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Abstract: This paper introduces a novel fractional Ikeda-based memristor map and investigates its
non-linear dynamics under commensurate and incommensurate orders using various numerical
techniques, including Lyapunov exponent analysis, phase portraits, and bifurcation diagrams. The
results reveal diverse and complex system behaviors arising from the interplay of different fractional
orders in the proposed map. Furthermore, the study employs the sample entropy test to quantify
complexity and validate the presence of chaos. Non-linear controllers are also presented to stabilize
and synchronize the model. The research emphasizes the system’s sensitivity to the fractional order
parameters, leading to distinct dynamic patterns and stability regimes. The memristor-based chaotic
map exhibits rich and intricate behavior, making it an interesting and important area of research.

Keywords: Ikeda-based memristor map; discrete fractional calculus; bifurcation; chaotic dynamics;
sample entropy; control

1. Introduction

Chaos theory has been extensively studied across various academic and engineering
disciplines over the last few decades. This field of research has led to numerous inter-
disciplinary advancements with impressive performance in different domains [1–4]. The
presence of randomness and unpredictability in chaotic systems and the sensitivity to
initial conditions allow for the generation of pseudo-random sequences and enhanced
data encryption. These inherent merits of chaotic behaviors have contributed to significant
progress in various fields, including secure communications, image and signal processing,
data encryption, and optimization algorithms, among others [5–8]. The rich dynamics of
chaotic systems continue to inspire novel research and applications, making chaos theory
an essential area of study with broad interdisciplinary impact.

Fractal Fract. 2023, 7, 728. https://doi.org/10.3390/fractalfract7100728 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7100728
https://doi.org/10.3390/fractalfract7100728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-3765-5807
https://doi.org/10.3390/fractalfract7100728
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7100728?type=check_update&version=3


Fractal Fract. 2023, 7, 728 2 of 21

A memory resistor, commonly known as a “memristor”, has been widely recognized
as a fourth fundamental circuit element that serves as a link between charge and magnetic
flux. The theoretical concept of the memristor was initially forwarded by Chua in 1971 [9].
For an extended period, memristor research remained primarily theoretical until the first
physical implementation of a memristor was achieved by HP laboratories in 2008. They
successfully developed the first practical memristor using nanomaterials [10]. It has since
become an essential component in various applications due to its unique properties and
potential to revolutionize memory and computing technologies. Memristors have garnered
significant attention and research interest, contributing to the advancement of various fields,
including electronics [11], computing [12], nonvolatile memory [13], and neuromorphic
systems [14].

In general, memristor-based chaotic systems are commonly designed using differential
equations in the continuous-time domain [15]. However, until recent years, discrete-time
memristive maps had not been extensively explored or discussed. In practice, discrete
chaotic systems offer the advantage of avoiding parameter sensitivity issues present in
continuous systems, making them easier to implement using digital hardware circuits [16].
Consequently, there has been a growing realization among researchers about the signif-
icance of exploring and understanding discrete memristive maps, leading to promising
advancements in understanding the behavior of discrete memristor-based systems and their
implications for various applications. Rong et al. [17] discussed the hidden Neimark–Sacker
bifurcations of a three-dimensional Hénon map coupled by a memristor. The dynamics of a
new memristive neuron map were presented in [18]. Almatroud and Pham [19] introduced
a novel approach to construct free fixed-point maps by combining a cosine term with a
memristor, and they investigated the dynamics of these proposed maps. The analysis of ex-
tremely hidden multistability and synchronization of memristor-coupled non-autonomous
Fitzhugh–Nagumo models is shown in [20], whereas the hidden extreme multi-stability
of a new 2D cosine memristor-based map is presented in [21]. These studies contribute
to exploring the interactions between memristive elements and mathematical functions,
providing valuable insights into the dynamics of memristive maps and their potential
applications in various fields.

Discrete fractional calculus has emerged as a captivating research area that has grabbed
the interest of mathematicians and scholars in various disciplines over the last decade. Its
applications span diverse fields, including biology, ecology, and applied sciences, offering
valuable insights into real-world challenges. Fractional systems have demonstrated the
ability to describe complex nonlinear phenomena with greater accuracy compared to tradi-
tional integer-order systems [22], showcasing their unique properties, including long-term
memory, viscosity, and flexibility. Recently, there has been a surge in published articles
addressing this intriguing topic. Researchers have been offering various discrete-time
fractional operators, conducting stability analyses, and presenting numerous theoretical
findings [23–27]. Notably, Wu and Baleanu presented the first study that delves into the
modeling of fractional chaotic maps using the left Caputo-like operator and investigated
their chaotic characteristics [28]. As a result of these advances, this work has paved the
way for the emergence of more commensurate- and non-commensurate-order chaotic
maps [29–32], in addition to exploring diverse control strategies and synchronization
schemes that have been developed to synchronize the interactions between different frac-
tional discrete chaotic systems [33–35]. These studies reflected that the system’s behavior is
highly dependent on the chosen fractional order, showcasing its non-linear and complex
nature, which makes it a fascinating subject of study in the field of fractional dynamics.

