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Abstract: The most commonly used model of solar cells is the single-diode model, with five unknown
parameters. First, this paper proposes three variants of the single-diode model, which imply the
voltage dependence of the series resistance, parallel resistance, and both resistors. Second, analytical
relationships between the current and the voltage expressed were derived using the Lambert W
function for each proposed model. Third, the paper presents a hybrid algorithm, Chaotic Snake
Optimization (Chaotic SO), combining chaotic sequences with the snake optimization algorithm.
The application of the proposed models and algorithm was justified on two well-known solar
photovoltaic (PV) cells—RTC France solar cell and Photowatt-PWP201 module. The results showed
that the root-mean-square-error (RMSE) values calculated by applying the proposed equivalent
circuit with voltage dependence of both resistors are reduced by 20% for the RTC France solar cell
and 40% for the Photowatt-PWP201 module compared to the standard single-diode equivalent circuit.
Finally, an experimental investigation was conducted into the applicability of the proposed models
to a solar laboratory module, and the results obtained proved the relevance and effectiveness of the
proposed models.

Keywords: chaotic snake optimization; Lambert W function; optimization; mathematical models;
solar PV cells

1. Introduction
1.1. Background

In the near future, energy demand will almost double for many reasons, while water
and food demand is expected to increase significantly. Unfortunately, countries’ economies
are greatly affected by energy shortages, especially when energy resources are not indepen-
dent, as evidenced by the Russian-Ukrainian war and the COVID-19 pandemic. Thus, on
the one hand, all states aspire to harness their natural resources to serve them and to be
economically independent. On the other hand, industrial development and environmental
pollution are increasingly affecting the world’s decarbonization [1,2]. The use of renewable
energy sources and energy storage technologies can help reduce this pressure on the planet.
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In this regard, very high expectations and growth in energy use rely on solar energy as a
promising player in the carbon-free independent energy mix [3].

In this context, any energy analysis that looks at how a solar power plant connects to
the grid has to know how powerful the solar panels are. However, power calculation is
directly related to solar power plant management to maximize solar energy, based on the
regulation of output voltage and current to obtain maximum power. The knowledge of the
solar panel’s mathematical model, i.e., its solar cells’ electrical properties, is fundamental
to understanding the challenges of power regulation of the solar panel or the so-called
maximum power point tracking (MPPT) [4]. Because of this, estimating the parameters
of solar models while creating new models to represent solar cells’ performance is of
considerable interest in energy-based research works.

Single-diode, double-diode, and triple-diode models are used in the literature to
simulate solar cells electrically. Each of these models consists of a single current genera-
tor acting as the source of photocurrent (IPV) and two resistances, RS and RP, which are
connected in series and parallel, respectively. The number of diodes in an equivalent
circuit can be determined using the triple-diode, double-diode, and single-diode models.
The electrical parameters of the diodes employed in the triple-diode and double-diode
models—the ideal factor (n) and reverse saturation current (I0)—are different. The tradi-
tional single-diode model has five parameters, the double-diode model has seven parame-
ters, and the triple-diode model has nine parameters [5,6].

1.2. Motivation

At the beginning of the 2000s, several works were presented to investigate new
equivalent circuits of solar cell models, which have additional resistors and capacitors [5–8].
In addition, in the last few years, several works have also been published in which modified
equivalent circuits of solar models have been proposed, where additional resistors are
added in series with the diode [7]. Specifically, a modification of the triple-diode equivalent
circuit has been proposed in [7], and the single-diode equivalent circuit in [8]. However,
based on the presented results in these works, it was clear that the proposed modifications
in the equivalent circuits have not significantly improved the estimation accuracy of the
solar cell parameters, which represents the main motivation for this research. Therefore, the
need for an accurate but simple model of solar cells is still an important and trendy research
goal. It should be emphasized that in one-diode models and their modified variants [8],
there is an analytical dependence between current and voltage, which is not the case in the
double-diode and triple-diode models.

1.3. Methodology

In the literature, the authors in [9] presented a modified single-diode model of solar
cells in which the series resistance is represented as a voltage-dependent component. The
findings of multiple experiments and techniques for modeling this voltage dependency
were provided in the paper. Based on [9], emphasis will be placed on creating a novel model
in this study that considers both series and parallel resistance and voltage dependency. The
primary cause of this is that it was observed while studying solar cell model designs that
their characteristics limit the accurate fitting of the simulated and measured curves at high
voltage values.

