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Abstract: This paper examines the propagation of M-shape solitons and their interactions with kink
waves to the (2 + 1)-dimensional integrable Schwarz-Korteweg-de Vries (ISKdV) problem by applying
the symbolic computation with ansatz functions technique and logarithmic transformation. The
governing model usually appears in the nonlinear shallow water waves and fluid mechanics. We
discuss various nonlinear waves like multiwave solutions (MSs), homoclinic breather (HB), M-shape
solitons, single exponential form (one-kink), and double exponential form (two-kink). These waves
have lot of applications in fluid dynamics, nonlinear optics, chemical reaction networks, biological
systems, climate science, and material science. We also study interaction among M-shape solitons
with kink wave. At the end, we discuss the stability characteristics of all solutions.

Keywords: nonlinear waves; computational simulations; homoclinic breather; interaction phenomena

1. Introduction

Soliton solutions of nonlinear differential equations (NLPDEs) are a fundamental
object in nonlinear sciences. The stability property of a soliton plays a crucial role in
unalike mathematical and physical contexts, as it enables the persistence of coherent
structures. Solitons are capable of modeling and describing a wide range of complex
physical phenomena, including nonlinear optics, plasma physics, and more. Studying
solitons in NLPDEs creates opportunities and mathematical challenges for thriving new
analytical and numerical techniques. These characteristics advance the field of nonlinear
mathematics. Several techniques for finding soliton solutions of NLPDEs have been studied
during the past few decades [1–5]. Recently, the interaction among soliton solutions
has received a lot of attention from many researchers, due to their uses in biophysics,
oceanography, plasma physics, and nonlinear fiber optics [6–11]. An extensive variety of
features in soliton dynamics have been studied over the past few decades for nonlinear
systems [12–26]. One of the renowned NLPDEs is the Kortweg-de Vries (KdV), given as [24]

Ψt + Ψxxx − 6ΨΨx = 0, (1)

where the nonlinear shallow water waves are given in Ψ = Ψ(x, t). The generalized form
of Equation (1) is the Schwarz-Kortweg-de Vries (SKdV) equation, given as [25]

Ψt + Ψx

{(
Ψxx

Ψx

)
− 1

2

(
Ψxx

Ψx

)2
}

= 0. (2)

Fractal Fract. 2023, 7, 709. https://doi.org/10.3390/fractalfract7100709 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7100709
https://doi.org/10.3390/fractalfract7100709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-7412-4773
https://orcid.org/0000-0001-7206-2508
https://doi.org/10.3390/fractalfract7100709
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7100709?type=check_update&version=3


Fractal Fract. 2023, 7, 709 2 of 19

The component generalization of the SKdV-model in (2 + 1)-dimensions is given as

Ψt +
1
4

Ψxxy −
ΨxΨxy

2Ψ
−

ΨyΨxx

4Ψ
+

Ψ2
xΨy

2Ψ2 −
Ψx

8

∫ (Ψ2
x

Ψ2

)
y
dx = 0. (3)

Equation (3) was originated by Yu and Toda [27]. By the following assumption in
Equation (3),

Ψ = Wx, W = eg, gx = H, gt = Θ, (4)

where W = W(x, t), g = g(x, t), H = H(x, t), and Θ = Θ(x, t) are unknown functions, one
can obtain{

4H2Θx − 4HHxΘ + H2Hxxy − HHxx Hy − 3HHx Hxy + 3H2
x Hy − H4Hy = 0,

Ht −Θx = 0.
(5)

This equation is due to Pickering and Kudriashov [28–30]. By the Miura transform [30] on
Equation (5), one can obtain

Ψx =
Hxx

4H
− 3H2

x
H2 −

H2

8
, Ψy = −Θ

H
, (6)

and it generates [30]

4Ψxt + Ψxxxy + 8ΨxyΨx + 4ΨyΨxx = 0. (7)

