ2(t), respectively. The
electric displacement is expressed as D(t) = Q(t)/

(
πr2(t)

)
= Q(t)/

(
πR2λ2(t)

)
.

Figure 1. States of circular DE membrane. (a) The reference state, where the radius and thickness
are labeled by R and H, respectively. (b) The actuated state, where the deforming radius and
thickness are represented by r and h. +Q and −Q denote charges of opposite polarity carried on the
respective surfaces.

2.1. A Fractional Model of Viscoelastic Behavior of DE

Despite the promising potential applications of DE, the remarkable viscoelastic be-
havior inherent in DE has affected both the electromechanical coupling efficiency and
deformation stability. Consequently, researchers have made efforts to investigate viscoelas-
tic behavior from various approaches, which has led to the establishment and utilization of
several models.

As is shown in Figure 2a, Z(0) represents the Voigt–Kelvin model, which is adept at
capturing creep behavior. However, it does not provide an accurate depiction of stress
relaxation in viscoelastic materials. To account for the relaxation phenomenon, some ideas
similar to the Maxwell model are invoked. Subsequently, the elastic elements from the
initial parallel unit of Z(0) are serially connected with Z(0), resulting in the emergence
of Z(1). Next, an iterative approach is adopted to elevate the complexity of element
amalgamation, while considering the indistinguishability among viscoelastic phenomena.
Consequently, as the number of iterations increases, the representation of DE’s viscoelastic
behavior becomes progressively more precise. The general term of iteration is displayed by
Z(n) in Figure 2a. In order to incorporate the initial elastic strain within the DE material,
a spring element is introduced in a series with Z(n), resulting in the composite element
shown in Figure 2b.

In this paper, Figure 2b represents the schematic diagram of the DE viscoelastic model.
By adopting the solution approach outlined in paper [46], a fractional order dashpot model
can be obtained as the number of iterations n of Z(n) approaches infinity.

Figure 2. Diagrams depicting viscoelastic behavior of DE. (a) Enhanced diagrams achieved through
the iteration thought. (b) Diagram previously illustrating the viscoelasticity of material.

For simplicity, at time t, the viscoelastic stress σ can be characterized as follows:

σ = ηDqλ(t), (1)
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where η = E0kq (Pa· · ·q), E0 means the Modulus of elasticity (Pa), k = η0/E0 expresses
the relaxation time(s), q is the fractional order indicating the degree of viscoelasticity
of materials, and Dqλ(t) denotes the fractional-order derivative under the definition of
Riemann–Liouville,

Dqλ(t) =
1

Γ(1 − q)
d
dt

∫ t

0

λ(t − τ)

τq dτ, 0 < q < 1.

Then, the curves depicting stress relaxation and creep behavior are shown in Figure 3.
Similar to the practical deformation process of DE, these curves exhibit the nonlinear
trajectory when the fractional order q falls within the open interval (0, 1). This obser-
vation further indicates the compatibility of the fractional model with the viscoelastic
characteristics of DE.

Figure 3. Viscoelastic property’s curves of DE. (a) Creep behavior curve. (b) Stress relaxation curve.

2.2. The Method of Virtual Work

Without loss of generality, the combination of the voltage Φ, the radial force P and DE
membrane constitutes a thermodynamic system operating under isothermal conditions.
By employing the method of virtual work applicable to the thermodynamic systems, the
equations can be readily derived as follows:

πR2HδW = Wvol + Wr f + Wi f + Wσ,

Wvol = ΦδQ = Φδ
(

πr2D
)

,

Wr f = Pδ(2πr),

Wi f = −Fδr = −ρV
(

d2r/dt2
)

δr,

Wσ = −σδ(2πr),

(2)

where W denotes the density of Helmholtz free energy. Wvol , Wr f , Wi f , and Wσ correspond
to the work carried out by voltage Φ, radial force P, inertial force F, and viscoelastic stress
σ, respectively. ρ and V indicate the density and volume of the DE material. Moreover,
the density of Helmholtz free energy is derived by adding the elastic energy as well as the
dielectric energy:

W = −µJlim
2

ln
(

1 − 2λ2 + λ−4 − 3
Jlim

)
+

D2

2ε
, (3)

referring to articles [27,28], hyper-elastic Gent model can be applied to characterize strain-
stiffening effect. Here, µ indicates the shear modulus, ε means the permittivity of DE, Jlim
denotes the constant related to limit stretch and can be taken as Jlim = 100. By combining
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Equation (2) with (3), and eliminating D, a governing equation involving a single variable
can be obtained:

d2λ

dT2 + cDqλ + g
(

S f , S, λ
)
= 0, (4)

with

g
(

S f , S, λ
)
= −S f λ3 − S +

λ − λ−5

1 − 2λ2+λ−4−3
Jlim

, (5)

where T = t/
(

R
√

ρ/2µ
)

is the dimensionless time, c = η
(
1/
(

R
√

ρ/2µ
))q

/µRH expresses
the viscoelastic damping coefficient, S f = εΦ2/µH2 and S = P/µRH denote the electrome-
chanical coupling parameters as functions of the voltage and the radial force, respectively.

3. Nonlinear Dynamic Analysis of DE with Fractional Damping

For general differential equations, they can be transformed into integral equations,
providing an avenue for solving the original equation. This approach is also applicable
to numerical solutions for fractional derivative equations, with the prediction correction
method being the most commonly employed.

Many practical issues in life can be mathematically modeled using appropriate dif-
ferential equation models. The solution of differential equations is no longer limited to
the pursuit of exact solutions but has expanded to include numerical algorithm solutions.
Fractional-order differential equations have gained significant attention and development
in various research areas, owing to their enhanced ability to accurately model certain
system processes. However, the introduction of fractional orders into models increases
system complexity and may hinder computational efficiency, potentially requiring pro-
longed computation times or resulting in significant deviations in results due to precision
issues. In this paper, an effective algorithm proposed by Chen [44] is employed to transform
fractional-order systems into integer-order systems, enabling rapid and high-precision
simulation of fractional-order calculus systems.

The system (4) can be transformed into a first-order derivative form:

X1 = λ,
dX1

dt
= X2,

dX2

dt
= −

−S f X1
3 − S +

X1 − X1
−5

1 − 2X1
2+X1

−4−3
Jlim

− c
[

1
Γ(1 − q)

X1(0)
tq +

sin(πq)
π

n

∑
i=1

ωi
(n)ϕ2

√ xi
(n)

1 − xi
(n)

, t

 1
xi

(n)
(
1 − xi

(n)
)
,

dϕ2

(
yi

(n), t
)

dt
=
(

yi
(n)
)2q−1

X2(t)−
(

yi
(n)
)2

ϕ2

(
yi

(n), t
)

.

Here, 

xi
(n) = cos2

(
(2i − 1)π

4n + 2

)
,

ωi
(n) =

2π

2n + 1
cos2

(
(2i − 1)π

4n + 2

)
,

yi
(n) =

√
xi

(n)

1 − xi
(n)

,

X1(0) = X10, X2(0) = X20, ϕ2

(
yi

(n), 0
)
= 0.

In simulation, select i = 6 and use the fourth order Runge–Kutta method to obtain
response statistics (with a time step of 0.0005).
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In the subsequent part of this section, we analyze dynamic response using some ideas
and data in [27].

3.1. Preliminary Study of System Response Using the Potential Function

Generally speaking, a potential well corresponds to a stable state. Thus, the response
of DE system can be initially analyzed preliminarily using the potential function V(λ).
Considering the complexity of nonlinear integral equation, the type diagram depicting
stable states is obtained numerically through the application of zero-point judgment theory,
as shown in Figure 4. Obviously, two stable modes are exhibited on the S − S f plane:
monostable state and bistable state. Moreover, fine-tuning the electromechanical parameters
enables the manipulation of the shift between these two stable states. This implies that, the
active morphology of DE can be regulated by applying the electromechanical load.