From the point of view of parameter estimation methods, it can be said that the
application of metaheuristic algorithms dominates in scientific publications [10–18]. These
algorithms have a straightforward application, fast search, and adaptability for the range
of parameter changes. The list of metaheuristic algorithms and the data source is given in
the Appendix A in Tables A1 and A2. The mentioned tables describe the algorithms used
for estimating the parameters in the literature known as solar cells RTC France and PWP
Photowatt cell [19,20]. In addition, classical numerical methods were used to estimate the
parameters of solar cells, especially those based on iterative methods. Besides, there are
analytical methods, which, unlike others, involve many approximate solutions and are the
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least accurate [8]. To sum up, the most efficient model has not yet been found, nor has the
approach for estimating the parameters of solar cells. For this reason, a new hybrid variant
of a metaheuristic algorithm is proposed in this work. Namely, it was learned from the
literature that the hybridization of algorithms supports the speed of convergence and the
obtained solutions [8].

1.4. Novelty and Contributions

The single-diode model is modified in three ways in this study, implying that the series
resistance, parallel resistance, and both resistances are all voltage-dependent. Analytical
relationships between the expressed current and voltage were developed using the Lambert
W function for each suggested model. The paper also introduces a hybrid approach
called Chaotic Snake Optimization (Chaotic SO), which combines the snake optimization
algorithm and chaotic sequences. The application of the proposed models and algorithm
was justified on two well-known solar PV cells–RTC France solar cell and Photowatt-
PWP201 module. The findings demonstrated that the suggested equivalent circuit with
voltage dependency of both series and parallel resistance has much lower root-mean-
square-error (RMSE) values than the conventional single-diode equivalent circuit. Finally,
experimental research was carried out to see whether the suggested models could be used
in a solar laboratory module, and the outcomes demonstrated the adaptability and efficacy
of the proposed models.

The primary contributions of this work are briefed as follows:

• Three new variants of the single-diode model of solar cells are proposed.
• The voltage dependence of the series resistance, parallel resistance and both of them

are considered.
• Analytical expressions for current-voltage dependences of the proposed solar cell

models are derived using the Lambert W function.
• An improved snake optimization algorithm using chaotic sequences is presented in

this work for estimating the parameters of the investigated solar cell and module.
• The results of comparing the proposed algorithm and numerous literature-known

algorithms are presented.
• An experimental investigation was conducted into the applicability of the proposed

models to a solar laboratory module, and the results obtained proved the relevance
and effectiveness of the proposed models.

1.5. Organization

The paper was divided into several sections to present the research results better. In
Section 2, a mathematical description of the standard single-diode model of solar cells is
given, as well as the results of calculating current-voltage characteristics for two literature-
known cells whose parameters were determined by applying different optimization meth-
ods. In Section 3, new single-diode equivalent circuits of solar cells are proposed, and
the analytical relationships of their current and voltage expressions are presented. Sec-
tion 4 presents a novel hybrid metaheuristic algorithm called chaotic snake optimization
(Chaotic SO). Section 5 presents the results of estimating the parameters of the investigated
solar cells using the standard and the proposed equivalent circuits. Section 6 presents
the experimental results conducted on a laboratory solar cell. The concluding remarks
and future research directions are given at the end of the paper in Section 7, followed by
the appendices.

2. Single-Diode Solar Cell Model and Discussion of the Related Literature

This section is divided into two subsections—basic information about the standard
single-diode solar cell model and a discussion of the related literature review.
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2.1. Basic Information about the Standard Single-Diode Solar Cell Model

The standard single-diode solar cell model (SDM) is a commonly used model for solar
cell representation [3]. The equivalent circuit of the SDM is explored in Figure 1. In this
figure, the labels are given as follows: RS is the series resistance, RP is the parallel resistance,
Ipv represents the photo-generated current, and D is the diode.
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Figure 1. Equivalent circuit of the standard single-diode solar cell model.

The current-voltage relationship of this model is formulated as follows [3]:

I = Ipv − I0

(
e

U+IRS
nVt − 1

)
− U + IRS

RP
(1)

where I is the output current, U denotes the voltage, n is the ideality factor of the diode,
and Vt = KBT/q is the thermal voltage (KB is the Boltzmann constant, T is the temperature,
and q is the electron’s charge).

In SDM, the analytical solution for the current as a function of the voltage is given
as follows [3]:

I =
RP
(

Ipv + I0
)
− U

RS + RP
− nVt

RS
W(β) (2)

so that

β =
I0RPRS

nVt(RS + RP)
e

RP(RS Ipv+RS I0+U)

nVt(RS+RP) (3)

where W(β) represents the solution of the Lambert W function, a function of the type
W(β) = β·exp(−W(β)) that can be solved using several methods. Regarding the analytical
solution of this equation, it is evident that the special trans function theory (STFT) is
the most efficient and accurate method over other analytical solutions in the available
literature [3,5]. Therefore, using the STFT, the analytical closed-form solution for the
current has the following form:

I =
RP
(

Ipv + I0
)
− U

RS + RP
− nVtβ

RS

∑M
k=0

βk(M−k)k

k!