Many researchers worked on the ISKDV model. Ramirez et al. investigated multiple
solutions for the SKDV equation in (2 + 1)-dimensions [29] via Mobius transformation,
Khater worked on new solitary solutions for a (2 + 1)-dimensional ISKDV-model via
the Khater technique and Bernoulli sub-equation technique [30], Attia et al. studied
numerical and computational solutions for a (2 + 1)-dimensional ISKDV-model with
Miura transform [31], Toda et al. investigated the soliton solutions for a governing model
in (2 + 1)-dimensions [32] via Lax pairs and well-known higher-dimensional manner,
Gandarias et al. founded the classical symmetry reductions for the ISKDV model by
using symmetries and arbitrary functions [33], Li et al. studied the soliton solutions of
the (2 + 1)-dimensional ISKDV-model by applying Darboux transformation [34], Li et al.
evaluated the diversity soliton excitations for the (2 + 1)-dimensional ISKDV-model [35],
and Aslan worked on an investigation of analytic solutions for the (2 + 1)-dimensional
ISKDV-model via improved mapping approach [36], but the contribution of this document
is to evaluate MS, HB, and M−shaped solitons by applying the symbolic computation
with ansatz functions approach and logarithmic transformation for the (2 + 1)-dimensional
ISKDV-model. M-shape rational solitons are described by nonlinear equations that involve
both the phase and amplitude of the wave. They often arise in optical fibers, plasma
physics, and Bose–Einstein condensates. These solitons are important because of their
ability to maintain their stability and shape over long distances. Furthermore, we will
study the M-shaped solitons and their interactions among one- and two-kink waves. When
M-shape solitons interact, they can undergo complex dynamics. These interactions depend
on the amplitudes, velocities, and phases of the solitons. They can show behaviors like
fusion, elastic scattering, and bound states. The study of soliton interactions is crucial in
signal processing and communication. We will also study the HBs that appear in various
systems like Klein–Gordon equations, Hamiltonian systems, and optical systems. Lastly,
we will also apply the stability property for attained solutions. All these stated rational
solutions via the proposed method are novel and not found in the earlier literature. Our
new solutions will be useful for understanding the nonlinear phenomena in the nonlinear
shallow water waves and fluid mechanics.
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The article template is arranged as follows. In Section 2, we will compute the MS for
the (2 + 1)-dimensional ISKdV problem with logarithmic transformation and three waves
scheme. In Section 3, we will utilize the HB method and compute some new classes of solitons
for the (2 + 1)-dimensional ISKdV problem. In Section 4, we will compute the M-shaped
solitons for Equation (1) and we will show some 3D, 2D, contours, and their stability profiles.
The precise computation of interaction of M-shaped solitons via one exponential function
approach along some 3D, 2D, contours, and their stability graphs is shown in Section 5. We
will determine interactional solutions with double exponential form for the stated model in
Sections 6 and 7, and this will contain the stability property of solutions and their application
to all obtained solutions (see Table 1). In Section 8, we will give results and discussions, and
finally, in Section 9, we will state our concluding observations.

Table 1. Stability properties for newly attained solutions Ψi(x, y, t) where (i = 1, 2, 3, ..., 14).

Solution Stability Values of Variables

Ψ1 Stable
k1 = 1, b1 = 1.5, c =
2.5, a2 = 3, a4 = 3, b0 =
1.5, a5 = 2, a6 = 5, b2 =
2.5, x, y, t ε[−7, 7]

Ψ2 Stable
k1 = 1, a1 = −1.5, c =
−2.5, a5 = −3, a4 = −2, a6 =
3, b0 = −1.5, b1 = 3, a2 =
−2, b2 = −2.5, x, y, t ε[−7, 7]

Ψ3 Unstable Singular solution

Ψ4 Stable

k1 = 1, k2 = 1.5, c = 4, a6 =
5, a4 = 2, b0 = 1.5, p1 =
3, a2 = 2, p = 7, b1 =
1, x, y, t ε[−5, 5]

Ψ5 Stable

k1 = 1, k2 = 1.5, c = 4, a4 =
2, a6 = 5, b0 = 1.5, p1 =
3, a2 = 2, p = 2, b1 =
−1, x, y, t ε[−3, 3]

Ψ6 Stable

k1 = 1, k2 = −1.5, c = 4, a4 =
2, a6 = −5, b0 = −1.5, p1 =
−3, a2 = 2, p = 2, b1 =
1, x, y, t ε[−8, 8]

Ψ7 Unstable Singular solution

Ψ8 Stable
d3 = 10, k2 = 5, c =
−2.4, k1 = −3, d4 =
−5, x, y, t ε[−6, 6]

Ψ9 Stable d1 = −4, k1 = −1, c =
2.5, x, y, t ε[−10, 10]

Ψ10 Stable
d1 = −4, d3 = 2, d5 =
4, k2 = 2, c = 2.5, k1 =
−1, x, y, t ε[−6, 6]