Figure 4. The bifurcation diagram in the parameter plane
(

S, S f

)
. The Red region indicates a bistable

state characterized by a double-well potential, while the green region represents a monostable state
corresponding to a single-well structure. Here, c = 0.01 , q = 0.9.

3.2. The Effect of Fractional Derivative on System

In this subsection, the effect of fractional derivative on system’s dynamics is inves-
tigated in detail. Here, we mainly focus on bistability with fixed the electromechanical
parameters set as follows: S f = 0.352 and S = 0.5 as shown in Figure 4. Then, two stable
equilibrium stretch ratio are determined, λl ≈ 1.1622 and λr ≈ 6.4733. Additionally, an
unstable equilibrium point is present at approximately λeq_unstable ≈ 2.8086. Herein, the
viscoelasticity damping coefficient is defined as c = 0.01. Consequently, we observe the
existence of two attractors, and if the system’s initial conditions lie within the basin of
attraction, it will evolve and ultimately converge to respective attractor. Moreover, Figure 5
depicts the three distinct motion patterns of the DE system: oscillations in the left-side
well, oscillations in the right-side well, and transition between the two wells. Notably,
oscillations are restricted in a single basin of attraction in Figure 5a,b. For clarity in dis-
tinguishing oscillatory behaviors, denoting λl ≈ 1.1622 and λr ≈ 6.4733 correspond to
the positions of first and the second steady-state position of DE, respectively. Moreover,
Figure 5c exhibits oscillations from one well to the other. And the critical condition for
achieving this transition is to satisfy the inequality E0 > Ebarrier. Here, the initial en-
ergy E0 = V(λ(0)) +

(
λ̇(0)

)2/2, where V denotes the potential function. Additionally,

Ebarrier = V
(

λeq_unstable

)
is defined as the energy of potential barrier. In the following,

we divide investigations into two parts to explore the impact of fractional derivative on
response of DE system. The first part focuses on oscillations within a single potential well,
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i.e., E0 < Ebarrier. The second part examines oscillations transitioning between two potential
wells , i.e., E0 > Ebarrier.

2 4 6
0

5

10

15

V
(

)

Potential Barrier

2 4 6
0

5

10

15

V
(

)

Potential Barrier
(a) (b)

2 4 6
0

5

10

15

V
(

)

Potential Barrier
(c)

Figure 5. Motor behavior based on the potential-trap. (a) Motion in the left potential well. (b) Motion
in the right potential well. (c) Motion between both potential wells. Here, the projections of red lines
on the λ-axis represent the range of the stretch ratio, where red triangles indicate the position of
potential barriers.

3.2.1. Oscillation in the Single Potential Well

Based on the above analyses, we can deduce that, if λ(0) < λeq_unstable, the initial
position corresponds to the left-side well; otherwise, it corresponds to the right-side well.
Thus, we set the initial conditions as λ(0) = 1 and λ(0) = 6 to explore both potential wells.
Additionally, we choose λ̇(0) = 0, ensuring that the inequality E0 < Ebarrier is satisfied.
Next, the results are shown in Figure 6.

From Figure 6a, it is observed that the increasing fractional order leads to shorter
transient times. A fact is that, in DE materials, the larger fractional order corresponds
to stronger viscosity. Consequently, greater DE viscosity results in reduced oscillation
amplitude and duration. Next, we delve into the details by analyzing inset figures in
Figure 6a. Remarkably, within [0, 20], the time series curves graphs corresponding to differ-
ent fractional orders coincide each other. Namely, in a short time, the effect of viscoelasticity
is unconspicuous. As the time variable shifts to the interval [80, 100], amplitudes of re-
sponse curves becomes asynchronous. Subsequently, phase asynchrony in the response
becomes apparent during the time interval [180, 200]. That is, viscoelastic behavior evolves
gradually from amplitude to phase. Notably, the inset figures in Figure 6b demonstrate a
shorter duration of curves coincidence, compared to those in Figure 6a. Furthermore, in
right-side oscillation, viscoelastic behavior transitions directly from the coincidence state to
unsynchronized state in both amplitude and phase. In other words, the viscoelasticity of
DE exhibits greater sensitivity to the second steady-state position than the first.

