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Abstract: In the literature, different approaches that are employed in designing automatic voltage
regulators (AVRs) usually model the AVR as a single-input-single-output system, where the input
is the generator reference voltage, and the output is the generator voltage. Alternately, it could be
thought of as a double-input, single-output system, with the excitation voltage change serving as the
additional input. In this paper, unlike in the existing literature, we designed the AVR system as a
sextuple-input single-output (6ISO) system. The inputs in the model include the generator reference
voltage, regulator signal change, exciter signal change, amplifier signal change, generator output
signal change, and the sensor signal change. We also compared the generator voltage responses for
various structural configurations and regulator parameter choices reported in the literature. The
effectiveness of numerous controllers is investigated; the proportional, integral and differential (PID)
controller, the PID with second-order derivative (PIDD2) controller, and the fractional order PID
(FOPID) controller are the most prevalent types of controllers. The findings reveal that the regulator
signal change and the generator output signal change significantly impact the generator voltage.
Based on these findings, we propose a new approach to design the regulator parameter to enhance
the response to generator reference voltage changes. This approach takes into consideration changes
in the generator reference voltage as well as the regulator signal. We calculate the regulator settings
using a cutting-edge hybrid technique called the Particle Swarm Optimization African Vultures
Optimization algorithm (PSO–AVOA). The effectiveness of the regulator design technique and the
proposed optimization algorithm are demonstrated.

Keywords: 6ISO AVR systems; PID controllers; fractional-order controllers; disturbance rejection;
mathematical models; optimization; parameter estimation

1. Introduction

Frequency and voltage are the two leading indicators of the quality of the electrical
supply. Voltage is a local property, whereas frequency has a global aspect. Turbine regula-
tors are used in electric power systems to control frequency, whereas synchronous machine
excitation systems are used to control voltage. For example, a synchronous machine serves
as the primary frequency and voltage controller [1]. In this regard, voltage regulation is
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discussed. A synchronous machine and a variety of compensating systems, including static
compensating devices, can be used in practice to regulate voltage [2]. For a synchronous
machine, controlling the excitation entails controlling the excitation voltage and current,
which control the flux value of the machine [1]. The excitation regulator, mostly imple-
mented in processor technology in today’s excitation systems, is the key component of the
voltage regulation loops of synchronous machines. Their suitability for adopting different
management regulations, altering the operation logic, being easily controllable, and moni-
toring various factors is a result of this [3]. The selection of the type and optimization of the
regulator parameters have received the majority of the researchers’ attention in the related
scientific literature to date. The standard proportional, integral, and differential (PID) con-
troller is the most popular type of controller, which may be inferred from the literature [4,5].
The proportional term refers to using the all-pass gain factor to provide an overall control
action proportional to the error signal. The integral term refers to minimizing steady-state
errors through an integrator’s low-frequency compensation. The derivative term refers to
improving transient response through a differentiator’s high-frequency compensation. As
noted in [5], PID with a second-order derivative (PIDD2) controllers and fractional-order
PID (FOPID) controllers [6–9] provide a further improvement in the system performance.
Table 1 lists the main types of fundamental regulators found in AVR structures.

Table 1. Types of regulators.

Reference Regulator Mathematical Formula Explanation

[4,5] PID C(s) = Kp + Ki
s + Kd · s

Kp, Ki, and Kd are proportional, integral, and
differential constants/gains

[5] Real PID C(s) = Kp + Ki
s + Kd

(
N

1 + N
s

)
N represents the filter coefficient

[6,7] FOPID C(s) = Kp + Ki
sλ + Kd · sµ µ and λ are additional variables

[8,9] PIDD2 C(s) = Kp + Ki
s + Kd1 · s + Kd2 · s2 Kd1 and Kd2 are constants

In the literature, the application of metaheuristic algorithms is considered essential
for the optimization of controller settings. The goal function, known as the objective
function or the fitness function, must be defined before an algorithm can be used to
estimate the regulator parameters. A function’s mathematical definition includes the
primary system variables and procedures necessary to appropriately specify the system
responses. Table 2 lists the primary objective functions that estimate the AVR regulator
parameters. Additionally, Figure 1 provides a list of numerous employed objective functions
for estimating the parameters of an AVR regulator.

Table 2. Objective functions commonly used in optimal controller design.