Ψ11 Unstable Singular solution

Ψ12 Unstable Singular solution

Ψ13 Stable a2 = 4, a4 = 1, c = 1.5, a2 =
2, b1 = 2, b2 = 6, x, y, t ε[−5, 5]

Ψ14 Stable a2 = 4, a4 = 1, c = 1.5, b2 =
0.2, k2 = 2, x, y, t ε[−9, 9]
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2. MS

For this purpose, we use the ansatz [37]

Ψ(x, y, t) = Υ(η), η = k1x + k1y− ct. (8)

By applying Equation (8) into Equation (7), we obtain

4cΥ
′′
+ 12k2

1k2Υ
′
Υ
′′
+ k3

1k2Υ(iv) = 0. (9)

Now with usage of the logarithmic transformation in Equation (9),

Υ = 2(ln f )η , (10)

we obtain

8ck1 f 2 f
′3 − 48k2

1k2 f
′5 + 24k3

1k2 f
′5 − 12ck1 f 3 f

′
f
′′
+ 120k2

1k2 f f
′3 f
′′ − 60k3

1k2 f f
′3 f
′′ − 72k2

1k2 f 2 f
′
f
′′2 (11)

+ 30k3
1k2 f 2 f

′
f
′′2 + 4ck1 f 4 f

′′′ − 24k2
1k2 f 2 f

′2 f
′′′
+ 20k3

1k2 f 2 f
′2 f
′′′
+ 24k2

1k2 f 3 f
′′

f
′′′ − 10k3

1k2 f 3 f
′′

f
′′′

− 54k3
1k2 f 3 f

′
f (iv) + k3

1k2 f 4 f (v) = 0.

For MS, we utilize three waves ansatz on f in Equation (11) as [37]

f = b0 cosh(a1η + a2) + b1 cos(a3η + a4) + b2 cosh(a5η + a6), (12)

where ai are any constants. By usage of Equations (11) and (12) and solving the equations
from coefficients of cos, sinh, and cosh functions, we have
Set I.

a3 =

√
15k1 − 36
−4 + 5k1

, a5 =

√
−15k1 − 36
−4 + 5k1

, k2 =
4(−4 + 5k1)c

3(5k1 − 12)k1(5k1 − 8)
, a1 = 0. (13)

By using the above values, we have

Ψ1 =

√
3
(
−b1

√
12−5k1
4−5k1

sin
(

2
(

a4 +
√

36−15k1
4−5k1

(
ct + k1x + 4(−4+5k1)cy

3(5k1−12)k1(5k1−8)

)))
+ b2

√
12−5k1
4−5k1

N1

)
b1 cos

(
a4 +

√
36−15k1
4−5k1

(
ct + k1x + 4(−4+5k1)cy

3(5k1−12)k1(5k1−8)

))
+ b0 cosh(a2) + b2N2

, (14)

where N1 = sinh
(

2
(

a6 +
√

36−15k1
−4+5k1

(
ct + k1x + 4(−4+5k1)cy

3(5k1−12)k1(5k1−8)

)))
and

N2 = cosh
(

a6 +
√

36−15k1
−4+5k1

(
ct + k1x + 4(−4+5k1)cy

3(5k1−12)k1(5k1−8)

))
.

Set II. When

k2 = − 4c
k1
(
10a2

5k1 − 12a2
5 + 15k1 − 36

) , a1 = a1, a2 = a2, a3 = 0. (15)

By using the above values,

Ψ2 =

a1b0 sinh
(

2
(

a2 + a1

(
ct + k1x− 4c

k1(10a2
5k1−12a2

5+15k1−36)
y
)))

+ N3

b1 cos(a4) + b0 cosh
(

a2 + a1

(
ct + k1x− 4c

k1(10a2
5k1−12a2

5+15k1−36)
y
))

+ N4

, (16)
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where N3 = a5b2sinh
(

2
(

a6 + a5

(
ct + k1x− 4c

k1(10a2
5k1−12a2

5+15k1−36)
y
)))

and

N4 = b2cosh
(

2
(

a6 + a5

(
k1x + c

(
t− 4y

k1(10a2
5k1−12a2

5+15k1−36)

))))
.

