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Abstract: The Riesz space-fractional derivative is discretized by the Fourier pseudo-spectral (FPS)
method. The Riesz space-fractional nonlinear Klein–Gordon–Zakharov (KGZ) and Klein–Gordon–
Schrödinger (KGS) equations are transformed into two infinite-dimensional Hamiltonian systems,
which are discretized by the FPS method. Two finite-dimensional Hamiltonian systems are thus
obtained and solved by the second-order average vector field (AVF) method. The energy conservation
property of these new discrete schemes of the fractional KGZ and KGS equations is proven. These
schemes are applied to simulate the evolution of two fractional differential equations. Numerical
results show that these schemes can simulate the evolution of these fractional differential equations
well and maintain the energy-preserving property.
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1. Introduction

Fractional differential equations can better describe the behavior of physical phenom-
ena than integral differential equations. Many scholars have taken great interest in studying
fractional differential equations and the theory of the fractional derivative. In general, fac-
tional differential equations can not have an exact solution. Numerical simulations for
fractional nonlinear differential equations have become very important. Many different
numerical methods have been to proposed to solve fractional nonlinear partial differential
equations (PDEs) [1–4]. In this paper, we numerically investigate the following Riesz space
fractional KGZ and KGS equations by the energy preserving method.

The space fractional KGZ equation can be written as [5–8]
∂2u(x,t)

∂t2 − ∂αu(x,t)
∂|x|α + u(x, t) + m(x, t)u(x, t) + |u(x, t)|2u(x, t) = 0,

∂2m(x,t)
∂t2 − ∂2m(x,t)

∂x2 − ∂2(|u(x,t)|2)
∂x2 = 0,

(1)

which describes the propagation of Langmuir waves in plasma physics. Suppose the finite
domain space Ω = (a, b)× (0, T) with the initial conditions u(x, 0) = u0(x), ut(x, 0) = u1x,
m(x, 0) = m0(x), mt(x, 0) = m1(x), x ∈ [a, b] and the boundary conditions u(a, t) =

u(b, t) = 0, m(a, t) = m(b, t) = 0, t ∈ [0, T], where ∂αu(x,t)
∂|x|α is the Riesz space fractional

derivative with 1 ≤ α ≤ 2.
The KGZ equation can have the following invariant energy conservation

E(t) =
∫
[|ut|2 + |

∂
α
2 u

∂|x| α2
|2 + |u|2 + m|u|2 + 1

2
v2 +

1
2
|u|4 + 1

2
m2]dx = E(0), (2)
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where ∂v(x,t)
∂x = − ∂m(x,t)

∂t . When α = 2, the Riesz space fractional KGZ equation becomes
the classical KGZ equation [9–11]. Ma et al. proposed a multi-scale integrator method to
solve the KGZ equation [12]. Wang et al. solved the KGZ equation based on the lattice
Boltzmann model [13]. Mei et al. proposed the Galerkin finite element method to solve the
KGZ equation [14]. A lot of work has also been conducted on the Riesz space fractional
KGZ equation [8,15]. Macias et al. proposed an energy conserving scheme to solve the
fractional KGZ equation [15–19].

The fractional KGS equation can be written in the following form:{
i ft − β

2 (−∆)
α
2 f + α1 f h = 0,

htt − γhxx + m2h− α1| f |2 = 0,
(3)

where i =
√
−1. The initial conditions are f (x, 0) = f0(x), ht(x, 0) = h1(x), x ∈ R, and

the boundary conditions are f (x, t) = h(x, t) = 0, x ∈ R ∈ Ω, Ω = (xL, xR), t ∈ [0, T]. The
complex function f (x, t) is the complex neutron field and the real function h(x, t) is the
meson field. The variables α1 and β are the coupled constants.