∑M+1
k=0

βk(M+1−k)k

k!

(4)

where M represents a positive integer, and the mathematical genesis of the analytical
closed-form solution of the Lambert W function, in addition to the theoretical derivation
and proofs, are derived in [21].

2.2. Discussion of the Related Literature Review

Tables A1 and A2 are given in Appendix A, in which a literature review of the esti-
mated parameters using several literature-known approaches that investigated the RTC
France solar cell and the Photowatt-PWP201 module are presented. In these tables, values
of the root-mean-square-error (RMSE) are calculated as follows:

RMSE =

√√√√ 1
Nmes

Nmes

∑
k=1

(
Imeas
k − Isim

k
)2 (5)
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Nmes represents the total number of the measured points, while the simulated current values
are calculated using (2)–(5). Therefore, this metric defines the degree of matching between
measured and simulated curves value. All calculations were carried out in the MATLAB
software package, 2018 version.

The graphical presentation of the calculated RMSE values is given in Figure 2a,b for
the solar cells investigated. The 3D graph, which illustrates the voltage-method-current
and voltage-method-power for both cells, is given in Figures 3–6.

Fractal Fract. 2023, 7, 95 5 of 29 
 

 

2.2. Discussion of the Related Literature Review 

Tables A1 and A2 are given in Appendix A, in which a literature review of the esti-

mated parameters using several literature-known approaches that investigated the RTC 

France solar cell and the Photowatt-PWP201 module are presented. In these tables, values 

of the root-mean-square-error (RMSE) are calculated as follows: 

( )
2

1

1 mesN

meas sim
k k

mes k

RMSE I I
N

=

= −  (5) 

Nmes represents the total number of the measured points, while the simulated current val-

ues are calculated using (2)–(5). Therefore, this metric defines the degree of matching be-

tween measured and simulated curves value. All calculations were carried out in the 

MATLAB software package, 2018 version. 

The graphical presentation of the calculated RMSE values is given in Figure 2a,b for 

the solar cells investigated. The 3D graph, which illustrates the voltage-method-current 

and voltage-method-power for both cells, is given in Figures 3–6. 

Based on the presented results, it is clear that many methods enable almost the same 

results (e.g., values of the estimated parameters) and almost equal RMSE values. This re-

mark is also apparent in the presented 3D graphs. The minimum value of RMSE for the 

RTC France solar cell was provided by Method 204 [13] in Table A1—application of the 

GAMS program. The minimum value of RMSE for the Photowatt-PWP201 module was 

provided by Method 43 [13] in Table A2—application of the guaranteed convergence par-

ticle swarm optimization (GCPSO). For RTC France solar cell, the minimum RMSE value 

is 7.730068 ∙ 10−4, whilst the minimum RMSE value is 2.040452 ∙ 10−3 for the Photowatt-

PWP201 module. 

  

(a) (b) 

Figure 2. RMSE calculated for: (a) RTC France solar cell; (b) Photowatt-PWP201 module. 
Figure 2. RMSE calculated for: (a) RTC France solar cell; (b) Photowatt-PWP201 module.

 

2 

 

 
 
Figure 3. RTC France solar cell: (a) current-voltage characteristics; (b) the corresponding error;
(c) error in the current values versus the measured voltage for all methods.
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Figure 4. RTC France solar cell: (a) power-voltage characteristics; (b) the corresponding error.
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Figure 5. Photowatt-PWP201 module: (a) current-voltage characteristics; (b) the corresponding error;
(c) error in the current values versus the measured voltage for all methods.
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Based on the presented results, it is clear that many methods enable almost the same
results (e.g., values of the estimated parameters) and almost equal RMSE values. This
remark is also apparent in the presented 3D graphs. The minimum value of RMSE for
the RTC France solar cell was provided by Method 204 [13] in Table A1—application of
the GAMS program. The minimum value of RMSE for the Photowatt-PWP201 module
was provided by Method 43 [13] in Table A2—application of the guaranteed convergence
particle swarm optimization (GCPSO). For RTC France solar cell, the minimum RMSE value
is 7.730068 · 10−4, whilst the minimum RMSE value is 2.040452 · 10−3 for the Photowatt-
PWP201 module.