Set III.

a1 =

√
−15k1 − 36
−4 + 5k1

, a3 =

√
−−15k1 + 36
−4 + 5k1

, a5 =

√
−15k1 − 36
−4 + 5k1

, k2 =
c(−4 + 5k1)

3(5k1 − 12)k1(5k1 − 8)
. (17)

By using the above values, we have

Ψ3 =

(√
3
(
−b1

√
12−5k1
4−5k1

)
sin
(

2
(

a4 +
√

36−15k1
4−5k1

)(
ct + k1x + c(−4+5k1)y

3k1(5k1−12)(−8+5k1)

))
+ b0N5 ++b2N6

)
b1cos

(
a4 +

√
36−15k1
4−5k1

(
ct + k1x + c(−4+5k1)y

3k1(5k1−12)(−8+5k1)

)
+ b0N7 ++b2N8

) , (18)

where N5 = sinh
(

2
(

a2 +
√

36−15k1
4−5k1

)(
ct + k1x + c(−4+5k1)y

3k1(5k1−12)(−8+5k1)

))
,

N6 = sinh
(

2
(

a4 +
√

36−15k1
4−5k1

)(
ct + k1x + c(−4+5k1)y

3k1(5k1−12)(−8+5k1)

))
,

N7 = cosh
(

a2 +
√

36−15k1
4−5k1

(
ct + k1x + c(−4+5k1)y

3k1(5k1−12)(−8+5k1)

))
and

N8 = cosh
(

a6 +
√

36−15k1
4−5k1

(
ct + k1x + c(−4+5k1)y

3k1(5k1−12)(−8+5k1)

))
.

3. HB

For HB, we consider f as follows [37]:

f = e−p(a2+a1η) + b1ep(a4+a3η) + b0 cos(p1(a6 + a5η)), (19)

where a′is, b′is are any constants. Inserting Equation (19) in Equation (11) and taking equa-
tions from the coefficients of exp and cos functions and by solving them, we obtain the
following:
Set I. When

a1 =

√
− 5k1−12

3k1−4

p
, c = −

k2k2
1(5k1 − 12)

12k1 − 16
, a5 = 0, a3 = 0, b0 = b0. (20)

Via the above values, we obtain

Ψ4 = −
2e

−p

a2+

√
− 5k1−12

3k1−4

(
−

k2k2
1(5k1−12)t
12k1−16 +k1x+k2y

)
p

√
− 5k1−12

3k1−4

b1ea4 p + 2e

−p

a2+

√
− 5k1−12

3k1−4

(
−

k2k2
1(5k1−12)t
12k1−16 +k1x+k2y

)
p


+ b0 cos(a6 p1)

. (21)

Set II. When

a1 =

√
− 10k1−24

15k1−24

p
, a3 =

√
− 10k1−24

15k1−24

p
, b0 = b0, a5 = 0. (22)

Via the above values, we have
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Ψ5 =

2

−e
−p

a2+

√
− 10k1−24

15k1−24 (ct+k1x+k2y)

p

√
− 10k1−24

15k1−24 + b1e
−p

a4+

√
− 10k1−24

15k1−24 (ct+k1x+k2y)

p

√
− 10k1−24

15k1−24



e
−p

a2+

√
− 10k1−24

15k1−24 (ct+k1x+k2y)

p


+ b1e

−p

a4+

√
− 10k1−24

15k1−24 (ct+k1x+k2y)

p


+ b0 cos(a6 p1)

. (23)

Set III. When

a1 =

√
− 30k1+72

101k1−216

p
, a3 =

√
− 30k1+72

101k1−216

p
, a2 = a2, b0 = b0, a5 = 0. (24)

Via the above values, we have

Ψ6 =

2

−e
−p

a2+

√
− 30k1+72

101k1−216 (ct+k1x+k2y)

p

√
− 30k1+72

101k1−216 + b1e
−p

a4+

√
− 30k1+72

101k1−216 (ct+k1x+k2y)

p

√
− 30k1+72

101k1−216



e
−p

a2+

√
− 30k1+72

101k1−216 (ct+k1x+k2y)

p


+ b1e

−p

a4+

√
− 30k1+72

101k1−216 (ct+k1x+k2y)

p


+ b0 cos(a6 p1)

. (25)

4. M-Shape Solitons

For obtaining the M-shape solution, we choose f in the form [37,38]

f = (d1η + d2)
2 + (d3η + d4)

2 + d5, (26)

where di(1 ≤ i ≤ 5) are any parameters. Put f into Equation (11) and solve the system of
equations, which is achieved from various coefficients of ξ:
Set I. When d5 = d2 = 0,

k1 =
4
(
120d2

1d2
4 + 45d6

4 − 16d2
1
)