The fractional KGS equation also has invariant energy conservation:

Ẽ(t) =
∫ +∞

−∞
h2

t + γh2
x + m2h2 + β|(−∆)

α
4 f |2 − 2α1| f |2hdx = Ẽ(0). (4)

When α = 2 and β = γ = 1, Equation (3) is the classical coupled KGS equation. In
quantum field theory, the coupled KGS equation is a mathematical model for the interaction
of a conservation complex neutron field and a real meson field. Regarding the coupled
KGS equation, many important conclusions have been obtained. Ohta et al. analyzed the
stability of the coupled KGS equation [20]. Guo et al. investigated the global well-posedness
of the KGS equation [21]. Kong et al. proposed a symplectic method to solve the coupled
KGS equation [22]. The fractional KGS equation is an extension of the classical coupled
KGS equation. Wang et al. proposed to solve the Riesz space fractional KGS equation using
the difference method and the spectral method [23,24].

Recently, energy preserving methods have become important numerical methods
in simulating energy conservation nonlinear PDEs, and they are structure-preserving
numerical methods. Many different energy preserving methods have been derived, such as
the discrete gradient method [25,26], the discrete variational derivative method [27] and
the Hamiltonian boundary value method [28]. The AVF method, which is a kind of discrete
gradient method, has been widely used to solve energy conservation integral PDEs and
has achieved great success [29,30]. However, few people have applied the AVF method
to solve energy conservation fractional PDEs. In this paper, we apply the AVF method to
solve Riesz space fractional KGZ and KGS equations.

The rest of the paper is organized as follows. In Section 2, the definition and properties
of the Riesz fractional derivative are given. The Riesz fractional derivative is discretized by
the FPS method. In Section 3, the infinite Hamiltonian symplectic structures of the Riesz
space fractional KGZ and KGS equations are obtained. These Hamiltonian systems are
discretized by the FPS method and the second-order AVF method. Two energy preserving
schemes of the Riesz space fractional KGZ and KGS equations are thus obtained. At last,
numerical experiments confirm the advantage of the energy preserving schemes of the
Riesz space fractional KGZ and KGS equations in simulating solitary wave behavior and
preserving the energy conservation property of the equations. The new energy preserving
schemes are superior to the existing second-order energy preserving schemes.
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2. Discretization of the Riesz Space Fractional Derivative

Definition 1. When n− 1 ≤ α ≤ n, n is a positive integer, the Riesz space fractional derivative
with α order can be defined as [2]

∂αu(x, t)
∂|x|α =

−1
2cos(πα

2 )Γ(n− α)

∂n

∂xn

∫ +∞

−∞

u(ξ, t)
|x− ξ|α+1−n dξ, (5)

where Γ(.) is the Gamma function. ∂α
|x| is denoted as the α order derivative of u(x, t) at (x, t).

Lemma 1. In the infinite domain interval (−∞ < x < ∞), the function u(x, t) is equivalent to

∂αu(x, t)
∂|x|α =

−1
2cos(πα

2 )Γ(n− α)

∂n

∂xn

∫ +∞

−∞

u(ξ, t)
|x− ξ|α+1−n dξ = −(−4)

α
2 u(x, t), (6)

where n− 1 < α < n.

In the infinite domain interval (−∞ < x < ∞), the fractional Laplace operator is
defined as

−(−4)
α
2 u(x, t) = −F−1|x|αFu(x, t), (7)

where F and F−1 are represented as the Fourier transformation and the Fourier inverse
transform of u(x, t), and we can obtain

−(−4)
α
2 u(x, t) = − 1

2π

+∞∫
−∞

e−ixξ |x|α
∫ +∞

−∞
eiξηu(η, t)dηdξ. (8)

On the other hand, in the finite domain interval Ω = (a, b), the Fourier series can be
defined as

−(−4)
α
2 u(x, t) = −∑

l∈Z
|vl |αûleivl(x−a), (9)

where νl =
2lπ
b−a , and the coefficients of the Fourier series are

ûl =
1

b− a

∫
Ω

u(x, t)e−ivl(x−a)dx. (10)