Reference Objective Formula

[10] Integral time absolute error ITAE =
∫

t · |e(t)dt| *
[11] Integral absolute error IAE =

∫
|e(t)|dt

[12] Integral square error ISE =
∫

e2(t)dt
[13] Integral time square error ITSE =

∫
t · e2(t)dt

[14] Zwe-Lee Gaing criteria ** ZLG =
(

1− e−β
)
· (OS + ESS) + e−β(ts − tr)

* t denotes time, and e(t) denotes the steady-state error. ** β is a constant, ESS is the steady-state error, OS is the
overshoot, tS is the settling time, and tr is the rise time.

It is critical to emphasize these observations in light of the literature:

• It was observed how the generator voltage responded to the generator voltage’s
reference value, which ranged from zero to one, while a step disturbance was present.
In papers [3–24], this change in the reference value is illustrated.

• The impact of excitation voltage saturation was taken into consideration in numerous
research works [22,25].
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• Only one study [25] evaluated the value of the regulator parameters under network
operation and within permitted voltage limits, when the generator voltage reference
value was changed.

• The voltage response was shown in [3–24] when the reference value changed from
zero to the nominal value for a fully loaded generator, which is undesirable in real-
world applications.
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Apart from the generator voltage reference value and the generator voltage itself, the
excitation control system receives a variety of input signals in practice [22,25]. This includes
limiters for the excitation current, the power system stabilizer signal, and others. Numerous
limiters and control blocks handle excitation current management in today’s excitation
regulation systems. Specifically, the generator’s current, as well as signals from the PSS, the
voltage–frequency (VHz) limiter, and the fast limiters of the excitation current, are provided
as input to the excitation regulation along with the signal of the generator’s real value of
voltage. Excitation current and generator current are, therefore, both inputs. Any noise can,
therefore, impact the excitation regulation mechanism on one of those signals.

On the other hand, many signals are restricted, and the regulator is designed to be
wind-up resistant (anti-wind-up) [22]. A lot of details regarding modern AVR designs can
be found in [25]. A control signal is created in the regulator by considering all of these
signals. The regulator sends a control signal to the amplifier, which then uses it to control
the thyristors in the rectifying bridge further. Potentially, disturbance signals that interfere
with the original signal could be generated at each transmission location in the excitation
regulation system. The results presented in [25] illustrated the impact of excitation voltage
signal disturbance when evaluating the settings of the AVR control regulator. Bearing these
considerations in mind, the purpose of this work’s research is apparent. The goal is to
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consider all possible impacts of disturbances in the system and then estimate the regulator’s
parameters in light of these effects and changes to the generator voltage’s reference value.
In order to achieve this, it is crucial to examine the impact of interference with the solutions
suggested in the literature for the regulator’s parameters and design. A new mathematical
formulation of the regulator should be put forward in order to accurately estimate the
regulator parameters.

In this regard, this article investigates a system with six input quantities—five distur-
bance signals and one input reference signal—because there are five probable sources of
disturbance signals.

The main contributions of the work are briefed as follows:

• We provided an innovative 6ISO AVR contour model for the first time in the literature
based on the author’s knowledge.

• We explained the physical sense of the derived contour and tested the impact of all
signals on the generator voltage waveforms.

• We derived the mathematical expressions for all signals in the derived contour.
• We proposed a novel strategy for identifying the parameters of the regulator.
• We compared the obtained results with the corresponding results presented in

the literature.

The work is divided into numerous chapters for better understanding. A new 6ISO
model of the AVR formulation is suggested in the second chapter, and the mathematical
equations of the input–output interdependence are also provided. The third chapter
suggests an innovative approach for estimating the AVR parameters. A comparison of the
generator voltage response results for various systems from the literature is examined in the
fourth chapter. In the fifth chapter, the results of finding the regulator parameters for the
suggested approach and comparing the results with those of other methods are presented.
The conclusion chapter provides a summary of the findings as well as suggestions for
additional research.

2. Proposed 6ISO AVR Model

A synchronous machine, an amplifier, an exciter, a controller, and a sensor form the
excitation control system. The synchronous machine is the main source of energy for electric
energy systems (EES). The excitation of the synchronous machines is powered by a rectifier
bridge (also referred to as an exciter). The regulator determines the control signals, while
an amplifier device regulates the control angles. A sensor is used to measure the generating
voltage. Figure 2 illustrates the block diagram of the AVR structure together with all the
potential disturbances. The character “a” stands for the signal for a disturbance in each
element in this figure. Each element is linearized using a first-order transfer function,
as presented in the research works that address the AVR model [3–24]. In this way of
linearization, each part is very simple and does not have many physical nonlinearities.
The mathematical expressions and descriptions of elements are given in [3–25]. Table 3
provides values of the overall gain and time constants for each element.

Table 3. Elements representation [3–25].