240d2
1d4

4 + 75d6
4 − 32d2

1
, k2 = −

(
57600d4

1d8
4 + 36000d2

1d10
4 + 5625d12

4 − 15360d4
1d4

4 − 4800d2
1d6

4 + 1024d4
1
)
c

192
(
120d2

1d4
4 + 45d6

4 − 16d2
1
)
d2

1
. (27)

Using the above values, we obtain

Ψ7 =

2
(

2d2
1

(
ct +

4(45d6
4+8d2

1(−2−15d4
4))x

75d6
4+16d2

1(−2−15d4
4)
− c(75d6

4+16d2
1(−2+15d4

4))y
75d6

4+16d2
1(−2−15d4

4)

)
+ 2d3R1

)
d2

1

(
ct +

4(45d6
4+8d2

1(−2−15d4
4))x

75d6
4+16d2

1(−2−15d4
4)
− c(75d6

4+16d2
1(−2+15d4

4))y
75d6

4+16d2
1(−2−15d4

4)

)2
+ R2

1

, (28)

where R1 = d4 + d3

(
ct +

4(45d6
4+8d2

1(−2−15d4
4))x

75d6
4+16d2

1(−2−15d4
4)
− c(75d6

4+16d2
1(−2+15d4

4))y
75d6

4+16d2
1(−2−15d4

4)

)
.

Set II. When d5 = d2 = 0,

d1 =
√
−1d3, k2 = k2, k1 = k1, d3 = d3, d1 = d1. (29)

Through the above values,

Ψ8 =
2
(
−2d2

3(ct + k1x + k2y) + 2d3(ct + k1x + k2y)
)

−d2
3(ct + k1x + k2y)2 + (d4 + d3(ct + k1x + k2y))2 . (30)
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Set III. When d5 = d2 = 0,

d4 =
1

15
2

1
4 15

3
4 , k2 = − 5

864
c
√

2
√

15
d2

1
, k1 = k1, d3 = 0. (31)

Through the above values, we have

Ψ9 =

4d2
1

(
ct + k1x + 5

44

√
5
6 cd2

1y
)

√
2

15 + d2
1

(
ct + k1x + 5

44

√
5
6 cd2

1y
)2 . (32)

Set IV. When d4 = d2 = 0,

c = −
72k2

(
2d4

1 + 4d2
1d2

3 + 2d4
3 +

1
5 d2

1

√
15 + 1

5 d2
3

√
15
)

48d4
1 + 96d2

1d2
3 + 48d4

3 + 8d2
1

√
15 + 8d2

3

√
15 + 5

, k1 = −
4
(

2d2
1 + 2d2

3 +
1
5

√
15
)

4d2
1 + 4d2

3 +
1
3

√
15

, d3 = d3. (33)

Then we obtain

Ψ10 =

2

2d2
1

− 72
(√

3
5 d2

1+2d4
1+
√

3
5 d2

3+4d2
1d2

3+2d4
3

)
k2t

5+8
√

15d2
1+48d4

1+8
√

15d2
3+96d2

1d2
3+48d4

3
−

4
(√

3
5+2d2

1+2d2
3

)
x√

5
3+4d2

1+4d2
3

+ k2y

+ 2R2

d5 + d2
1

− 72
(√

3
5 d2

1+2d4
1+
√

3
5 d2

3+4d2
1d2

3+2d4
3

)
k2t

5+8
√

15d2
1+48d4

1+8
√

15d2
3+96d2

1d2
3+48d4

3
−

4
(√

3
5+2d2

1+2d2
3

)
x√

5
3+4d2

1+4d2
3

+ k2y

2

+ R2
2

, (34)

where R2 = d2
3

− 72
(√

3
5 d2

1+2d4
1+
√

3
5 d2

3+4d2
1d2

3+2d4
3

)
k2t

5+8
√

15d2
1+48d4

1+8
√

15d2
3+96d2

1d2
3+48d4

3
−

4
(√

3
5+2d2

1+2d2
3

)
x√

5
3+4d2

1+4d2
3

+ k2y

.