We apply the FPS method to discrete the α order Riesz space fractional derivative.
Suppose the space integral interval is Ω = [a, b], the interval Ω is divided into N equal
parts. N is an even number. The space step length is h1 = b−a

N . Take xj = a + jh1, where
j = 0, 1, · · · , N − 1 are the space Fourier collocation points. INu(x, t) is the approximation
of u(x, t), we have

(INu)(x, t) = uN(x, t) =
N/2

∑
k=−N/2

ũkeikµ(x−a), (11)

where ũk, µ = 2π
b−a and

ũk =
1

Nck

N−1

∑
j=0

u(xj, t)e−ikµ(xj−a), µ =
2π

b− a
, |k| < N/2, ck = 1, k = ±N/2ck = 2. (12)

When |k| < N/2, ck = 1, and when k = ±N/2, ck = 2.
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We can obtain

−(−4)
α
2 INu(xj, t) = −

N/2

∑
k=−N/2

|kµ|αũkeikµ(xj−a). (13)

The α order derivative of the approximation function INu(x, t) can be denoted as

∂α INu(xj, t)
∂|x|α = −(−4)

α
2 INu(xj, t)

= −
N/2

∑
k=−N/2

|kµ|α( 1
Nck

N−1

∑
l=0

ule−ikµ(xl−a))eikµ(xj−a)

=
N−1

∑
l=0

ul(−
N/2

∑
k=−N/2

1
Nck
|kµ|αeikµ(xj−xl)

= (Dα
2U)j, (14)

where Dα
2 is N × N matrix, U = (U0, U1, · · · , UN−1) and the coefficients of the matrix Dα

2
are

(Dα
2)j,l = −

N/2

∑
k=−N/2

1
Nck
|kµ|αeikµ(xj−xl). (15)

3. Energy Preserving Method of Fractional KGZ and KGS Equations

In this section, we first give the Hamiltonian structures of the Riesz space fractional
KGZ and KGS equations. Then, the space fractional derivatives of these two equations
are discretized by the FPS method. The AVF method is applied to solve the semi-discrete
fractional KGZ and KGS equations.

3.1. Energy Preserving Method of the Fractional KGZ Equation

Let w(x, t) = ut(x, t),−2qxx(x, t) = mt(x, t), then the space fractional KGZ Equation (1)
is equivalent to 

ut = w,
mt = −2qxx,
wt =

∂αu
∂|x|α − u−mu− |u|2u,

qt = − 1
2 m− 1

2 |u|2.

(16)

Equation (16) can be expressed by the following infinite dimensional Hamiltonian
system

dz
dt

= J
δH(z)

δz
, J =

(
O I
−I O

)
, I =

(
1 0
0 1

)
, (17)

where z = (u, m, w, q)T , O is 2× 2 zero matrix, I is 2× 2 unite matrix and the corresponding
Hamiltonian energy function is

H(z) =
∫
[
1
2

w2 + (qx)
2 +

1
2
| ∂

α
2 u

∂|x| α2
|2 + 1

2
|u|2 + 1

2
m|u|2 + 1

4
|u|4 + 1

4
m2]dx. (18)

The second-order partial derivative qxx of Equation (16) can be approximated by the
FPS method [31,32]. Suppose INq(x, t) is the FPS approximation of the function q(x, t).
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The values of the derivatives d
dx INq(x, t) and d2

dx2 IN p(x, t) at the collocation points xj are
obtained in terms of the value of qj, i.e.,

d
dx

INq(x, t)|x=xj =
N−1

∑
l=0

ql
dgl(xj)

dx
= (D1Q)j, (19)

d2

dx2 INq(x, t)|x=xj =
N−1

∑
l=0

ql
d2gl(xj)

dx2 = (D2Q)j, (20)

The function gl(x) is the trigonometric polynomial explicitly given by

gl(x) =
1
N

N/2

∑
k=−N/2

1
ck

expikµ(x−xl), (21)

where ck = 1 (|k| 6= N/2), c−N/2 = cN/2 = 2, µ = 2π
L and

(D2)i,j =


1
2

µ2(−1)i+j+1 1

sin2(µ
xi−xj

2 )
, i 6= j,

− µ2 N2 + 2
12

, i = j.