3. Equivalent Circuits Proposed

The modified SDM with voltage-dependent series resistance was proposed in [9]
to elucidate the electrical behavior of organic solar cells while enhancing the modeling
accuracy and benefiting from the simplicity of the equivalent circuit. The reasons for
introducing the voltage-dependent series resistance and its physical interpretation were
described in [9], in which the modification was mainly related to the internal processes
of charge extraction and charge transport. Besides, in [9], it was concluded that a voltage-
dependent series resistance provides good knowledge about the behavior of the organic
solar cells at different applied voltage regions.

Based on [9], in this section, three novel SDM circuits, shown in Figure 7, are pro-
posed. Unlike the standard SDM, these circuits have voltage-dependent series resistance
called SDMRS (shown in Figure 7a), voltage-dependent parallel resistance called SDMRP
(shown in Figure 7b), and voltage dependence of both resistances called SDMRPRS (shown
in Figure 7c).

Fractal Fract. 2023, 7, 95 8 of 29 
 

 

Figure 5. Photowatt-PWP201 module: (a) current-voltage characteristics; (b) the corresponding er-
ror; (c) error in the current values versus the measured voltage for all methods. 

  

(a) (b) 

Figure 6. Photowatt-PWP201 module: (a) power-voltage characteristics; (b) the corresponding error. 

3. Equivalent Circuits Proposed 
The modified SDM with voltage-dependent series resistance was proposed in [9] to 

elucidate the electrical behavior of organic solar cells while enhancing the modeling accu-
racy and benefiting from the simplicity of the equivalent circuit. The reasons for introduc-
ing the voltage-dependent series resistance and its physical interpretation were described 
in [9], in which the modification was mainly related to the internal processes of charge 
extraction and charge transport. Besides, in [9], it was concluded that a voltage-dependent 
series resistance provides good knowledge about the behavior of the organic solar cells at 
different applied voltage regions. 

Based on [9], in this section, three novel SDM circuits, shown in Figure 7, are pro-
posed. Unlike the standard SDM, these circuits have voltage-dependent series resistance 
called SDMRS (shown in Figure 7a), voltage-dependent parallel resistance called SDMRP 
(shown in Figure 7b), and voltage dependence of both resistances called SDMRPRS (shown 
in Figure 7c). 

   

(a) (b) (c) 

Figure 7. Proposed equivalent circuit non-linear single diode models of solar cells: (a) SDMRS; (b) 
SDMRP; (c) SDMRPRS. 

In SDMRS, the analytical solution for the current (𝐼 ) as a function of the voltage is 
formulated as follows: 

-10
80

-5

60 20

0

15

Po
w

er
 [W

]

Method

5

40 10

Voltage [V]

10

520
0

15

0 -5

-0.2
2080

-0.1

15

0

60

D
iff

er
en

ce
 b

et
w

ee
n 

si
m

ul
at

ed
an

d 
m

ea
su

re
d 

po
w

er
 v

al
ue

 [W
]

10

0.1

Voltage [V]Method

40

0.2

5

0.3

20 0
-50

Figure 7. Proposed equivalent circuit non-linear single diode models of solar cells: (a) SDMRS;
(b) SDMRP; (c) SDMRPRS.



Fractal Fract. 2023, 7, 95 8 of 26

In SDMRS, the analytical solution for the current (In−RS ) as a function of the voltage is
formulated as follows:

In−Rs =
RP
(

Ipv + I0
)
− U

RS0(1 + kn−Rs U) + RP
− nVt

RS0(1 + kn−Rs U)
W(βn−Rs) (6)

where

βn−Rs =
I0RPRS0(1 + kn−Rs U)

nVt(RS0(1 + kn−Rs U) + RP)
e

RP(RS0(1+kn−Rs U)Ipv+RS0(1+kn−Rs U)I0+U)

nVt(RS0(1+kn−Rs U)+RP) (7)

where RS0 is the series resistance at zero voltage (Ω), while kn−Rs is the series resistance-
voltage coefficient (1/V), applying the STFT [22], the current-voltage expression for this
model, derived as follows:

In−Rs =
RP
(

Ipv + I0
)
− U

RS0(1 + kn−Rs U) + RP
− nVtβn−Rs

RS0(1 + kn−Rs U)

 ∑M
k=0

βn−Rs
k(M−k)k

k!

∑M+1
k=0

βn−Rs
k(M+1−k)k

k!