5. M-Shape Soliton Interaction with One Kink

For these solutions, we consider one exponential hypothesis on f [37,38],

f = ζ2
1 + ζ2

2 + d5 + eζ3 , (35)

where ζ1 = d1ξ + d2, ζ2 = d3ξ + d4, ζ3 = d6ξ + d7 di(1 ≤ i ≤ 7) are any parameters. Put
f into Equation (11) and evaluate the system of equations, which is attained from the
coefficients of ξ and exp functions:
Set I. When d4 = d2 = 0,

c = −
d2

6
(
5d2

5d3
6k1 − 4d3

6k1 + 10d2
5k1 − 24d2

5
)
k1k2

12d2
6 − 16

, d1 = d3
√
−1, k2 = k2, d7 = d7. (36)

We obtain

Ψ11 =
2d6e

d7+d6

(
−

d2
6(5d2

5d3
6k1−4d3

6k1+10d2
5k1−24d2

5)k1k2t

12d2
6−16

+k1x+k2y

)

d5 + e
d7+d6

(
−

d2
6(5d2

5d3
6k1−4d3

6k1+10d2
5k1−24d2

5)k1k2t

12d2
6−16

+k1x+k2y

) . (37)

Set II. When d4 = d2 = 0,

d5 =
2
3

√
3, k1 =

12
d3

6 + 5
, d1 = d3

√
−1, d7 = d7, c = c. (38)
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Then we obtain

Ψ12(x, y, t) =
2d6e

d7+d6

(
ct+ 12x

5+d3
6
+k2y

)

2√
3
+ e

d7+d6

(
ct+ 12x

5+d3
6
+k2y

) . (39)

6. M-Shape Soliton Interaction with Two Kinks

We use the following two exponential ansatz [37,38]:

f = b1e−a1∆+a2 + b2ea3∆+a4 , (40)

where a1, a2, a3 and a4 are some constants. By using f in Equation (11) and solving
the equations obtained from the coefficients of the exponential functions, we obtain the
following:
Set I.

k2 = −
c
(
3a2

3 + 5
)2

4a2
3
(
a2

3 + 3
)2 , k1 =

4
(
a2

3 + 3
)

3a2
3 + 5

, b1 = b1, a5 = a5, b2 = b2. (41)

Using the above values, we have

Ψ13 =

2

a1b1e
a2+a1

ct+
4(a2

3+3)x

3a2
3+5

+−
c(3a2

3+5)
2

y

4a2
3(a2

3+3)
2


+ a3b2e

a4+a3

ct+
4(a2

3+3)x

3a2
3+5

+−
c(3a2

3+5)
2

y

4a2
3(a2

3+3)
2


b1e

a2+a1

ct+
4(a2

3+3)x

3a2
3+5

+−
c(3a2

3+5)
2

y

4a2
3(a2

3+3)
2


+ b2e

a4+a3

ct+
4(a2

3+3)x

3a2
3+5

+−
c(3a2

3+5)
2

y

4a2
3(a2

3+3)
2


. (42)

Set II.

a1 =
7

39

√
−39, k1 =

26
19

, k1 =
361
735

c, a3 = − 7
39

i
√

39, a5 = a5. (43)

Then, we have

Ψ14 =

2

− 7ib2e
a4−

7i(ct+ 361cx
735 +k2y)√

39√
39

+ 7ib1e
a2+

7i(ct+ 361cx
735 +k2y)√

39√
39


b2ea4−

7i(ct+ 361cx
735 +k2y)√

39 + b1ea2+
7i(ct+ 361cx

735 +k2y)√
39

. (44)

7. Stability Characteristic of Solutions

We now evaluate the stability characteristic via Hamiltonian approach Ψ [30],

Λ =
1
2

k∫
−k

Ψ2(z)dz. (45)

Hence, the stability condition of the solutions can be evaluated as

∂Λ
∂c

> 0, (46)
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where Λ denotes the momentum in the Hamiltonian system, and c stands for wave velocity.
The stability for Equation (28) with appropriate values of constants is given by(

∂Λ
∂c

)
c=4

= −0.000161749 < 0. (47)

In the interval x, y, tε[−9, 9] and c = 4, we conclude that this solution is unstable. In
the same way, we check the stability of all results in the Table 1.