Element Formula Value of Constants

Generator KG
1 + sTG

KG = 1, TG = 1

Exciter KE
1 + sTE

KE = 1, TE = 0.4

Amplifier KA
1 + sTA

KA = 10, TA = 0.1

Sensor KS
1 + sTS

KS = 1, TS = 0.01
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In the AVR structure shown in Figure 2, the relation between the generator voltage
and the excitation voltage is expressed as follows:

VT(s) =
(

1
1 + W

)
VGa +

(
WG

1 + W

)
VEa +

(
WG ·WE
1 + W

)
VAa +

(
WG ·WE ·WA

1 + W

)
VREGa +(

WG ·WE ·WA ·REG
1 + W

)
VREF −

(
WG ·WE ·WA ·REG

1 + W

)
VSa

(1)

while the corresponding expressions for the excitation voltage, exciter voltage, and regulator
signal are expressed as follows:

VE(s) =
(

1
1 + W

)
VEa +

(
WE

1 + W

)
VAa +

(
WA ·WE
1 + W

)
VREGa +

(
WE ·WA ·REG

1 + W

)
VR−(

WE ·WA ·REG
1 + W

)
VSa −

(
WE ·WA ·WS ·REG

1 + W

)
VGs

(2)

VA(s) =
(

1
1 + W

)
VAa +

(
WA

1 + W

)
VREGa +

(
WA ·REG

1 + W

)
VR −

(
WA ·REG

1 + W

)
VSa−(

WA ·WS ·REG
1 + W

)
VGa −

(
WA ·WS ·WG ·REG

1 + W

)
VEs

(3)

VREG(s) =
(

1
1 + W

)
VREGa +

(
REG

1 + W

)
VR −

(
REG

1 + W

)
VSa −

(
REG·WS
1 + W

)
VGa−(

WG ·WS ·REG
1 + W

)
VEa −

(
WE ·WS ·WG ·REG

1 + W

)
VAs

(4)

where VREF represents the generator reference voltage, W represents the transfer function
of each element in the presented block scheme, so that W = WE ·WA ·WS ·WG · REG, and
REG is a regulator of any type.
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The previously given equations represent the set of equations of the 6ISO-AVR model.
It is obvious that all equations are reduced to the expression given in [3–24] in cases where
the noise/disturbance signals are zero.

3. Comparison of the Output Voltage Response and Literature Review

This chapter highlights the modeling results of how the generator and excitation
voltage respond to different changes in the generator voltage, the excitation voltage, the
output from the amplifier, the regulator, and the sensor. The findings shown are for
two disturbances that are 0.05 pu and 0.07 pu. In these investigations, different regulator
structures were taken into account, as well as the different regulator parameters obtained by
numerous methods presented in the literature, as given in Table 4. The types of regulators
and their parameter values are shown in Table 4. The obtained results are shown in Figure 3
in a 3D graph form, while the generator voltage change versus time is depicted in Figure 4.
It should be noted that algorithms number 1, 2, and 3 represent the simulated annealing and
gorilla troops optimization (SA–GTO) [25] used to find parameters of different controller
types, algorithms number 4, 5, and 6 represent the simulated annealing–manta ray foraging
optimization (SA-MRFO) [5], algorithm number 7 represents the improved kidney-inspired
algorithm (IKIA) [4], algorithm number 8 represents the whale optimization algorithm
(WOA) [8], algorithms number 9, 10, and 11 represent the ant colony optimization and
Nelder–Mead algorithm (ACO-NM) [26], algorithm number 12 represents the cuckoo
search algorithm (CSA) [27], algorithm number 13 represents the symbiotic organisms
search algorithm (SOSA) [28], algorithm number 14 represents the teaching–learning-based
optimization (TLBO) [12], algorithm number 15 represents the local unimodal sampling
(LUS) [12], algorithm number 16 represents the harmony search algorithm (HSA) [12],
and algorithm number 17 represents the SA-MRFO [5]. After 10 s, the generator voltage
reference changes. After 30 s, the additional signal affects the regulator output. After 50 s,
it affects the amplifier output. After 70 s, it affects the exciter output. After 90 s, it affects
the generator output. After 110 s, it affects the sensor output.
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Figure 3. Three-dimensional dependence: (a) generator voltage, time, and regulator for step changes
of 5%, (b) excitation voltage, time, and regulator for step changes of 5%, (c) generator voltage, time,
and regulator for step changes of 7%, (d) excitation voltage, time, and regulator for step changes
of 7%.

Table 4. Review of the optimal parameters of the controllers.