(22)

Based on the above FPS method, we can obtain the semi-discrete system of the space
fractional KGZ equation

d
dt uj = wj,
d
dt mj = −2(D2Q)j,
d
dt wj = (Dα

2U)j − uj −mjuj − |uj|2uj,
d
dt qj = − 1

2 mj − 1
2 |uj|2,

(23)

where j = 0, 1, · · · , N − 1.
Equation (23) can be written as the following semi-discrete Hamiltonian system

dZ
dt

= Ĵ∇ZH(Z), Ĵ =


0 0 IN 0
0 0 0 IN
−IN 0 0 0

0 −IN 0 0

, (24)

where Z = (UT , MT , WT , QT), M = (m0, m1, · · · , mN−1)
T , W = (w0, w1, · · · , wN−1)

T ,
Q = (q0, q1, · · · , qN−1)

T . 0 and IN are the N × N zeros matrix and unite matrix. The
corresponding Hamiltonian function is

H(Z) = −QTD2Q− 1
2

UTDα
2U +

N−1

∑
j=0

[
1
2

w2
j +

1
2
|uj|2 +

1
2

mj|uj|2 +
1
4
|uj|4 +

1
4

m2
j ]. (25)

The semi-discrete Hamiltonian system (24) is solved by the following second-order
AVF method

Zn+1 − Zn

τ
= Ĵ

∫ 1

0
∇H((1− ξ)Zn + ξZn+1)dξ. (26)
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Equation (26) is equivalent to the following equations

un+1
j − un

j

τ
=
∫ 1

0
((1− ξ)wn

j + ξwn+1
j )dξ, (27)

mn+1
j −mn

j

τ
=− 2

∫ 1

0
((1− ξ)(D2Qn)j + ξ(D2Qn+1)j)dξ, (28)

wn+1
j − wn

j

τ
=
∫ 1

0
[((1− ξ)(Dα

2Un)j + ξ
(

Dα
2Un+1

)
j
)− ((1− ξ)un

j + ξun+1
j )]dξ

−
∫ 1

0

(
(1− ξ)mn

j

)
+ ξmn+1

j

)(
(1− ξ)un

j + ξun+1
j

)
dξ

−
∫ 1

0

∣∣∣((1− ξ)un
j + ξun+1

j

)∣∣∣2((1− ξ)un
j + ξun+1

j

)
dξ, (29)

qn+1
j − qn

j

τ
=− 1

2

∫ 1

0
(((1− ξ)mn

j + ξmn+1
j ) +

∣∣∣((1− ξ)un
j + ξun+1

j )
∣∣∣2)dξ. (30)

From Equations (27)–(30), the auxiliary variables w, q can be deleted. We can obtain

un+1
j − 2un

j + un−1
j

τ2 = (Dα
2

Un+1 + Un

4
)

j
−

un+1
j + un

j

4
−

mn+1
j + mn

j

4
un

j −
2mn+1

j + mn
j

12
(un+1

j − un
j )

−
∣∣∣∣16 (un+1

j )
2
+

1
6
(un

j )
2 +

1
6

un+1
j un

j

∣∣∣∣un
j −

∣∣∣∣18 (un+1
j )

2
+

1
24

(un
j )

2 +
1
12

un+1
j un

j

∣∣∣∣
(un+1

j − un
j ) + (Dα

2
Un + Un−1

4
)

j
−

un
j + un−1

j

4
−

mn
j + mn−1

j

4
un−1

j

−
2mn

j + mn−1
j

12
(un

j − un−1
j )−

∣∣∣∣16 (un
j )

2 +
1
6
(un−1

j )
2
+

1
6

un
j un−1

j

∣∣∣∣un−1
j −∣∣∣∣18 (un

j )
2 +

1
24

(un−1
j )