8. Results and Discussions

For finding numerical results, we have used the configuration of the Software MATH-
EMATICA:12.1 and MAPLE:14 to perform the simulation results. We have successfully
obtained the stated forms of solutions and they show a discrepancy in the wave when
setting the parameters to the appropriate values. First, by applying the three waves ap-
proach, we have evaluated three sets of solutions for Equation (1) and their graphs are
constructed via appropriate values of involved parameters. Note that Figure 1 shows
the 3D multiwave plots for Ψ1 in Equation (14) presented via numeric values k1 = 1,
b1 = 1.5, c = 2.5, a2 = 3, a4 = 3, b0 = 1.5, a5 = 2, a6 = 5, b2 = 2.5, respectively.
Figure 2 represents the 2D multiwave profiles for Ψ1 in Equation (14) via numeric values
of k1 = 1, b1 = 1.5, c = 2.5, a2 = 3, a4 = 3, b0 = 1.5, a5 = 2, a6 = 5, b2 = 2.5. Figures 3 and 4
interpret the density and stream plots for Figure 1. Furthermore, by utilizing the HB
technique, we have computed three sets of solutions for Equation (1) and their plots are
constructed. We have successfully evaluated the 3D HB profiles for Ψ4, which are con-
structed with numeric values of k1 = 1, a1 = −1.5, c = −2.5, a5 = −3, a4 = −2, a6 = 3, b0 =
−1.5, b1 = 3, a2 = −2, b2 = −2.5, respectively, in Figure 5. The 2D HB plots for Ψ4 are dis-
played via numeric values of k1 = 1, a1 = −1.5, c = −2.5, a5 = −3, a4 = −2, a6 = 3, b0 =
−1.5, b1 = 3, a2 = −2, b2 = −2.5, respectively, in Figure 6. Similarly, Figures 7 and 8 inter-
pret the density and stream plots for Figure 5. We have attained four classes of M-shaped
solitons via a suitable transformation in Equation (11). We have constructed M-shape
evolution plots for Ψ7, constructed with d1 = −5, d4 = 2, c = 10, d3 = 3, b0 = 2, in
Figure 9. We have attained two classes of M-shaped solitons with one exp function via a
suitable transformation in Equation (11). The resulting 3D interaction plots for Ψ11 are
displayed with numerical values of d6 = 6, d7 = 2, c = 1.5, k2 = 2i in Figures 10 and 11.
Figures 12 and 13 interpret the density and stream plots for Figure 10. We have computed
two sets of solutions for M-shaped solitons with double exp function through a suitable
transformation in Equation (11). The evolution profiles for Ψ13 are constructed with choice
of a2 = 4, a4 = 1, c = 1.5, a2 = 2, b1 = 2, b2 = 6 in Figure 14. Furthermore, their stability
characteristics are successfully manipulated. We believe that the results attained in this
work will be helpful for recognizing rogue wave-like phenomena and many other novel
interactional phenomena in shallow water waves.
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(a) t = −0.1 (b) t = −0.2 (c) t = −0.3

(d) t = 0.8 (e) t = 6
Figure 1. 3D multiwave plots for Ψ1 in Equation (14) are presented via k1 = 1, b1 = 1.5, c = 2.5,
a2 = 3, a4 = 3, b0 = 1.5, a5 = 2, a6 = 5, b2 = 2.5.

(a) t = −0.1 (b) t = −0.2 (c) t = −0.3

(d) t = 0.8 (e) t = 6

Figure 2. 2D multiwave profiles for Ψ1 in Equation (14) are constructed with k1 = 1, b1 = 1.5, c = 2.5,
a2 = 3, a4 = 3, b0 = 1.5, a5 = 2, a6 = 5, b2 = 2.5.
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(a) t = −0.1 (b) t = −0.2 (c) t = −0.3

(d) t = 0.8 (e) t = 6
Figure 3. Density multiwave plots for Ψ1 are constructed with k1 = 1, b1 = 1.5, c = 2.5, a2 = 3,
a4 = 3, b0 = 1.5, a5 = 2, a6 = 5, b2 = 2.5.

(a) t = −0.1 (b) t = −0.2 (c) t = −0.3

(d) t = 0.8 (e) t = 6
Figure 4. Stream multiwave profiles for Ψ1 are constructed with k1 = 1, b1 = 1.5, c = 2.5, a2 = 3,
a4 = 3, b0 = 1.5, a5 = 2, a6 = 5, b2 = 2.5.
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(a) t = −5 (b) t = −3 (c) t = −1

(d) t = 5 (e) t = 15
Figure 5. 3D HB profiles for Ψ4 are constructed with k1 = 1, a1 = −1.5, c = −2.5, a5 = −3, a4 = −2,
a6 = 3, b0 = −1.5, b1 = 3, a2 = −2, b2 = −2.5.