0 1000 2000 3000 4000 5000
t

1

1.1

1.2

1.3

1.4
q=0.4
q=0.5
q=0.7
q=1.00 10 20

1

1.2

1.4

80 90 100
1

1.2

1.4

180 190 200
1

1.2

1.4

(a)

0 2000 4000 6000 8000
t

6

6.2

6.4

6.6

6.8
q=0.4
q=0.5
q=0.7
q=1.00 5

6

6.5

20 25
6

6.5

300 305
6

6.5

(b)

Figure 6. Time-series graphs for various fractional derivatives, under different initial states: (a) The
initial position chosen in the left potential well. (b) The initial location defined in the right potential
well. Inset figures: time-series graphs captured over different intervals. The time intervals are,
respectively, controlled at: (a) [0, 20], [80, 100], and [180, 200] and (b) [0, 5], [20, 25], and [300, 305].
The parameters are defined as follows: S = 0.5, S f = 0.352, c = 0.01.
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3.2.2. Oscillation between Two Potential Wells

Similarly, we consider two initial positions: λ(0) = 1 and λ(0) = 5. Ensuring the
condition E0 > Ebarrier, the rates of stretch ratio can be set as: λ̇(0) = 2 and λ̇(0) = 4. The
dynamic behaviors of DE material are illustrated below. As depicted in Figure 7A, when q
is fixed, the λeq is determined. λeq can exist either in the initial potential well or during the
transition to the other well. This implies that the viscoelasticity of DE material can induce a
shift in the steady-state positions. Furthermore, upon analyzing Figure 7A,B, it becomes
evident that a larger fractional derivative corresponds to a higher transition probability
between the two wells. In other words, for DE material, greater viscosity makes it easier to
shift the steady-state positions. Subsequently, Figure 7(a1–a4),(b1–b4) show the response
behaviors with time under the fixed fractional derivative q. From these figures, significant
amplitude oscillations between the two wells are observed during the transient process.
That indicates that, higher initial energy leads to larger amplitude oscillations.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2
4
6

q

0 500 1000
0
3
6

t 0 500 1000
0
3
6

t

0 500 1000
0
3
6

0 500 1000
0
3
6

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2
4
6

q

0 500 1000
0
3
6

0 500 1000
0
3
6

0 500 1000

t

0
3
6

0 500 1000

t

0
3
6

q=0.71

q=0.55

q=0.95

q=0.58

q=0.95 q=0.62

q=0.57
q=0.53

(b3)
(b4)

(a3)

(a1)
(a2)

(a4)

(b1)
(b2)

(B)

(A)

Figure 7. Steady-state response diagram of stretch ratio with fractional derivative, under different
initial states: (A) λ(0) = 1, λ̇(0) = 2. (B) λ(0)= 5, λ̇(0)= 4. (a1–a4) and (b1–b4) are time-series graphs
with the fixed fractional derivative. Here, S = 0.5, S f = 0.352, c = 0.01.