Algorithm
Number Ref. Year Kp Ki Kd Kd2 N µ λ

1
[25] 2022

1.263847093 1.400111255 0.4484544985 - - - -
2 1.120196097 1.200245817 0.4066544346 - 895.0548956 - -
3 4.825180395 5 1.810016229 0.2140057958 - - -
4

[5] 2021
0.6778 0.3802 0.2663 - - - -

5 0.6672 0.5938 0.2599 - 863.2453 - -
6 2.9943 2.9787 1.5882 0.102 - -
7 [4] 2019 1.0426 1.0093 0.5999 - - - -
8 [8] 2019 0.7847 0.9961 0.3061 - - - -
9

[26] 2019
0.6392 0.4757 0.2159 - 484.09 - -

10 0.3120 0.2567 0.1503 - 500.00 - -
11 0.5463 0.3409 0.1485 - 500.00 - -
12 [27] 2018 0.6198 0.4165 0.2126 - 1000.00 - -
13 [28] 2018 0.5693 0.4097 0.1750 - - - -
14

[12] 2018
0.9685 1.0000 0.8983 - - - -

15 0.9519 0.9997 0.8994 - - - -
16 0.86832 0.9325 0.9419 - - - -
17 [5] 2021 1.8931 0.8699 0.3595 1.278 1.0408

Multiple conclusions can be drawn from Figures 3 and 4. First, the observed scheme
states that changing the generator voltage’s reference value is equivalent to adding a dis-
turbance signal to the sensor’s output (but with an opposite sign). Based on the simulation
findings that have been shown, this conclusion is obvious. Second, the interference at the
amplifier and exciter outputs has a negligible impact on the generator’s output voltage
responses. The additional signal at the output of the regulator, and the signal at the output



Fractal Fract. 2023, 7, 765 9 of 22

of the generator voltage, produce a notable effect on the waveform of the generator voltage.
According to the design, this signal is sent directly to the block output that describes
the generator itself. This makes it easy to see how the interference affects the generator
voltage. The differences between the results are very small, and they do not impact much
in real life. However, they show that the proposed regulator type is accurate and that the
proposed method can be used. A change in the signal at the generator output voltage
substantially impacts the generator voltage’s reference value if the excitation voltage is
under observation. Otherwise, it is crucial to remember that real systems cannot tolerate
excitation voltage values with an indefinite range. In transitional systems, the excitation
voltage is restricted to 3 pu, whereas the practical limits are 1.6 pu. Excitation voltages that
are too high, over the maximum permitted value, may damage field windings and result in
short circuits.
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4. PSO–AVO Algorithm

At present, metaheuristic algorithms can be used to tackle many optimization chal-
lenges effectively. They are general-purpose algorithms that do not go beyond the initial
settings. In this regard, this paper presents the application of a hybrid variant of two
metaheuristic algorithms—the African vulture optimization (AVO) algorithm [29] and the
particle swarm optimization (PSO) algorithm [14], named PSO–AVOA.

The PSO algorithm’s basic idea is to alter the speed and location of each variable
iteratively. To find the current best position (in the current iteration) and the past best
global positions (in all previous iterations), the distance of each variable is specifically
evaluated during each iteration. In this regard, a randomly generated change value is used
to be changed from one location to another.

Namely, let P and B represent vectors of current positions and current variable veloci-
ties, respectively:

Pk = [P1, P2, . . .], Bk = [B1, B2, . . .] (5)
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The velocity and position of each variable in the next iteration are calculated as:

Bk + 1 = T × Bk + C1 · rand1

(
pbest − Pk

)
+ C2 · rand2

(
qbest − Pk

)
,

Pk + 1 =


Pk + Bk + 1 Pmin ≤ Pk + 1 ≤ Pmax

Pmin Pk + 1 ≤ Pmin

Pmax Pk + 1 ≥ Pmax

T = Tmax

(
1− Iter

Itermax

)
− Tmin

Iter
Itermax

(6)

where Pmax and Pmin represent the predefined minimum and maximum value of the vari-
ables; C1, C2, and T are weight coefficients; pbest and qbest are the best current position and
the best global position; rand1 and rand2 are randomly generated numbers from 0 to 1; Iter
is the current iteration; Itermax is the maximum number of iterations; and Tmax and Tmin
are the final (maximum) and initial (minimum) values of the weight coefficients. It should
be emphasized that the coefficients C1 and C2 (the so-called acceleration factor) play a key
role in determining how quickly convergence occurs. The convergence is slow if these
coefficients have low values. The optimization process, however, may become unstable if
their values are high [30]. The PSO procedure’s end values represent the starting values for
the AVO algorithm. The main AVO algorithm uses these initial values, which are provided
by the PSO. The AVO algorithm divides all populations into two groups, and the process
comprises four steps. The initialization of every individual is the fundamental stage in
any metaheuristic algorithm. In this stage, the PSO and AVO algorithms are combined,
since the PSO algorithm’s final population value corresponds to the AVO algorithm’s
initial population.