 (8)

In SDMRP, the analytical solution for the current (In−RP ) as a function of the voltage is
formulated as follows:

In−RP =
RP0

(
1 + kn−RP U

)(
Ipv + I0

)
− U

RS + RP0
(
1 + kn−RP U

) − nVt

RS
W
(

βn−RP

)
(9)

where

βn−RP =
I0RSRP0

(
1 + kn−RP U

)
nVt
(

RS + RP0
(
1 + kn−RP U

))e
RP0(1+kn−RP

U)(RS Ipv+RS I0+U)

nVt(RS+RP0(1+kn−RP
U)) (10)

where RP0 is the parallel resistance at zero voltage (Ω), while kn−RP is the parallel resistance-
voltage coefficient (1/V), and applying the STFT [22], the current-voltage expression is
derived for this model as follows:

In−RP =
RP0

(
1 + kn−RP U

)(
Ipv + I0

)
− U

RS + RP0
(
1 + kn−RP U

) −
nVtβn−RP

RS

 ∑M
k=0

βn−RP
k(M−k)k

k!

∑M+1
k=0

βn−RP
k(M+1−k)k

k!

 (11)

In SDMRPRS, the analytical solution for the current (In−RPRS ) as a function of the
voltage is formulated as follows:

In−RPRS =
RP0

(
1 + kn−RP U

)(
Ipv + I0

)
− U

RS0(1 + kn−Rs U) + RP0
(
1 + kn−RP U

) − nVt

RS0(1 + kn−Rs U)
W
(

βn−RPRS

)
(12)

where

βn−RPRS =
I0RS0RP0

(
1 + kn−RP U

)
(1 + kn−Rs U)

nVt
(

RS0(1 + kn−Rs U) + RP0
(
1 + kn−RP U

))e
RP0(1+kn−RP

U)(RS0(1+kn−Rs U)Ipv+RS0(1+kn−Rs U)I0+U)

nVt(RS0(1+kn−Rs U)+RP0(1+kn−RP
U)) (13)

Applying the STFT [22], the current-voltage expression is derived as follows:

In−RPRS =
RP0

(
1 + kn−RP U

)(
Ipv + I0

)
− U

RS0(1 + kn−Rs U) + RP0
(
1 + kn−RP U

) − nVtβn−RPRS

RS

 ∑M
k=0

βn−RP RS
k(M−k)k

k!

∑M+1
k=0

βn−RP RS
k(M+1−k)k

k!

 (14)
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4. Chaotic SO Algorithm Proposed

The snake optimization (SO) algorithm [23] is inspired by the behavior of snakes,
which can be explained in several phases. If the temperature is low and the food is
available, the snakes’ mating occurs. Otherwise, snakes will search for food or eat the
existing food, depending on the remaining quantity of food.

Like all metaheuristic algorithms, the original version of the SO algorithm starts by
generating a random population to begin the optimization process. This process is carried
out as represented in (15):

Xi = Xmin + rand(Xmax − Xmin), (15)

where Xi denotes the position of the i-th individual, rand is a random number between
0 and 1, while Xmax and Xmin are the upper and lower boundaries of the design variables.

This paper proposes a chaotic version of the SO algorithm, named the chaotic-snake
optimization (C-SO) algorithm. The proposed algorithm initializes the population using
chaotic Gauss mapping [24] instead of conventional random initialization. The equations
that describe the initialization process using chaotic Gauss mapping are given as follows:

y1 = rand,

yi+1 = exp
(
−αyi

2)+ β,

Xi = Xmin + yi(Xmax − Xmin).

(16)

The parameters α and β are related to the width and height of the Gaussian curve,
respectively. Interesting chaotic properties occur around −1 ≤ β ≤ 1 on the Gauss map,
where the map’s value asymptotically oscillates around −1 and 1.25. The parameters
α and β are set to 4.9 and −0.58, according to the original version of Gauss chaotic maps.
The main advantage of embedding chaotic maps into the initialization process is obtaining
an optimal initial population for the optimization process. Obtaining a good starting
population ensures that the proposed chaotic version of the algorithm will converge to the
optimal solution faster than the original version.

The iterative process starts with dividing the population into male and female snakes.
Assuming an equal number of male and female snakes in the population, if we denote the
total number of individuals in the population as N, the number of male snakes as Nm, and
the number of female snakes as Nf, the following equations can be applied:

Nm ≈ N/2,

N f = N − Nm.
(17)

Afterward, the temperature T and food quantity Q must be calculated:

T = exp
(
− ite

maxite

)
,

Q = c1 exp
(

ite−maxite
maxite

)
.

(18)

where ite stands for the current iteration, maxite denotes the maximum number of iterations,
and c1 is a constant that equals 0.5 [23].