(a) t = −5 (b) t = −3 (c) t = −1

(d) t = 5 (e) t = 15
Figure 6. 2D HB plots for Ψ4 are displayed with k1 = 1, a1 = −1.5, c = −2.5, a5 = −3, a4 = −2,
a6 = 3, b0 = −1.5, b1 = 3, a2 = −2, b2 = −2.5.
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(a) t = −5 (b) t = −3 (c) t = −1

(d) t = 5 (e) t = 15
Figure 7. Density profiles for Ψ4 are constructed with k1 = 1, a1 = −1.5, c = −2.5, a5 = −3, a4 = −2,
a6 = 3, b0 = −1.5, b1 = 3, a2 = −2, b2 = −2.5.

(a) t = −5 (b) t = −3 (c) t = −1

(d) t = 5 (e) t = 15
Figure 8. Stream plots for Ψ4 are constructed with k1 = 1, a1 = −1.5, c = −2.5, a5 = −3, a4 = −2,
a6 = 3, b0 = −1.5, b1 = 3, a2 = −2, b2 = −2.5.
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(a) t = −3 (b) t = 0 (c) t = 3

(d) t = −3 (e) t = 0 (f) t = 3

(g) t = −3 (h) t = 0 (i) t = 3

(j) t = −3 (k) t = 0 (l) t = 3
Figure 9. M-shape evolution profiles for Ψ7 are constructed with d1 = −5, d4 = 2, c = 10, d3 = 3, b0 = 2.
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(a) t = −5 (b) t = −3 (c) t = −1

(d) t = 0 (e) t = 15
Figure 10. 3D interaction plots for Ψ11 are displayed with d6 = 6, d7 = 2, c = 1.5, k2 = 2i.

(a) t = −5 (b) t = −3 (c) t = −1

(d) t = 0 (e) t = 15
Figure 11. Some interaction slots for Ψ11 are shown with d6 = 6, d7 = 2, c = 1.5, k2 = 2i.
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(a) t = −5 (b) t = −3 (c) t = −1

(d) t = 0 (e) t = 15
Figure 12. Density interaction graphs for Ψ11 are shown with d6 = 6, d7 = 2, c = 1.5, k2 = 2i.

(a) t = −5 (b) t = −3 (c) t = −1

(d) t = 0 (e) t = 15
Figure 13. Stream interaction plots for Ψ11 are shown with d6 = 6, d7 = 2, c = 1.5, k2 = 2i.
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(a) t = −3 (b) t = 0 (c) t = 3

(d) t = −3 (e) t = 0 (f) t = 3

(g) t = −3 (h) t = 0 (i) t = 3

(j) t = −3 (k) t = 0 (l) t = 3
Figure 14. Evolution profiles for Ψ13 are constructed with a2 = 4, a4 = 1, c = 1.5, a2 = 2, b1 = 2, b2 = 6.

9. Concluding Remarks

In this article, we studied MS, HB, M-shaped solitons by utilizing the symbolic compu-
tation with ansatz functions technique and logarithmic transformation. We also discussed
interactions among M-shape solitons with kink waves, like single exponential form (one-
kink) and double exponential form (two-kink). These solutions may be used to manage the
behavior of pulses. MS and other solutions in shallow water wave theory are valuable tools
for understanding the complex dynamics of water waves in shallow environments. They
contribute to the fields of environmental science, coastal engineering, and oceanography
by providing insights into wave behavior and its impact on coastal areas and ecosystems.
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Additionally, we discuss the stability characteristics of the obtained solutions. By using
the Hamilton system characteristics, we have come to the conclusion that Ψi(x, y, t), where
(i = 1, 2, 4, 5, 6, 8, 10, 13, 14), is a stable solution (see Table 2).

Table 2. Obtained solutions Ψi(x, y, t) where (i = 1, 2, 3, ..., 14).

Solution Type of Solution Values of Variables

Ψ1 MS
k1 = 1, b1 = 1.5, c = 2.5, a2 =
3, a4 = 3, b0 = 1.5, a5 =
2, a6 = 5, b2 = 2.5

Ψ4 MS
k1 = 1, a1 = −1.5, c =
−2.5, a5 = −3, a4 = −2, a6 =
3, b0 = −1.5, b1 = 3, a2 =
−2, b2 = −2.5

Ψ7 M-shape d1 = −5, d4 = 2, c = 10, d3 =
3, b0 = 2.

Ψ11 Interactional solution d6 = 6, d7 = 2, c = 1.5, k2 =
2i.

Ψ13 Interactional solution a2 = 4, a4 = 1, c = 1.5, a2 =
2, b1 = 2, b2 = 6.
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