After this step, the next step is calculating the fitness value of all vultures. In this
step, the division of vultures must also be realized—the vulture with the lowest fitness
value is chosen to be the best vulture of the first group (marked as Best_Vulture_1), while
the second-best vulture from the whole population is selected as the second group’s best
vulture (marked as Best_Vulture_2). Also, in this step, it is necessary to randomly choose
one of the best vultures from these two groups (this random vulture is denoted as R(i)):

R(i) =
{

Best_Vulture_1, pi = L1
Best_Vulture_2, pi = L2

, (7)

Using a roulette wheel, pi represents the probability of selecting the best vulture from
either the first or second group. With the formula L1 + L2 = 1, L1 and L2 are parameters that
balance the global and local search.

The third step focuses on the vultures’ starvation. In this phase, the satiation rate F
must be determined as follows:

F = t + z · (1 + 2 · r1) ·
(

1− ite
max_ite

)
,

t = h ·
(

sinw
(

π
2 ·

ite
max_ite

)
+ cos

(
π
2 ·

ite
max_ite

)
− 1
)

.
(8)

where ite and max_ite represent the current iteration and the maximum number of iterations,
respectively, z is a random number in the range [–1, 1], h is a random number in the range
[−2, 2], and r1 is a random number between 0 and 1. If |F| ≥ 1, the algorithm enters the
exploration phase; if |F| < 1, the algorithm enters the exploitation phase.

The fourth phase represents the exploration phase. The positions of the vultures are
updated as follows:

P(ite + 1) =

{
R(ite)− |X · R(ite)− P(ite)| · F, P1 ≥ randP1

R(ite)− F + rand2 · ((UB− LB) · rand3 + LB), P1 < randP1
. (9)
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where X is the vector coefficient and is calculated as follows X = 2·rand, while randP1, rand2,
and rand3 are random numbers in the range [0, 1]. Also, there are two possible phases of
exploitation depending on |F|. If the value of |F| is between 0.5 and 1, the predefined
parameter P2, which must be between 0 and 1, is used to choose the strategy as follows:

P(ite + 1) =

{
|X · R(ite)− P(ite)| · (F + rand4)− (R(ite)− P(ite)), P2 ≥ randP2

R(ite)− (S1 + S2), P2 < randP2
, (10)

where the terms S1 and S2 are defined as follows:

S1 = R(ite) · rand5·P(ite)
2π · cos(P(ite)),

S2 = R(ite) · rand6·P(ite)
2π · sin(P(ite)).

(11)

If the value of |F| is less than 0.5, the AVO algorithm enters the second exploitation
phase as follows:

P(ite + 1) =

{
A1 + A2

2 , P3 ≥ randP3

R(ite)− |R(ite)− P(ite)| · F · Levy(R(ite)− P(ite)), P3 < randP3
. (12)

where P3 is previously defined, and the terms A1 and A2 represent the accumulation of the
vultures from two different groups over the food source.

A1 = Best_Vulture_1(ite)− Best_Vulture_1(ite)·P(ite)
Best_Vulture_1(ite)−P(ite)2 · F,

A2 = Best_Vulture_2(ite)− Best_Vulture_2(ite)·P(ite)
Best_Vulture_2(ite)−P(ite)2 · F.

(13)

while the Levy flight pattern is expressed to increase the effectiveness of the algorithm
as follows:

Levy(x) = 0.01 · u·σ
|v|1/β ,

σ =

 Γ(1 + β)·sin
(

π·β
2

)
Γ
(

1 + β
2

)
·β·2

β−1
2

1/β

,
(14)

where u and v are random numbers between 0 and 1, while β is a parameter set to 1.5.
The previously described sequence represents the entire AVO process. The algorithm

repeats all these steps until the maximum number of iterations is reached. In Figure 5, the
algorithm flowchart is presented.
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5. Simulation Results

Based on the modeling results in the third chapter, the key elements that change
the generator voltage are the disturbance signal at the output of the regulator and the
disturbance signal at the output of the generator block, after the step value of the generator
voltage changes. On the other hand, due to practical restrictions, the excitation voltage
must remain below a particular limit throughout all changes. The following objective
function is developed in light of these observations.