2
+

1
12

un
j un−1

j

∣∣∣∣(un
j − un−1

j ), (31)

mn+1
j − 2mn

j + mn−1
j

τ2 =(D2
Mn+1 + 2Mn + Mn−1

4
)

j
+

N

∑
l=1

dj,l(

∣∣∣∣16 (un+1
j )

2
+

1
6
(un

j )
2 +

1
6

un+1
j un

j

∣∣∣∣
+

∣∣∣∣16 (un
j )

2 +
1
6
(un−1

j )
2
+

1
6

un
j un−1

j

∣∣∣∣). (32)

Theorem 1. The semi-discrete scheme (26) can preserve the discrete energy conservation of the
finite dimensional Hamiltonian system

H(Zn+1) = H(Zn). (33)

Proof. From Equation (26), we can obtain that

(
∫ 1

0
∇H((1− ξ)Zn + ξZn+1)dξ)T Zn+1 − Zn

τ

= (
∫ 1

0
∇H((1− ξ)Zn + ξZn+1)dξ)TJ

∫ 1

0
∇H((1− ξ)Zn + ξZn+1)dξ, (34)

where J is the skew symmetric matrix. We can find that

1
τ

∫ 1

0
(Zn − Zn+1)T∇H((1− ξ)Zn + ξZn+1)dξ = 0. (35)
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From the basic theorem of the integral theory, we can get

1
τ
(H(Zn+1)− H(Zn)) = 0. (36)

The proof of the theorem is completed.

3.2. Energy Preserving Method of the Fractional KGS Equation

Suppose f (x, t) = p(x, t) + r(x, t)i, p(x, t) = p, r(x, t) = r, then Equation (3) can be
written as the following differential equations

rt = − β
2 (−4)

α
2 p + α1hp,

pt =
β
2 (−4)

α
2 r− α1hr,

vt =
γ
2 hxx − m2

2 h + α1
2 (p2 + r2),

ht = 2v.

(37)

Equation (37) can be transformed into the following infinite dimensional Hamilto-
nian system

dz̃
dt

= J̃
δH(z̃)

δz̃
, (38)

where z̃ = (r, p, v, h)T ,

J̃ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

, (39)

and the corresponding Hamiltonian energy function is

H(z̃) =
∫

β

4
(−(−4)

α
4 p)2 − (−4)

α
4 r)2)− γ

4
(hx)

2 − 1
4

m2h2 +
α1

2
h(p2 + r2)− v2dx. (40)

Equation (37) is discretized by the FPS method, and we can obtain
d
dt rj =

β
2 (D

α
2p)j + α1hj pj,

d
dt pj = −

β
2 (D

α
2r)j − α1hjrj,

d
dt vj =

γ
2 (D2h)j − m2

2 hj +
α1
2 (p2

j + r2
j ),

d
dt hj = 2vj.

(41)

Equation (41) can be transformed into the finite dimensional Hamiltonian system

dZ̃
dt

= S∇z H(Z̃), (42)

where Z̃ = (r0, · · · , rN−1, p0, · · · , pN−1, v0, · · · , vN−1, h0, · · · , hN−1)
T and

S =


0 IN 0 0
−IN 0 0 0

0 0 0 IN
0 0 −IN 0

. (43)

H(Z̃) =
β

4
(pTDα

2p + rTDα
2r) +

γ

4
(hTD2h +

N−1

∑
j=0

[
α1

2
hj(p2

j + r2
j )−

1
4

m2h2
j − v2

j ]. (44)
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The semi-discrete Hamiltonian system (42) is solved by the second order AVF method,
and we can get

Z̃n+1 − Z̃n

τ
= S

∫ 1

0
∇Z̃H((1− ξ)Z̃n + ξZ̃n+1)dξ. (45)