Indeed, the majority of the previous discrete memristors research has been focused
on integer-order systems. Regrettably, the study of discrete fractional memristors remains
inadequate, with relatively few studies dedicated to exploring their behavior and character-
istics. For instance, Peng et al. investigated the chaotic behaviors in the Caputo fractional
memristive map [36]. In [37], Lu et al. developed an innovative 2D discrete memristor map
by incorporating a memristor into a 1D Rulkov neuron map, whereas in [38], the authors
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conducted an investigation into the multistability and synchronization of fractional maps
resulting from the coupling of Rulkov neurons with locally active discrete memristors.
Furthermore, the study of the frac memristor-based discrete chaotic map based on the
Grunwald–Letnikov operator and its implementation in digital circuits is presented in [39].
Additionally, Shatnawi et al. recently explored the hidden attractors and multistability in a
fractional non-fixed point discrete memristor-based map [40]. The study highlights the intri-
cate and rich behavior of the system, emphasizing the significance of fractional components
in contributing to the complexity and versatility of memristor-based maps. The majority of
the research mentioned above has predominantly focused on commensurate-order models
in discrete memristor-based maps. However, there appears to be a noticeable gap in the
literature concerning the effect of the incommensurate-order case on the dynamics of such
maps. In fact, the incommensurate order is a particular case of a fractional-order system
by whether the order of each equation has different values. Thus, it improves the freedom
of the models. This indicates an underexplored area in the field of discrete memristors,
particularly in the context of incommensurate fractional memristors. Understanding the
behavior and properties of incommensurate fractional memristors could lead to valuable
insights and potential applications in various domains such as neural circuits, electronics,
neural networks, viscoelasticity, control theory, neural dynamics, and so on [41–43]. There-
fore, further investigation and research in this area are essential to uncovering the unique
characteristics and potential benefits of incommensurate fractional memristors.

Motivated by the preceding discourse, our objective in this paper is to delve into the
exploration and analysis of the dynamic behaviors exhibited by the fractional-order Ikeda-
based memristor map, encompassing both commensurate and incommensurate fractional
values. We undertake a comprehensive exploration of the fundamental properties of
this Ikeda-based memristor map through a combination of numerical and theoretical
analyses. The structure of this article is outlined as follows: In Section 2, we present
the mathematical model of the discrete memristor and introduce essential preliminary
concepts related to discrete fractional calculus. Section 3 introduces the fractional discrete
version of the Ikeda-based memristor map. In Section 4, we delve into an analysis of the
dynamic characteristics of the fractional Ikeda-based memristor map, focusing on both
commensurate and incommensurate scenarios. This exploration is facilitated through
Lyapunov exponent analysis, bifurcation diagrams, and phase attractor visualization.
Section 5 involves the utilization of the sample entropy test (SampEn) to quantitatively
measure complexity and validate the presence of chaos within the map. In Section 6, we
propose adaptive nonlinear controllers aimed at stabilizing and synchronizing the proposed
fractional Ikeda-based memristor map. Finally, we conclude the paper by summarizing the
most noteworthy findings obtained throughout the study.

2. Discrete Memristor Mathematical Model

The memristor is a two-terminal nonlinear device that displays a pinched hysteresis
in response to the application of any periodic voltage or current stimulation. Diverse
memristors with discrete memristance values have been suggested through the use of
differential modeling theory [44]. As per the concept presented in reference [45], the
discrete memristor can be defined by:{

vr = M(qr)ir,
qr+1 = qr + k ir,

(1)

where k is constant. vr represents the output voltage, ir the input current, and qr represents
the internal state of the discrete memristor at step r. M(qr) denotes the value of the discrete
memristance function, which is equal, in this study, to:

M(qr) = q2
r − 1.
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Thus, the mathematical model for the discrete memristor (1) is formulated by:{
vr = (q2

r − 1)ir,
qr+1 = qr + k ir.

(2)

According to [46], for ir = A sin ωr, the discrete memristor model can produce a
hysteresis loop, as seen in Figure 1.

(a) (b) (c)

Figure 1. Discrete memristor characteristics (a) current and voltage for q0 = 0.1, A = 0.05, w = 0.03;
(b) pinched hysteresis loops for w = 0.03, 0.06 and 0.1 and with fixed q0 = 0.1, A = 0.05; (c) pinched
hysteresis loops for A = 0.05, 0.08 and 0.1 and with fixed q0 = 0.1, w = 0.03.

The aforementioned equation, qr+1 = qr + kir, allows for the expression of the correla-
tion between the charge qr and current ir, which is expressed as follows:

qr+1 = qr + k ir
= qr−1 + k ir−1 + k ir
= qr−2 + k ir−2 + k ir−1 + k ir

...

= q0 + k i0 + k i1 + · · ·+ k ir−2 + h ir−1 + k ir. (3)

Thus:

qr = q0 + k
r−1

∑
j=0

ij. (4)

Therefore, when we substitute Equation (4) into Equation (2), we obtain:

vr =

((
q0 + k

r−1

∑
j=0

ij

)2

− 1

)
ir. (5)

As demonstrated through Equation (5), the discrete memristor system exhibits “mem-
ory effects” resembling those of fractional discrete systems. This suggests that this memris-
tor with integer-order characteristics has the potential to extend to fractional order. Hence,
employing the Caputo operator yields the novel fractional discrete memristor system:{

vr = (q2
r − 1)ir,

C∆β
r q(υ) = k i(υ + β− 1),

(6)

where υ ∈ Nb−β+1 and β ∈ (0, 1]. The Caputo difference operator C∆β
b Y(υ) of a function

Y(υ) is defined as follows:
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Definition 1 ([23]). The β-th fractional sum for a function Y can be expressed as:

∆−β
b Y(υ) =

1
Γ(β)

b−β

∑
l=b

(b− 1− l)(β−1)Y(l), (7)

with υ ∈ Nb+β, β > 0 and Γ(.) is the Gamma function.