3.2.3. The Effect of Electromechanical Coupling Parameters on the Response of
Equilibrium State

When λ̇(0) is small, i.e., when E0 < Ebarrier , the effect of fractional order derivative
on the steady-state response is almost negligible. In view of this, the relation between
equilibrium stretch ratio and electromechanical coupling parameters is studied based on a
fixed fractional-order derivative. Here, q = 0.9. Figure 8a–c make plots of the equilibrium
stretch ratio λeq as a function of voltage parameter for three values of the radial force.
For radial force S = 0.5 (Figure 8a), with the increasing of voltage S f , the λeq increases
gradually, until the S f climbs to S f = 0.26 , the λeq suddenly jumps discontinuously, and
then, with the further increase in the S f , the λeq increases monotonously. Moreover, when
the S f decreases, the λeq reduces and suddenly falls discontinuously at S f = 0.08, later,
λeq gradually decreases with the continuous decrease in S f . Namely, for DE material,
the phenomena of snap-through and snap-back occur with the change of voltage. Most
interestingly, the two positions of sudden jump are different. That is, a hysteresis loop is
presented obviously between S f = 0.08 and S f = 0.26. When S = 1.5 (Figure 8b), the snap-
through and snap-back behaviors still exist, whereas the hysteresis loop vanishes. So, the
larger the S, the narrower the hysteresis loop. Furthermore, a larger radial force is provided
in Figure 8c (S = 3), the above behaviors of snap-through and snap-back disappear, and the
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λeq changes progressively. Therefore, increasing the S f can achieve enhancement of the λeq.
Not only that, the behaviors of the snap-through and snap-back can also be controlled by
adjusting the S. Moreover, we can also carry out the same analysis for the relation curves of
radial force and the equilibrium stretch λeq under different value of voltage (Figure 8d–f).
When the voltage is fixed at 0.04 (Figure 8d), the λeq changes in the S monotonously. That
is, the process of stretch of DE is stable. For S f = 0.075 (Figure 8e), the snap-through
and snap-back appear at S = 1.5 and S = 0.1, respectively. Namely, a hysteresis loop is
presented with the increasing of the S f . In addition, the bistability could be induced, when
the S f increases. Furthermore, the continuous increases of S f , an interesting phenomenon
is noticed (Figure 8f). With the increases of S, the λeq sudden jump, however, the sudden
jump disappeared in process of the decreasing of S. That is, the snap-back behavior is
destroyed. Hence, the snap-through cannot coexist with snap-back when the voltage is too
high or too low. And the phenomena of snap-through and snap-back can be avoided under
lower voltage.
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Figure 8. (a–c) The relation curves of the voltage and the equilibrium stretch ratio at different
radial forces: (a) S = 0.5, (b) S = 1.5, and (c) S = 3. (d–f) The relation curves of radial force and
the equilibrium stretch ratio under different value of voltage: (a) S f = 0.04, (b) S f = 0.075, and
(c) S f = 0.08. The orange arrows indicate the increment of voltage (or radial force). The green
arrows mean the decrement of voltage (or radial force). The dotted lines represent the sudden
jump behaviors.

4. Conclusions

Utilizing iterative methods, a better interpretation of the complex viscoelastic behavior
of polymer materials is provided. Building upon this, a fractional-order model is employed.
Moreover, a dynamic model of DE is formulated, considering both the strain-stiffening
effect and viscoelasticity effects within electromechanical coupling. Subsequently, the
model’s dynamic response is investigated in relation to the fractional order derivative and
the electromechanical coupling parameters. The findings indicate that viscoelasticity can
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trigger transitions between two equilibrium positions under specific inequality conditions.
Additionally, an increase in viscosity can induce a decrease in oscillation amplitude and
duration. Moreover, increased viscosity is more prone to causing shifts in steady-state
positions. The electromechanical parameters determine not only the system’s stability
mode (monostability or bistability) but also influence the equilibrium point of the strain
ratio. Furthermore, manipulation of the electromechanical parameters can either hinder
or prompt snap-through and snap-back behaviors. In some cases, a hysteresis loop can be
occasionally observed. The objective of this paper is to provide guidance for theoretical
modeling and broaden the practical applications of DE materials.
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Notation
In the present paper, for the convenience of the readers, we will use the following notations.

Φ voltage (kV)
P radial force (N)
λ(t) stretch ratio at time t
r(t) radius at time t (mm)
h(t) thickness at time t (mm)
D(t) electric displacement at time t
Q(t) the charges of polarity carried on surface at time t
σ viscoelastic stress
W the density of Helmholtz free energy
Wvol the work carried out by the voltage
Wr f the work carried out by the radial force
Wi f the work carried out by the inertial force
Wσ the work carried out by the viscoelastic stress
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