Equation (45) is equivalent to the following schemes

rn+1
j − rn

j

τ
=

β

2
(Dα

2
pn+1 + pn

2
)j + α1(

1
3

hn+1
j pn+1

j +
1
6

hn+1
j pn

j +
1
6

hn
j pn+1

j +
1
3

hn
j pn

j ), (46)

pn+1
j − pn

j

τ
= − β

2
(Dα

2
rn+1 + rn

2
)j − α1(

1
3

hn+1
j rn+1

j +
1
6

hn+1
j rn

j +
1
6

hn
j rn+1

j +
1
3

hn
j rn

j ), (47)

vn+1
j − vn

j

τ
=

γ

2
(D2

hn+1 + hn

2
)j −

m2

2
(

hn+1
j + hn

j

2
) +

α1

6
(pn+1

j pn+1
j + pn+1

j pn
j + pn

j pn
j

+ rn+1
j rn+1

j + rn+1
j rn

j + rn
j rn

j ), (48)

hn+1
j − hn

j

τ
=2

vn+1
j + vn

j

2
. (49)

According to the above Theorem 1, schemes (46)–(49) can also preserve the discrete
Hamiltonian energy of the Riesz space fractional KGS equation exactly.

4. Numerical Simulation
4.1. Numerical Simulation of the Fractional KGZ Equation

In this section, we test the following discrete Hamiltonian energy errors

Errorn
H = |H(Zn)− H(Z0)

H(Z0)
|, (50)

by schemes (31) and (32), where

H(Zn) =− (Qn)TD2Qn − 1
2
(Un)TDα

2Un +
N−1

∑
j=0

[
1
2
(wn

j )
2 +

1
2
|un

j |2 +
1
2

mn
j |u2

j |2+

1
4
|u2

j |4 +
1
4
(mn

j )
2], (51)

and H(Z0) is the discrete Hamiltonian energy at t = 0.
The two level initial conditions can be taken as follows [16]: u0 =

√
10−
√

2
2 sech(

√
1+
√

5
2 x) exp(i

√
2

1+
√

5
x),

m0 = −2sech2(
√

1+
√

5
2 x),

(52)

and  u1 =
√

10−
√

2
2 (tanh x− 1)sech(

√
1+
√

5
2 x) exp(i

√
2

1+
√

5
x),

m1 = −4sech2(
√

1+
√

5
2 x) tanh(

√
1+
√

5
2 x).

(53)

Figure 1 gives the numerical solution of the KGZ equation with α = 2, t ∈ [0, 10].
Figure 2 gives the numerical solution of the Riesz space fractional KGZ equation with
α = 1.7, t ∈ [0, 16]. These numerical results are consistent with the existing numerical
results [16]. From Figures 1 and 2, we can see that the new scheme can simulate the
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evolution of solitary waves of the Riesz space fractional KGZ equation well. The numerical
solutions and the numerical schemes are stable. Figure 3 shows the energy error of the Riesz
space fractional KGZ equation with (a): α = 2, (b): α = 1.7 at t ∈ [0, 20]. The energy error
is up to 10−13, which can neglected. It is obvious that the new scheme can well preserve
the discrete energy of the fractional KGZ equation.
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Figure 1. Evolution of solitary waves (a) u(x, t) and (b) m(x, t) at α = 2, t ∈ [0, 10].
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Figure 2. Evolution of solitary waves (a) u(x, t) and (b) m(x, t) at α = 1.7, t ∈ [0, 16].
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Figure 3. Energy error of fractional KGZ equation: (a) α = 2, (b) α = 1.7 at t ∈ [0, 20].