Definition 2 ([25]). The Caputo-like difference operator for a function Y(υ) can be stated as:

C∆β
υY(b) = ∆−(m−β)

b ∆mX(υ) = 1
β(m−β) ∑

υ−(m−β)
l=b (υ− l − 1)(m−β−1)∆mY(l), (8)

where υ ∈ Nb+m−β, β 6∈ N and m = dβe+ 1. ∆mY(υ) and (υ− l − 1)(m−β−1) are the m-th
integer difference operator and the falling factorial function, respectively, which are written as:

∆mY(υ) = ∆(∆m−1Y(υ)) =
m

∑
k=0

(
m
k

)
(−1)m−kY(υ + k), υ ∈ Nb, (9)

and

(υ− 1− l)(m−β−1) =
β(υ− l)

β(υ + 1− l −m + β)
, (10)

Remark 1. For m = 1, we can define the Caputo-like operator by:

C∆β
b Y(υ) = ∆−(1−β)

b ∆Y(υ) = 1
β(1−β) ∑

υ−(1−β)
l=b (υ− 1− l)(−β)∆Y(l), υ ∈ Nb−β+1 (11)

Now, with the aid of the following theorem, we can figure out the numerical expression
for the fractional discrete memristor system (6):

Theorem 1 ([28]). The solution of the following fractional difference system:{
C∆β

b Z(υ) = Y(υ + β− 1, Z(υ + β− 1))
∆jZ(υ) = Zj, m = dβe+ 1,

(12)

is expressed by:

Z(υ) = Z0(υ) +
1

Γ(β)

υ−β

∑
l=m−β

(υ + 1− l)(β−1)Y(l − 1 + β, Z(l − 1 + β)), υ ∈ Nb+m, (13)

where:

Z0(υ) =
m−1

∑
j=0

(υ− b)j

Γ(j + 1)
∆jZ(0). (14)

The numerical representation of the fractional discrete memristor model (6) is desig-
nated according to the above theorem as follows:vr =

((
q0 +

k
Γ(β) ∑r−1

l=0
Γ(r−l−1+β)

Γ(r−l) i(l)
)2
− 1
)

ir,

qr = q0 +
k

Γ(β) ∑r−1
l=0

Γ(r−l−1+β)
Γ(r−l) i(l).

(15)

By setting q0 = 0 and utilizing the discrete current ir = A sin (wr) as an input, with
w = 0.03 representing the frequency and A = 0.05 denoting the amplitude, Figure 2
illustrates the characteristics of the input ir and output vr for different fractional orders. It
is evident that the discrete memristor model displays hysteresis loops that converge at the
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origin, with the lobe region of the hysteresis loops progressively expanding as the fractional
order value increases.

Figure 2. Pinched hysteresis loops of the discrete fractional memristor for q(0) = 0.1, A = 0.05,
w = 0.03 and with different fractional order β = 1, 0.9, 0.8, and 0.7.

3. Fractional-Order Ikeda-Based Memristor Map

The original work of Ikeda [47] introduced the Ikeda map as a physical representation
model to depict the behavior of light within a ring cavity, representing the propagation
of light through a nonlinear optical resonator. Subsequently, in [48], the model was trans-
formed into the following discrete-time system:{

y1(r + 1) = 1 + ρ(y1(r) cos ψ(r)− y2(r) sin ψ(r)),
y2(r + 1) = ρ(y1(r) sin ψ(r) + y2(r) cos ψ(r)),

(16)

where ρ is bifurcation parameter and:

ψ(r) = 0.4− 0.6
1 + y2

1(r) + y2
2(r)

Laskaridis et al. [49] expanded the dimension of the Ikeda map by incorporating
the discrete memristor model (2) into the map (16), yielding the following Ikeda-based
memristor map:


y1(r + 1) = 1 + ρ(y1(r) cos ψ(r)− y2(r) sin ψ(r)) + µ(q2(r)− 1)y2(r),
y2(r + 1) = ρ(y1(r) sin ψ(r) + y2(r) cos ψ(r)),
q(r + 1) = q(r) + y2(r).

(17)

where µ is the controller parameter. Figure 3 presents the bifurcation diagram and Lya-
punov exponents, as well as the phase attractor of the Ikeda-based memristor map, while
varying ρ from 0 to 0.7. The evidence presented in Figure 3 shows that the model demon-
strates chaotic dynamics for a significant range of values, specifically within the interval
ρ ∈ (0.46, 0.53) ∪ (0.61, 0.7).

In this investigation, we extend the integer-order Ikeda-based memristor map to gen-
erate the fractional-order Ikeda-based memristor map by employing the Caputo difference
operator. The formula representing the first-order difference of the Ikeda-based memristor
map is as follows:

∆y1(r) = 1 + ρ(y1(r) cos ψ(r)− y2(r) sin ψ(r)) + µ(q2(r)− 1)y2(r)− y1(r),
∆y2(r) = ρ(y1(r) sin ψ(r) + y2(r) cos ψ(r))− y2(r),
∆q(r) = y2(r),

(18)
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where ∆y(r) = y(r + 1) − y(r) is the standard difference operator. In the aforemen-
tioned system, if we substitute ∆ with the Caputo-like operator C∆β

b and replace r with
$ = υ + β− 1, the resulting system becomes a fractional-order difference system.