OFn =


(
1− e−β

)
· (50OS1 + ESS1) + e−β(ts1 − tr1)

+ IAE2
+ IAE3

if Vexc < Vexc_max for all points

∞ if Vexc ≥ Vexc_max for any points

. (15)

The objective function has three parts if the excitation voltage is below a pre-determined
maximum. The well-known Zwe-Lee Gaing objective function model of the objective func-
tion is represented in the first part, related to a change in step generator voltage reference.
The step disturbance of the generator voltage change, and the regulator signal change, are
represented in the second and third parts.

Both parts of the objective are specified as simple integrals of absolute error (IAE), as
the goal is to neutralize the influence of these disruptions as fast as possible. On the other
hand, if the excitation voltage value is greater than the predefined maximum in any time
step, the objective function has an infinite value.

First, using the proposed objective function and all of the regulator parameters listed
in Table 1—all derived from the literature—the value was determined for each regulator
type. The results of applying this suggested objective function are shown in Figure 6, where
the value of the proposed objective function was scaled to the highest value attained by
the methods in the literature (in this case, Method #10 in [26] provides the highest value of
the criterion function). In all the observed methods, it is clear that the methods presented
in [25] provide the best results.
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It is evident from Figure 6 that Methods #3 and #6 provide the highest-quality response
and the lowest value of the objective function, respectively, with the PIDD2 regulator. Using
the PIDD2 regulator ensures the best outcomes regarding the effectiveness of various step
disturbances and the quality of the transition process. This work estimates the parameters
of the PIDD2 regulator based on that finding.
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Figures 7 and 8 show the generator voltage response to the disturbances above, as well
as the corresponding excitation voltage. As can be seen, Method #3 allows for the results to
be obtained when the excitation voltage reaches its maximum value during the transition
process and is more than 6 pu. Method #6 uses an excitation voltage that is at its highest
value during the transition process—3.5 pu. Even though it is not safe or secure, the higher
excitation voltage value during the transition process makes it possible for the generator
voltage to respond more quickly. When the excitation voltage is within acceptable ranges,
other methods can be used to get good results. However, the process of transitioning in
these methods takes longer than the process taken using Methods #3 and #6.
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5.1. Regulator Parameter Estimation for Different Maximum Values of the Excitation Voltage

Applying the proposed algorithm, the PIDD2 regulator parameters are determined for
the various maximum values of the excitation voltage based on the previously observed
findings. The maximum value was explicitly determined to be 4 pu, 3.5 pu, 2.5 pu, 2 pu,
and 1.6 pu. In other words, we used the same parameter limits as in the other works [3–25].
Table 5 lists the regulator’s determined parameters. As noted, the lower excitation voltage
results in lower values for all regulator parameters. In [22], the same finding is shown for
different types of regulators when it comes to how the excitation voltage value affects the
regulator parameter values.

Table 5. The estimated PIDD2 regulator parameters for different values of the excitation voltage.

Maximum Value of the Excitation
Voltage (pu) Kp Ki Kd Kd2

4 6.00207895 9.998225621 1.752147902 0.1219506251
3.5 4.83462096 6.660546549 1.460820502 0.1012411096
2.5 3.316938682 6.24857332 1.073055102 0.06168327877
2 2.543216148 4.612845672 0.8360649507 0.04035158476

1.6 1.721672893 2.60276874 0.5202193961 0.02250916367

In Figure 9, a comparison is shown between the generator voltage’s responses to
variations in the generator reference voltage (20 s), the signals following the regulator (30 s),
the amplifier (40 s), and the exciter (50 s) outputs, respectively. All the step disturbances are
assumed to have a value of 0.1 pu. Figure 10 shows a comparison of the excitation voltage
responses. The results made it abundantly evident that the lower value of the maximum
excitation voltage ensures both safe and secure operation of the machine and, at the same
time, the slowest response to any disturbances. It is also evident that the highest impact
on the excitation voltage change causes the change of the generator reference voltage.
However, the highest impact on the generator voltage is the signal added to the output of
the regulator.
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Figure 9. Generator voltage responses with different disturbances (in 20 s—the effects of the generator
voltage reference change, in 30 s—the impact of the additional signal on the regulator output, in
40 s—the impact of the additional signal on the amplifier output, in 50 s—the impact of the additional
signal on the exciter output).
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5.2. Comparison of the Results Obtained with Different Literature Approaches