If the Q value is less than the selected threshold (0.25 in [23]), the snakes do not have
enough food and must search for it. This phase is called the exploration phase, and the
positions of male and female snakes are updated according to the following equations:

Xi,m(ite + 1) = Xrand,m(ite)± c2 Am((Xmax − Xmin)rand + Xmin),

Xi, f (ite + 1) = Xrand, f (ite)± c2 A f ((Xmax − Xmin)rand + Xmin).
(19)
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where Xi,m and Xi,f denote the positions of the i-th male and female snakes, while Xrand,m and
Xrand,f stand for random male and female snakes, respectively. In the previous equations,
Am and Af denote the male and female ability to find food and can be calculated as follows:

Am = exp
(
− frand,m

fi,m

)
,

A f = exp
(
− frand, f

fi, f

)
.

(20)

where frand,m and frand,f stand for the fitness function values for individuals Xrand,m and
Xrand,f. Like this, fi,m and fi,f denote the fitness function values for individuals Xi,m(ite)
and Xi,f(ite).

Otherwise, if Q is higher than the threshold value, the food exists, and the exploitation
phase occurs. Furthermore, it is necessary to examine the temperature T. If T is higher than
a certain temperature threshold (selected to be 0.6 as in [23]), the weather is hot, and the
snakes will move to the food. In that case, the position of the i-th snake Xi,j is updated
according to the following equation:

Xi,j(t + 1) = X f ood ± c3T.rand
(

X f ood − Xi,j(t)
)

, (21)

where c3 is a constant set to 2 [23], and Xfood is the position of the best snake, i.e., the snake
whose fitness function has the lowest value. On the other hand, if the temperature T is
lower than the threshold, the snakes will fight or mate. In the fight mode, the positions of
Xi,m and Xi,f are updated as follows:

Xi,m(t + 1) = Xi,m(t)± c3FM.rand
(

Xbest, f − Xi,m(t)
)

,

Xi, f (t + 1) = Xi, f (t)± c3FF.rand
(

Xbest,m − Xi, f (t)
)

.
(22)

In the previous equations, Xbest,f and Xbest,m are the best snakes selected from the
female and male populations, respectively. Additionally, FM and FF denote the fighting
ability of male and female snakes:

FM = exp
(
− fbest, f

fi

)
,

FF = exp
(
− fbest,m

fi

)
.

(23)

where fbest,f and fbest,m stand for the fitness function value of the best female and male snakes.
Additionally, fi denotes the fitness function value of the i-th individual.

In the mating mode, the positions of the male and female snakes can be calculated
using the following equations:

Xi,m(t + 1) = Xi,m(t)± c3Mm.rand
(

QXi, f (t)− Xi,m(t)
)

,

Xi, f (t + 1) = Xi, f (t)± c3M f .rand
(

QXi,m(t)− Xi, f (t)
)

.
(24)

where Mm and Mf denote the mating abilities of male and female snakes, respectively. Thus:

Mm = exp
(
− fi, f

fi,m

)
,

M f = exp
(
− fi,m

fi, f

)
.

(25)
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In the previous equations, fi,f and fi,m are the fitness function values of Xi,f(ite) and
Xi,m(ite). Finally, the last step of the iteration is to select the worst male snake Xworst,m and
the worst female snake Xworst,f and replace them as follows:

Xworst,m = Xmin + rand(Xmax − Xmin),

Xworst, f = Xmin + rand(Xmax − Xmin).
(26)

The steps of the proposed C-SO algorithm are summarized in the pseudo-code given
in Algorithm 1. Additionally, the flowchart shown in Figure 8 depicts the steps of the
C-SO algorithm.
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Algorithm 1 Procedure of the Proposed C-SO Algorithm

1: Set parameters N, maxite, Xmin, Xmax, and dimension
2: Initialize the population using Gauss chaotic maps
3: Divide the population N into 2 equal groups–male and female
4: for ite = 1 to maxite
5: Evaluate each snake from the male and female group
6: Find the best male fbest,m and best female fbest,f snake
7: Define temperature T and food quantity Q
8: if (Q < 0.25)
9: Perform the exploration phase
10: else if (T > 0.6)
11: The snakes will move to the food-exploitation phase
12: else
13: if (rand > 0.6)
14: Perform the fighting mode of the snakes
15: else
16: Perform mating of the snakes
17: Find the worst male and female snake and update them
18: end if
19: end if
20: end for
21: Return the best solution

5. Numerical Results

This section presents the results of applying the C-SO algorithm to estimate the
parameters for standard and proposed solar cell models. The estimation process is used
for RTC France solar cell and the Photowatt-PWP201 module. The goal of the estimation
process was the minimization of the RMSE represented in Equation (5). However, the
current for the proposed circuit was calculated using Equations (8), (11) and (14) based on
the circuit type. The results are presented in Table 1 for RTC France solar cell and Table 2 for
the Photowatt-PWP201 module. Besides, in Tables 1 and 2, the values of RMSE calculated
for all SDM circuits are also given.