C∆β
b y1(υ) = 1 + ρ(y1($) cos ψ($)− y2($) sin ψ($)) + µ(q2($)− 1)y2($)− y1($),

C∆β
b y2(υ) = ρ(y1($) sin ψ($) + y2($) cos ψ($))− y2($),

C∆β
b q(υ) = y2($),

(19)
where υ ∈ Nb+1−β, b is the initial point and 0 < β ≤ 1 denotes the fractional order.

(a) (b) (c)

Figure 3. (a) Bifurcation diagram of (17) for ρ ranging from 0 to 0.7. (b) The corresponding Lyapunov
exponents. (c) Phase attractor of Ikeda-based memristor map.

4. Nonlinear Dynamics of the Fractional-Order Ikeda-Based Memristor Map

In this section, we will conduct an analysis of the behaviors of the fractional-order
Ikeda-based memristor map (19). The analysis will be carried out across commensurate
and incommensurate orders. We will employ a range of numerical tools, such as visual-
izing phase portraits, illustrating bifurcations, and estimating the maximum Lyapunov
exponent (LEmax).

4.1. Commensurate-Order Fractional Ikeda-Based Memristor Map

In this part, our focus is on elaborating on the different characteristics of the commensurate-
order fractional Ikeda-based memristor map with the memristor. It is important to recognize
that a commensurate-order fractional system comprises equations that possess identical
orders. To this end, we will now supply the numerical formula, which will be presented in
the following manner and is derived from Theorem 1:

y1(r) = y1(0) +
r−1
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
1 + ρ(y1(j) cos ψ(j)− y2(j) sin ψ(j)) + µ(q2(j)− 1)y2(j)− y1(j)

)
,

y2(r) = y2(0) +
r
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
ρ(y1(j) sin ψ(j) + y2(j) cos ψ(j))− y2(j)

)
,

q(r) = q(0) +
r
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
y2(j)

)
,

(20)

Setting y1(0) = y2(0) = q(0) = 0.1 and the parameter µ = 0.11, we plot three bifurcations
of (19) associated with ρ ∈ [0, 1], as shown in Figure 4, which correspond to the parameter
µ = 0.11 and the commensurate orders β = 0.1, β = 0.3, and β = 0.9. It is evident that both
the parameter’s system ρ and the commensurate order β have an effect on the states of the
commensurate fractional Ikeda-based memristor map (19). Indeed, as the commensurate
fractional order β decreases and the parameter ρ increases, the commensurate fractional
Ikeda-based memristor map (19) displays a more extended chaotic region. This leads to
the emergence of more complex oscillations and increased unpredictability in the system’s
behavior. The interplay between the fractional order and the system parameter has a
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significant impact on the dynamical behavior, and these changes can result in a richer range
of chaotic patterns and intricate trajectories within the Ikeda-based memristor map (19).

(a) β = 0.1

(b) β = 0.3

(c) β = 0.9

Figure 4. (a) Three Bifurcation diagrams of y1 and their LEmax associated with ρ, for (a) β = 0.1,
(b) β = 0.3, and (c) β = 0.9.

Now, considering β as the critical parameter, the bifurcation diagram is used to depict
the variations in the behaviors of the commensurate Ikeda-based memristor map (19) as
the order β is varied from 0 to 1 with step size 0.001. Figure 5 depicts the bifurcation and
the LEmax. We can see that upon changing the commensurate order, a rich set of dynamic
characteristics (chaotic and regular) of the fractional map are investigated in regards to
the commensurate order β. In more detail, there are regions where the system oscillates
chaotically and regions where the system oscillates regularly. More specifically, when
β ∈ (0, 0.04), periodic windows with nine-period orbits appear, with the occurrence of a
small chaotic motion in the interval (0.04, 0.16). When β ∈ (0.22, 0.31), we can observe
oscillations between chaotic and regular trajectories in the states of the commensurate Ikeda-
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based memristor map (19). During this range, the LEmax also fluctuates between positive
and negative values, indicating transitions between chaotic and non-chaotic behaviors
in the system. When the commensurate order β falls within the range of (0.31, 0.58),
the trajectories of the commensurate-order Ikeda-based memristor map exhibit chaotic
behavior. However, as β transitions to the range of (0.58, 0.95), two-period orbits emerge,
indicating the stability of the model. Subsequently, for larger values of β, chaotic motions
reappear, characterized by a positive maximum Lyapunov exponent (LEmax), indicating
chaotic dynamics in the trajectories of the commensurate-order Ikeda-based memristor
map. These described dynamic features are further confirmed by the LEmax shown in
Figure 5, providing additional evidence for the system’s complex and diverse behavior and
confirming the sensitivity of the map to changes in the commensurate-order parameter
β. Furthermore, based on the observation of the maximum Lyapunov exponent, it can be
concluded that when the LEmax is not positive, the commensurate Ikeda-based memristor
map exhibits regular oscillations. Conversely, the presence of chaotic oscillations is inferred
when the exponent is positive. In order to achieve a comprehensive understanding of these
characteristics, Figure 6 displays the discrete time evolution of the states y1, y2, and q in
the suggested commensurate map. Additionally, Figure 7 illustrates the phase portraits for
various values of the commensurate order β (β = 0.1, β = 0.4, β = 0.6, β = 0.9, β = 0.98,
and β = 1). From the figures, the observed trajectories in the proposed commensurate
map switch between chaotic oscillations and periodic behaviors as the commensurate
order β varies. This observation emphasizes the sensitivity of the system to changes
in β and demonstrates the richness and complexity of the dynamical properties in the
commensurate-order Ikeda-based memristor map (19).