The proposed method for estimating the AVR regulator parameters is justified by
comparing the results to those found in the literature, as illustrated in Figures 11 and 12.
In particular, it is evident from the results presented in the previous sections that Method
#6 provides the generator voltage response when the excitation voltage is at its maximum
value of 3.5 pu. We compared the generator and excitation voltage response simulation
results in the scenario where the maximum excitation voltage is 3.5 pu.
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Figure 11. Generator voltage responses with different disturbances (in 20 s—the effects of the
generator voltage reference change; in 40 s—the impact of the additional signal on the regulator
output; in 60 s—the impact of the additional signal on the amplifier output; in 80 s—the impact
of the additional signal on the exciter output; in 100 s—the impact of the additional signal on the
generator output).
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Figure 12. Excitation voltage responses with different disturbances (in 20 s—the effects of the
generator voltage reference change; in 40 s—the impact of the additional signal on the regulator
output; in 60 s—the impact of the additional signal on the amplifier output; in 80 s—the impact
of the additional signal on the exciter output; in 100 s—the impact of the additional signal on the
generator output).

It is clearly apparent from the results that the suggested method outperforms the
existing methods in the literature, in terms of effectiveness, speed, and neutrality of action
of disturbances from the regulator, the amplifiers, and the exciter.

Using a novel method for estimating the parameters of the AVR regulator structure
has a clear justification in light of the investigations presented. Additionally, it is evident,
by looking at the value of the criteria function, that the outcomes obtained through the
suggested methods are superior to those provided by Method #6 in terms of the objective
function. In a scaled form, the corresponding results of the proposed method and Method
#6 are shown in Figure 13.
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Figure 13. Comparison of the objective function value obtained by the proposed method and
Method #6.

Finally, we compared the response of the generator voltage in the case of applying a
step change on the reference value of the generator voltage, as well as changes in the signal
at the output of the regulator, changes in the signal at the output of the amplifier, changes
in the signal at the output from the exciter, and changes in the signal at the output from
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the generator voltage; the parameters being obtained by applying the literature methods
described in [5,25], with the results being obtained using the proposed method using the
parameters determined, with a maximum excitation voltage of 3.5 pu. As demonstrated
by the results, the parameters derived from the proposed method enable the speediest
elimination of step changes, the generator voltage reference value, and signal changes at
the regulator’s output. This is most evident in the zoomed portions of the displayed figures.
There is no doubt that this method yields the shortest settling time. Conversely, the value
of the criterion function is also the smallest, as shown in Figure 14, confirming that the
proposed method is accurate.
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5.3. Robustness Analysis

While analyzing the robustness of the proposed AVR parameters, the effect of altering
the parameter values of the synchronous machines is observed. In other words, the gain
and time constant fluctuate based on the load value. In order to achieve this, the values of
the rise time, settling time, and overshoot, as well as the IAE values, are measured when
the generator voltage reference changes and when the regulator output signal and the



Fractal Fract. 2023, 7, 765 18 of 22

generator output signal change, respectively. The simulation step was assumed to be 10−4,

and the values of all changes were assumed to be 0.1 pu. The maximum allowed excitation
voltage values are shown in Table 6 for all parameters set for all values. Figures 15 and 16
show the excitation voltage and the generator voltage for the maximum excitation voltage
of 1.6 pu and various generator gain and time constant values. Based on the results, it
is evident that the suggested approach (controller and parameters) ensures the system’s
robustness to changes in the characteristics of the synchronous machines.

Table 6. Investigating the impact of synchronous machine gain and time constant changes on the
characteristic’s response value.

Data/Index Vexc (pu) Rise Time (s) Settling Time (s) Overshoot IAE2 IAE3

Rated data

4.5 0.0434 28.6967 0.2904 110.8120 56.0344
3.5 0.0558 28.6807 0.2829 157.0528 61.0512
2.5 0.0845 29.0360 0.5872 199.6626 97.1969
2 0.1082 29.1516 0.8259 268.2481 122.9044

1.6 0.1598 29.2778 1.0049 429.2218 167.9799

Kg = 0.8, Tg = 1

4.5 0.0587 28.8174 0.3649 111.4692 68.2982
3.5 0.0744 28.8383 0.3416 157.5952 74.4678
2.5 0.1063 29.1354 0.6173 202.7036 117.8960
2 0.1328 29.2558 0.8094 272.9293 147.5527

1.6 0.1933 29.3992 1.0069 436.6376 199.7077

Kg = 1, Tg = 0.8

4.5 0.0321 28.4393 0.3378 110.2565 44.4013
3.5 0.0417 28.1276 0.2055 156.5757 47.5932
2.5 0.0676 28.9269 0.4888 196.9766 77.3264
2 0.0895 29.0470 0.7395 264.0571 98.7213