The current-voltage characteristics, power-voltage characteristics, corresponding
current-voltage errors, corresponding power-voltage errors, series resistance–voltage, and
parallel resistance–voltage characteristics for both RTC France solar cell and Photowatt-
PWP201 module are explored in Figures 9 and 10. Several conclusions can be derived based
on the presented results in Tables 1 and 2 and Figures 9 and 10 for both RTC France solar
cell and the Photowatt-PWP201 module.

• The proposed algorithm is very efficient in estimating parameters for RTC France solar
cell and the Photowatt-PWP201 module, as it enables parameters determination with
a lower RMSE value than methods listed in Tables A1 and A2.

• Recalling Section 2, the RMSE for RTC France solar cell determined for standard SDM
is 7.730062689943169 × 10−4, slightly better than the results available in the literature.
For the Photowatt-PWP201 module, the RMSE is 0.002039992273216, which is a better
result than the results available in the literature.

• Additionally, the voltage dependence of RP or RS or both enables better fitting between
the measured and simulated characteristics for both investigated solar cells/modules.

• The impact of voltage dependence on individual series or parallel resistance cannot be
generally guaranteed as a better effect of the voltage dependence of series resistance
for the Photowatt-PWP201 module on the results was observed in Table 2. In contrast,
a better impact of the voltage dependence of the parallel resistance for the RTC France
solar cell was observed in Table 1.

• The value of RMSE can be reduced by 40% for the Photowatt-PWP201 module and
20% for RTC France solar cell, considering the voltage dependence of both resistances
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in the solar cell model. Therefore, the matching between measured and simulated
curves is significantly improved.

Table 1. Estimated parameters value for the proposed equivalent circuits for the investigated RTC
France solar cell.

Parameter Standard SDM SDMRS SDMRP SDMRPRS

Ipv (A) 0.7607879665080 0.7608049248859 0.7610468429411 0.7613631203879
I0 (µA) 0.3106846042013 0.2991003927335 0.2310892217190 0.0409996462319

n 1.4772677889166 1.4734669046357 1.4488935673420 1.3045585894008
RS (Ω) 0.0365469451928 - 0.0373848509444
RP (Ω) 52.8897883285066 52.6797662689792 -
RS0 (Ω) - 0.0376221542230 - 0.0618725707814
RP0 (Ω) - 66.7442335923146 83.3942065127408
kn − Rs - 0.0440721596083 - 0.5094232140590
kn − Rp - - 0.8898254600473 1.5685793413223

RMSE × 10−4 7.7300626899432 7.7289464947487 6.9494430170526 6.1899974615364

Table 2. Estimated parameters value for the proposed equivalent circuits for the investigated
Photowatt-PWP201 module.

Parameter Standard SDM SDMRS SDMRP SDMRPRS

Ipv (A) 1.0323575940489 1.0342899634638 1.0336560526298 1.0385507500932
I0 (µA) 2.4965956963769 0.5898019648459 3.1895652071363 0.1402290648789

n 47.3985550384409 42.6481872737510 48.2903258581200 38.7679613812771
RS (Ω) 1.2405473296235 - 1.2205195472483 -
RP (Ω) 748.323004851098 636.813538190211 - -
RS0 (Ω) - 2.1086757391782 - 2.8316185090761
RP0 (Ω) - - 414.225359045698 404.119541040858
kn − Rs - 0.0211826846962 - 0.0288655047700
kn − Rp - - −0.0848837309056 −0.0270864444391
RMSE 0.0020399922732 0.0015210625963 0.0018322922805 0.0012129409135

Finally, to test the proposed algorithm’s efficiency over other known algorithms, we
compared the original variant of the SO algorithm, the proposed C-SO, particle swarm opti-
mization (PSO), the Aquila optimizer (AO) algorithm and henry gas solubility optimization
(HGSO). The results were compared using the same starting conditions and the number
of iterations. The algorithm ran 30 independent times, and the best, worst, mean, median,
and standard deviation (STD) results were calculated for the same number of iterations. A
summary of the results obtained is presented in Table 3.

Table 3. Statistical measures for the obtained results using different algorithms over 30 independent runs.