4.2. Numerical Simulation of the Fractional KGS Equation

We apply schemes (46)–(49) to simulate the Riesz space fractional KGS equation. The
discrete Hamiltonian energy errors can be defined as

Errorn
H = |H(Z̃n)− H(Z̃0)

H(Z̃0)
|, (54)
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where

H(Z̃n) =
β

4
((pn)TDα

2pn + (rn)TDα
2rn) +

γ

4
(hn)TD2hn

+
N−1

∑
j=0

[
α1

2
hn

j ((pn
j )

2 + (rn
j )

2)− 1
4

m2(hn
j )

2 − (vn
j )

2] (55)

and H(Z̃0) is the discrete Hamiltonian energy at t = 0.
The parameter variables are taken as υ = 0.8, x0 = 10. First, we consider the evolution

of single solitary waves. The initial condition of single solitary wave is taken as follows f0 = f (x− x0, 0, v) = 3
√

2
4(1−υ2)

sech2( 1
2
√

1−υ2 (x− x0) exp(iυx),

h0 = h(x− x0, 0, v) = 3
4(1−υ2)

sech2( 1
2
√

1−υ2 (x− x0).
(56)

Figure 4 shows the numerical solution of a single solitary wave of the KGS equation at
α = 2, t ∈ [0, 20]. Figure 5 shows the numerical solution of solitary waves f (x, t) and h(x, t)
of the Riesz space fractional KGS equation at α = 1.2, t ∈ [0, 20]. From Figures 4 and 5, we
can see that the new scheme of the Riesz space fractional KGS equation can also simulate
the evolution of a solitary wave of the equation well. The numerical solutions and the
numerical schemes are stable. Figure 6 shows the energy error of the Riesz space fractional
KGS equation. The error can be neglected. The new scheme of the equation can also well
preserve the discrete energy of the equation.
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Figure 4. Evolution of solitary waves (a) f (x, t) and (b) h(x, t) at α = 2, t ∈ [0, 20].
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Figure 5. Evolution of solitary waves (a) f (x, t) and (b) h(x, t) at α = 1.2, t ∈ [0, 20].
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Figure 6. Energy error of the fractional KGS equation: (a) α = 2, (b) α = 1.2 at t ∈ [0, 20].

Then, we consider the evolution of two solitary waves with the following initial
conditions {

f0 = f (x− x0, 0, v) + f (x + x0, 0,−v),
h0 = h(x− x0, 0, v) + h(x + x0, 0,−v).

(57)

Figure 7 shows the numerical solutions of two solitary waves of the KGS equation at
α = 2, t ∈ [0, 30]. Figure 8 shows numerical solutions of two solitary waves of the Riesz
space fractional KGS equation at α = 1.6, t ∈ [0, 30]. The numerical results are consistent
with the existing results [23]. From Figures 7 and 8, we can see that the new scheme of the
Riesz space fractional KGS equation can also simulate the evolution of multiple solitary
waves of the equation well. The numerical solutions and the numerical schemes are stable.
Figure 9 shows the energy error of the Riesz space fractional KGS equation. The error can
be neglected. The new scheme of the Riesz space fractional KGS equation can also preserve
the discrete energy of the equation well.
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Figure 7. Evolution of solitary waves (a) f (x, t) and (b) h(x, t) at α = 2, t ∈ [0, 30].

0

30

2

|f(x
,t)|

15

30

4

0

0
-30

0

30

m(x
,t)

3

15

30

5

0

0
-30

x

t

x

t

(a) (b)

Figure 8. Evolution of solitary waves (a) f (x, t) and (b) h(x, t) at α = 1.6, t ∈ [0, 30].
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Figure 9. Energy errors of the fractional KGS equations: (a) α = 2, (b) α = 1.6 at t ∈ [0, 30].

5. Conclusions

In this paper, two new energy preserving schemes for the Riesz space fractional KGZ
and KGS equations are proposed based on the FPS method and the AVF method. The en-
ergy conservation property is proven. Numerical results show that these new schemes
can simulate the evolution behavior of the solitary waves of these fractional differential
equations well and preserve the discrete energy conservation property. The existing energy
conserving schemes of the space fractional KGZ and KGS equations are in general of second-
order accuracy. However, these energy conservation schemes based on the second-order
AVF method can be easily extended to high-order energy preserving schemes. In future
work, we will construct high-order energy preserving schemes for fractional differential
equations based on the high-order AVF method and analyze the convergence and stability
of these new energy-preserving schemes.
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