(a)
(b)

Figure 5. (a) Bifurcation of commensurate order Ikeda-based memristor map (19) for β ∈ (0, 1).
(b) The corresponding LEmax.

Figure 6. Time evolution of (19) for β = 0.98.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Phase portraits of (19) for different values of β (a) β = 0.1, (b) β = 0.4, (c) β = 0.6,
(d) β = 0.9, (e) β = 0.98, (f) β = 1.

4.2. Incommensurate-Order Fractional Ikeda-Based Memristor Map

In this section, we delve into the dynamics of the incommensurate-order fractional
Ikeda-based memristor map. The concept of incommensurate order entails utilizing dif-
ferent fractional orders for each equation within the system. The representation of the
incommensurate-order fractional Ikeda-based memristor map is as follows:

c∆β1
b y1(υ) = 1 + ρ(y1($) cos ψ($)− y2($) sin ψ($)) + µ(q2($)− 1)y2($)− y1($),

c∆β2
b y2(υ) = ρ(y1($) sin ψ($) + y2($) cos ψ($))− y2($),

c∆β3
b q(υ) = y2($),

(21)

By utilizing Theorem 1, we can express the numerical representation of the incommen-
surate fractional Ikeda-based memristor map (21) as follows:

y1(r) = y1(0) +
r−1
∑

j=0

Γ(r−j−1+β1)
Γ(β1)Γ(r−j)

(
1 + ρ(y1(j) cos ψ(j)− y2(j) sin ψ(j)) + µ(q2(j)− 1)y2(j)− y1(j)

)
,

y2(r) = y2(0) +
r
∑

j=0

Γ(r−j−1+β2)
Γ(β2)Γ(r−j)

(
ρ(y1(j) sin ψ(j) + y2(j) cos ψ(j))− y2(j)

)
,

q(r) = q(0) +
r
∑

j=0

Γ(r−j−1+β3)
Γ(β3)Γ(r−j)

(
y2(j)

)
,

(22)

We analyze the dynamics and characteristics of this map to understand its unique
behavior and explore the implications of employing distinct fractional orders in the system’s
equations. The three bifurcation diagrams presented in Figure 8 demonstrate the behaviors
of the incommensurate Ikeda-based memristor map (21) as the parameter ρ varies within
the range [0, 1]. The simulations were conducted with the value of parameter µ = 0.11 and
initial conditions (y1(0), y2(0), q(0))=(0.1, 0.1, 0.1). It is evident that these diagrams exhibit
distinct patterns, indicating that the change in fractional orders (β1, β2, β3) significantly
impacts the states of the incommensurate order fractional Ikeda-based memristor map (21).
For instance, when (β1, β2, β3) = (1, 0.1, 0.1), the system’s states evolve from periodic to



Fractal Fract. 2023, 7, 728 11 of 21

chaotic behavior with periodic doubling bifurcation as the parameter ρ increases. On
the other hand, when (β1, β2, β3) = (0.1, 0.5, 0.1), oscillatory motion is observed, with
trajectories remaining stable for small values of ρ and becoming chaotic as ρ approaches 1.
In the case of (β1, β2, β3) = (0.1, 0.1, 0.7), a chaotic region is evident throughout the interval,
except for some small regions where the model exhibits regular oscillations, especially when
ρ approaches 0. To provide a more detailed illustration of the influence of incommensurate
orders on the behaviors of the Ikeda-based memristor map, further investigation has been
carried out in three specific cases. These investigations offer a deeper understanding of
how the fractional orders impact the system dynamics and underscore the importance of
considering incommensurate orders in the analysis of the model’s behavior.

(a)
(b) (c)

Figure 8. Bifurcations of (21) versus the parameter system ρ for (a) (β1, β2, β3) = (1, 0.1, 0.1),
(b) (β1, β2, β3) = (0.1, 0.5, 0.1), (c) (β1, β2, β3) = (0.1, 0.1, 0.7).

Case 1. In Figure 9a,b, we observe the variation of the order β1 from 0 to 1 with a step
size of ∆β1 = 0.001. These figures illustrate the bifurcation and its corresponding
Lyapunov exponent of the incommensurate-order fractional Ikeda-based memris-
tor map (21) for β2 = β3 = 0.1, the parameter value ρ = 0.5, µ = 0.11, and the
initial conditions (y1(0), y2(0), q(0))=(0.1, 0.1, 0.1). From Figure 9a, it is evident
that the state of the incommensurate Ikeda-based memristor map (21) exhibits
chaotic behavior for smaller values of β1, as evidenced by positive LEmax, as shown
in Figure 9b. The Lyapunov exponent (LEmax) displayed in Figure 9b fluctuates
between positive and negative values when β1 lies within the region (0.24, 0.36).
This outcome indicates the presence of chaotic behavior with the emergence of pe-
riodic windows. As the incommensurate order β1 increases further, the trajectories
transition from chaotic to regular motion, characterized by two-period orbits where
the states of the incommensurate order fractional Ikeda-based memristor map (21)
become stable.