1.6 0.1355 29.1557 0.8651 422.8000 135.5663

Kg = 0.8, Tg = 0.8

4.5 0.0440 28.6626 0.2453 110.7300 53.6813
3.5 0.0570 28.5562 0.2082 156.9520 57.9109
2.5 0.0865 29.0493 0.4762 199.1215 93.5674
2 0.1109 29.1712 0.6830 267.2914 118.0934

1.6 0.1649 29.2938 0.8067 427.4951 160.5367

Fractal Fract. 2023, 7, x FOR PEER REVIEW 20 of 24 
 

 

2 0.0895 29.0470 0.7395 264.0571 98.7213 

1.6 0.1355 29.1557 0.8651 422.8000 135.5663 

Kg = 0.8, Tg = 

0.8 

4.5 0.0440 28.6626 0.2453 110.7300 53.6813 

3.5 0.0570 28.5562 0.2082 156.9520 57.9109 

2.5 0.0865 29.0493 0.4762 199.1215 93.5674 

2 0.1109 29.1712 0.6830 267.2914 118.0934 

1.6 0.1649 29.2938 0.8067 427.4951 160.5367 

 

Figure 15. Generator voltage responses with different disturbances for a maximum excitation volt-

age of 1.6 pu (in 20 s—the effects of the generator voltage reference change, in 40 s—the impact of 

the additional signal on the regulator output, in 100 s—the impact of the additional signal on the 

generator output). 

Figure 15. Generator voltage responses with different disturbances for a maximum excitation voltage
of 1.6 pu (in 20 s—the effects of the generator voltage reference change, in 40 s—the impact of
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Figure 16. Excitation voltage responses with different disturbances for a maximum excitation voltage
of 1.6 pu (in 20 s—the effects of the generator voltage reference change, in 40 s—the impact of
the additional signal on the regulator output, in 100 s—the impact of the additional signal on the
generator output).

5.4. Proposed Algorithm Tests

Finally, the effectiveness of the proposed algorithm is tested from the perspectives of
convergence curves and statistical findings to confirm the rationale for its implementation.
The test is run assuming that max Vexc = 4 pu.

A 3D graph convergence curve resulting from the proposed method, which was
initiated 30 times with 50 iterations between each start, is shown in Figure 17. As illustrated
in Figure 18, the Chaotic AVOA, PSO–AVOA, and the standard AVOA compare the mean
value and the convergence curve. The statistical processing of findings in the form of
maximum, minimum, and mean values, and the comparison in terms of Wilcoxon’s rank-
sum test, were carried out based on the provided results and numerous tests of each
algorithm stated (Table 7).
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Table 7. Comparison of the results obtained with the different investigated algorithms, in terms of
the statistical measures and p-values obtained with Wilcoxon’s rank-sum test.

Statistical results

Algorithm PSO–AVOA Chaotic AVOA AVOA

Best 177.6180 177.6192 177.6193
Worst 177.7449 178.8152 179.0001
Mean 177.6708 177.8962 178.0258

Median 177.6611 177.6892 178.1863
Stand. dev. 0.0364 0.0377 0.0389

p-value
PSO–AVOA vs. Chaotic AVOA PSO–AVOA vs. AVOA

1.3562 × 10−8 2.66812318276 × 10−6

The proposed algorithm guarantees the best outcomes in terms of speed and conver-
gence statistical tests. As a result, the suggested algorithm’s applicability, effectiveness, and
rapid convergence are presented and discussed.

6. Conclusions

This paper deals with the design of the regulator for the automatic voltage regulation
system of synchronous machines. However, in contrast to previous literature’s approaches,
this work considers the AVR scheme, where interference signals are added to each element.
A 6ISO system was proposed in this manner. Analyzing the response of the generator
voltage when using different types of regulators whose parameters are designed using
different methods in the literature, it was observed that the dominant effects on the output
voltage of the generator are interference on the regulator signal and interference on the
generator voltage with a step change in the reference value of the generator voltage. The
simulations also show that the generator voltage output form is not significantly affected
by changes in the output from the excitation or by changes in the signal from the amplifier.

A new objective function was defined in light of the previously mentioned findings.
The research also suggests using a novel metaheuristic algorithm that merges one of the
more recent AVO metaheuristic algorithms with the well-known PSO algorithm. The
regulator settings were calculated using the suggested hybrid technique in limited and
unlimited excitation voltage cases.

Based on the results, it was determined that the suggested algorithm provides results
superior to those found in the literature and converges noticeably quicker. As a result, the re-
sponse and voltage of the generator are improved. Future research will focus on developing
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novel types, i.e., regulator structures incorporating filter components in the sensor branch
and the practical implementation of various regulator structures in synchronous machines.
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