Case 2. The bifurcation diagram and its (LEmax) are plotted to investigate the dynamic
behaviors of the incommensurate order fractional Ikeda-based memristor map (21),
with β2 being an adjustable parameter, as depicted in Figure 10. The simulations
are conducted by varying β2 in the range (0, 1], while keeping the incommensurate
orders β1 = β3 = 0.1, initial conditions (y1(0), y2(0), q(0)) = (0.1, 0.1, 0.1), and
parameter values unchanged. From the figure, it can be observed that as the
order β2 increases to larger values, the trajectories become more stable. On the
other hand, as β2 decreases, chaotic behaviors emerge with positive values of
LEmax, along with the appearance of small periodic regions exhibiting negative
values of LEmax. Additionally, as β2 decreases even further and approaches 0,
the maximum Lyapunov exponent values decrease until they reach zero. This
indicates that periodic trajectories appear and signifies that the incommensurate
fractional Ikeda-based memristor map (21) undergoes a transition from chaotic
to regular behavior. The observed changes in the LEmax and the corresponding
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dynamic patterns illustrate the system’s sensitivity to variations in the parameter β2,
highlighting the complexity and versatility of the incommensurate-order fractional
Ikeda-based memristor map.

(a) (b)

Figure 9. (a) Bifurcation of (21). (b) Corresponding LEmax versus the incommensurate fractional
order β1 for β2 = β3 = 0.1.

(a) (b)

Figure 10. (a) Bifurcation of (21). (b) Corresponding LEmax versus the incommensurate fractional
order β2 for β1 = β3 = 0.1.

Case 3. The bifurcation chart and its corresponding LEmax of the proposed new
incommensurate-order fractional Ikeda-based memristor map (21) are presented in
Figure 11, where the parameter β3 is varied within the range (0, 1). In this analysis,
we maintain the incommensurate orders as β1 = β2 = 0.1. From Figure 11, it
is evident that unlike the previous cases, the trajectories of the incommensurate
model exhibit chaotic behavior when the order β3 takes larger values, as indicated
by the higher values of LEmax. We see also see that when β3 approaches 1, the
map shows transition states and the trajectories go to infinity, for example, when
β3 = 0.9 and after some number of iterations, especially r = 4997, the trajectories
diverge toward infinity, as presented in Figure 12. As β3 continues to decrease,
the LEmax starts decreasing as well, reaching its smallest value, leading to a reduc-
tion in chaos and, consequently, the behavior of the map’s states becomes more
stable. These results emphasize the sensitivity of the incommensurate fractional
Ikeda-based memristor map (21) to changes in the order β3, resulting in a diverse
range of dynamic behaviors, including chaotic and periodic motion. This high-
lights the significance of incommensurate orders in shaping the system’s dynamics.
Additionally, the phase portraits of the state variables of the incommensurate frac-
tional Ikeda-based memristor map (21), as shown in Figure 13, further support
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the notion that incommensurate orders more accurately represent the system’s
behaviors. Overall, the study emphasizes the intricate and diverse nature of the
incommensurate-order fractional Ikeda-based memristor map and the significance
of the choice of fractional orders in modeling and characterizing its dynamics.

(a) (b)

Figure 11. (a) Bifurcation of (21). (b) Corresponding LEmax versus the incommensurate fractional
order β3 for β1 = β2 = 0.1.

(a) (b) (c)

(d) (e) (f)

Figure 12. Phase portraits of (21) for (β1, β2, β3) = (0.1, 0.1, 0.7) and (a) r = 4990, (b) r = 4997.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Phase portraits of (21) for different values of incommensurate orders β1, β2, and β3;
(a) (β1, β2, β3) = (0.1, 0.1, 0.05), (b) (β1, β2, β3) = (0.1, 0.5, 0.1), (c) (β1, β2, β3) = (0.4, 0.1, 0.1),
(d) (β1, β2, β3) = (0.1, 0.65, 0.1), (e) (β1, β2, β3) = (0.1, 0.1, 0.7), (f) (β1, β2, β3) = (1, 0.1, 0.1).

5. The Sample Entropy Test (SampEn)

In this study, we employ the sample entropy (SampEn) method to assess the complex-
ity of both the commensurate-order fractional Ikeda-based memristor map (19) and the
incommensurate-order fractional Ikeda-based memristor map (21). Unlike approximate
entropy (ApEn), SampEn can effectively measure the irregularity of time series regardless
of the embedding dimension (j) and the similarity coefficient (t). Consequently, SampEn
provides a more consistent and unbiased measure compared to ApEn [50]. The SampEn
values indicate the complexity level of the time series, with higher values corresponding to
higher complexity [51]. The calculation of SampEn is performed as follows:

We first define r− j + 1 vectors as follows:

Y(i) = [y1(i), ..., y1(i + m− 1)], (23)

for i ∈ [1, r− j + 1], where y1(1), y1(2), ..., y1(n) is a set of discrete points. In addition, we
describe the following equation:

Cj
i (t) =

K
r− j + 1

, (24)

where K is the number of Y(i) having d(Y(i), Y(l)) ≤ t. Here, we set j = 2 and t = 0.2std(Y),
where std(Y) is the standard deviation of the data Y. Theoretically, the ApEn is calculated as:

SampEn = − log
Ψj+1(r)

Ψj(r)
, (25)

where Ψj(t) is expressed as:

Ψj(t) =
1

r− j + 1

r−j+1

∑
i=1

log Cj
i (t). (26)
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The sample entropy results for the commensurate-order fractional Ikeda-based mem-
ristor map (19) and the incommensurate-order fractional Ikeda-based memristor map (21)
are presented in Figure 14, with initial conditions set as (y1(0), y2(0), q(0)) = (0.1, 0.1.0, 1).
The obtained SampEn values indicate the complexity levels of the time series, with larger
values corresponding to higher complexity. The results demonstrate that both the com-
mensurate and incommensurate fractional Ikeda-based memristor maps exhibit higher
complexity, as indicated by their larger SampEn values. These findings align with the
results obtained from the maximum Lyapunov exponent analysis, further confirming the
chaotic nature of the dynamics in the proposed fractional system. The higher complexity
and chaotic behavior support the significance of fractional orders in capturing the rich
dynamics of the proposed fractional Ikeda-based memristor map.

(a) (b)

Figure 14. The sample entropy results of the fractional Ikeda-based memristor map versus the
parameter ρ for (a) β = 0.1, (b) (β1, β2, β3) = (0.1, 0.1, 0.7).

On the other hand, to get a better understanding of the influence of the fractional
order on the Ikeda-based memristor map and in light of previous numerical findings, we
compare the sample entropy results obtained from the fractional Ikeda-based memristor
map with the results obtained from the fractional-order Ikeda map, which are presented in
Table 1. One can observe that the fractional-order Ikeda-based memristor map generates a
chaotic sequence with a greater degree of complexity than that of the classical fractional
Ikeda-based memristor map. Consequently, we can conclude that the sample entropy test
is an effective tool for measuring the complexity of the proposed map accurately.

Table 1. The sample entropy test.

β1 0.1 0.1 0.4 0.4 1 0.8 1

β2 0.1 0.5 0.1 0.4 0.1 0.8 1

β3 0.1 0.1 0.1 0.4 0.1 0.8 1

SampEn of Ikeda memristor map 0.4363 0.5188 0.7081 0.8150 0.0468 0.0029 0.4542

SampEn of Ikeda map 0.4066 0.1596 0.5909 0.4899 0.0602 0.0046 0

6. Control of Fractional Ikeda-Based Memristor Map
6.1. Stabilisation of Fractional Ikeda-Based Memristor Map

Here, a stabilization controller is proposed to stabilize the suggested fractional Ikeda-
based memristor chaotic map. The main objective of the stabilization method is to design
an effective adaptive controller that drives all states of the map towards zero asymptotically.
To achieve this goal, we begin by revisiting the stability theorem for the fractional maps.
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Theorem 2 ([52]). Let y(r) = (y1(r), . . . , yn(r))T and B ∈ Mn(R). The zero equilibrium point
of the linear fractional-order discrete system:

C∆β
b y(r) = B y($), (27)

∀ r ∈ Nb+1−β is asymptotically stable if:

λι ∈
{

γ ∈ C : |γ| <
(

2 cos
|arg γ| − π

2− β

)β

and |arg γ| > β π

2

}
, (28)

where λι are the eigenvalues of the matrix B.

Now, the controlled fractional Ikeda-based memristor map is given by:
c∆β

b y1(υ) = 1 + ρ(y1($) cos ψ($)− y2($) sin ψ($)) + µ(q2($)− 1)y2($)− y1($) + C1($),
c∆β

b y2(υ) = ρ(y1($) sin ψ($) + y2($) cos ψ($))− y2($) + C2($),
c∆β

b q(υ) = y2($) + C3($),

(29)

where $ = υ+ β− 1 and C = (C1, C2, C3)
T is the adaptive controller. The following theorem

introduces control laws aimed at stabilizing the proposed novel fractional Ikeda-based
memristor map.

Theorem 3. If suitable control laws are designed as follows:
C1($) = −1− ρ(y1($) cos ψ($)− y2($) sin ψ($))− µ(q2($)− 1)y2($),
C2($) = −ρ(y1($) sin ψ($) + y2($) cos ψ($)),
C3($) = −y2($)− q($).

(30)

Then, the fractional Ikeda-based memristor map can be stabilized at its equilibrium point.

Proof. Substituting C1, C2, and C3 into (29) yields the following linear system:

C∆β
b Y(r) = BY($), (31)

where Y = (y1, y2, q)T and:

B =

−1 0 0
0 −1 0
0 0 −1


It is easy to see that the eigenvalues of the matrix B satisfy:

|λj| = 1 <

(
2 cos

|arg λj| − π

2− β

)β

and |arg λj| = π >
β π

2
, j = 1, 2, 3.

So, by employing Theorem 2, the controlled fractional Ikeda-based memristor map is
asymptotically stable.

To validate the findings of Theorem 3, numerical simulations were performed.
Figures 15 and 16 present the time series of the controlled fractional Ikeda-based memristor
map (29). It is evident from the figure that the system’s states approach zero asymptotically,
confirming the successful stabilization results.
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β = 0.4

β = 0.95

Figure 15. Attractors of the controlled fractional Ikeda-based memristor map (29) for β = 0.4, 0.95
and initial condition (y1(0), y2(0), q(0)=(0.1,−0.1, 0.2).

β = 0.4

β = 0.95

Figure 16. The stabilized states of the controlled fractional Ikeda-based memristor map (29) for
β = 0.4, 0.95 and initial condition (y1(0), y2(0), q(0)=(0.1,−0.1, 0.2).
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6.2. Synchronization Scheme of Fractional Ikeda-Based Memristor Map

In the following, nonlinear controllers for achieving synchronization of the fractional
Ikeda-based memristor map are presented. The synchronization process aims to minimize
the error between the master map and the slave map, forcing it to converge toward zero.
The commensurate fractional Ikeda-based memristor map, represented by Equation (19), is
considered as the master map, whereas the slave Ikeda-based memristor map is defined
as follows:

c∆β
b y1s(υ) = 1 + ρ(y1s($) cos ψ1($)− y2s($) sin ψ1($)) + µ(q2

s ($)− 1)y2s($)− y1s($) + U1($),
c∆β

b y2s(υ) = ρ(y1s($) sin ψ1($) + y2s($) cos ψ1($))− y2s($) + U2($),
c∆β

b qs(υ) = y2s($) + U3($).

(32)

U1, U2, and U3 represent the synchronization controllers and:

ψ1($) = 0.4− 0.6
1 + y2

1s($) + y2
2s($)

The fractional error map is defined as follows:

C∆β
b e1(υ) =ρ(y1s($) cos ψ1($)− y2s($) sin ψ1($)) + µ(q2

s ($)− 1)y2s($) + U1($)

− ρ(y1($) cos ψ($)− y2($) sin ψ($))− µ(q2($)− 1)y2($)− e1($),
C∆β

b e2(υ) =ρ(y1s($) sin ψ1($) + y2s($) cos ψ1($)) + U2($)− ρ
(
y1($) sin ψ($)

+ y2($) cos ψ($)
)
− e2($),

C∆β
b e3(υ) =e2($) + U3($)

(33)

The control rule proposed for establishing this synchronization scheme is outlined in
the theorem presented below.

Theorem 4. Subject to:

U1($) = −ρ
(

y1s($) cos ψ1($)− y1($) cos ψ($) + y2($) sin ψ($)− y2s($) sin ψ1($)
)

−µ
(

q2
s ($)y2s($)− q2($)y2($)

)
,

U2($) = −ρ
(

y1s($) sin ψ1($)− y1($) sin ψ($) + y2($) cos ψ($)− y2s($) cos ψ1($)
)
− α2e2($),

U3($) = −e2($)− α3e3($)

(34)

where −1 < α2 < 2β − 1 and 0 < α3 < 2β. Then, the master Ikeda-based memristor map (19) and
slave Ikeda-based memristor map (32) are synchronized.

Proof. Substituting the control law (34) into the fractional error map (33), we obtain:

C∆β
d
(
e1(υ), e2(υ), e3(υ)

)T
= B× (e1($), e2($), e3($)

)T , (35)

where:

B =

−(1 + µ) 0 0
0 −(1 + α2) 0
0 0 −α3


The eigenvalues of the matrix B are λ1 = −(1 + µ), λ2 = −(1 + α2), and

λ3 = −α3. It is easy to see that for µ = 0.11, −1 < α2 < 2β − 1, and 0 < α3 < 2β,
the eigenvalues satisfy the stability condition stated in Theorem 2, demonstrating that
the zero solution of the fractional error map (33) is asymptotically stable, leading to the
achieved synchronization of the master Ikeda-based memristor map (19) and the slave
Ikeda-based memristor map (32).
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To confirm the validity of this result, numerical simulations are conducted using
MATLAB. The specific parameter values chosen are β = 0.9, ρ = 0.5, µ = 0.11, and the
initial values (e1(0), e2(0), e3(0)) = (0.5, 0.2,−0.1). Figure 17 presents the time evolution of
the states of the fractional error map (33). The figure clearly illustrates that the errors tend
to zero, validating the effectiveness of the earlier discussed synchronization process.

Figure 17. States of the fractional error map (33).

7. Conclusions

This article introduced a novel fractional Ikeda-based memristor map, investigating
its behavior under commensurate and incommensurate fractional orders. The map’s anal-
ysis exhibited diverse, dynamic characteristics, highlighting its rich dynamical nature.
Through employing different methodologies analysis involving Lyapunov exponent calcu-
lations, bifurcations, and phase portraits, the distinct behaviors of the proposed fractional
Ikeda-based memristor map were explored for both commensurate and incommensurate
scenarios. Moreover, the complexity of the model was quantified using the sample entropy
algorithm. The outcomes underscore the strong influence of the system parameter and frac-
tional orders on the states of the fractional Ikeda-based memristor map. The values of these
parameters hold pivotal significance in shaping the dynamics and behaviour of the system,
and variations in their values lead to distinct trajectories and responses in the state space of
the map. Ultimately, the paper proposes effective control laws that ensure the stabilization
and synchronization of the introduced map by driving its states to asymptotically approach
zero. The conducted numerical simulations provide a comprehensive understanding of the
system’s dynamics and highlight its interesting and diverse behaviors, which are of great
importance in studying the implications of the fractional memristive maps.
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