Measure C-SO Proposed Original SO PSO AO HGSO

Best 7.730066720825 × 10−4 7.730112887551 × 10−4 7.757602348738 × 10−4 0.00288037656117 0.00526106472624
Worst 8.468025234636 × 10−4 8.322080126651 × 10−4 0.00198685445976 0.00851885985240 0.01474037311829
Mean 7.826453665352 × 10−4 7.831299232730 × 10−4 0.00105448589746 0.00556610811629 0.01091282953358

Median 7.784837234895 × 10−4 7.786564960706 × 10−4 9.853004240075 × 10−4 0.00574743127044 0.01118504603992
Std 1.408324862610 × 10−5 1.234187862853 × 10−5 3.249036540248 × 10−4 0.00145918070830 0.00250149664426

Additionally, using the collected data, we performed the Wilcoxon p-value test, and
the results obtained are given in Table 4. Based on these results, it is evident that the C-SO
algorithm enables improvement of the original SO algorithm, outperforming the other
algorithms. Additionally, based on the Wilcoxon p-value test, chaotic sequence improved
the repeatability of the results. The convergence curve for the algorithms considered in the
Wilcoxon p-value test is presented in Figure 11. Based on these results, it is evident that the
proposed C-SO algorithm is superior to other literature-known algorithms.
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Figure 9. RTC France solar cell: (a) current-voltage characteristics; (b) power-voltage characteristics;
(c) corresponding current-voltage errors; (d) corresponding power-voltage errors; (e) series resistance–
voltage dependence characteristics; (f) parallel resistance–voltage dependence characteristics.
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Figure 10. Photowatt-PWP201 module: (a) current-voltage characteristics; (b) power-voltage charac-
teristics; (c) corresponding current-voltage errors; (d) corresponding power-voltage errors; (e) series
resistance–voltage dependence characteristics; (f) parallel resistance–voltage dependence characteristics.
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6. Experimental Verification

The usefulness of using the new equivalent schemes and the new algorithm to estimate
solar cell parameters was covered in the previous section. The applicability of the modified
models to a solar laboratory module (part of the laboratory set Clean Energy Trainer) is
examined in this section. The method of measurement is as follows. Connect the PC device
first, then the USB data monitor, solar cells, and then the USB data monitor. A PC and an
active component, such as a solar cell, are connected via a power-electronic device called a
USB data monitor. This tool makes it possible to test voltages and currents and scales the
results on the computer. Solar cells must also be connected in parallel or in series. After that,
we measured the solar module’s temperature, activated solar measurement equipment (in
our case, the TES 133R), and set solar lamps at a specific distance. It is required to specify
the current and measure the voltage values using the Clean Energy Trainer program loaded
on the PC, checking the temperature and insolation of the solar cell or module during all
measurements. Figure 12 shows a block diagram of all devices connected.
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Figure 12. Experimental setup of the solar laboratory module.

Measurements were carefully performed, monitoring all variables (irradiance—1335 W/m2,
temperature 44 ◦C, voltage and current measures). The obtained results are then used for
solar cell parameters estimation. Furthermore, we determined solar cell parameters for all
equivalent circuits proposed. The results are summarized in Table 5. The measured and
estimated characteristics of current, power, current error, power error, series resistance-
voltage, and parallel resistance-voltage versus voltage are depicted in Figure 13.
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Table 5. Estimated parameters value for proposed equivalent circuits for the observed solar
laboratory module.

Parameter Standard SDM SDMRS SDMRP SDMRPRS

Ipv (A) 0.573103853383459 0.574513627819549 0.573197838345865 0.573000469924812
I0 (µA) 0.306664697651680 0.303792633051805 0.303290021746827 0.302816131087847

n 0.388241333333333 0.388215384615385 0.388215384615385 0.388214999538461
RS (Ω) 0.058300000000000 - 0.0570 -
RP (Ω) 120.79060 116.907 - -
RS0 (Ω) - 0.0581 - 0.057
RP0 (Ω) - - 117.227264 116.8833792
kn − Rs - −0.0111 - − 0.0125
kn − Rp - - 0.013110 0.023110
RMSE 0.001940250703697 0.001605316586546 0.001583230030742 0.001504856980387
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The first conclusion from all the results presented is that the results are close to each
other (as evident in Figure 13 and current and voltage errors in Table 5). Second, the agree-
ment between measured and estimated characteristics is remarkable for all figures. Third,
the lowest value of RMSE gives the usage of the equivalent circuit with both resistance
variables as a function of voltage. Therefore, for this example it is evident that the pro-
posed equivalent circuits are effective for the current-voltage representation of solar cells.
Additionally, the proposed algorithm enables effective solar cell parameter determination.

7. Conclusions

The selection of an appropriate equivalent circuit and the calculation of its parameters
are necessary for modeling PV solar cells. In this regard, three new PV equivalent circuits
are proposed in this study, in contrast to the many methods proposed in the literature,
typically based on basic PV equivalent circuits and modified versions with added resistance.
The definition of appropriate resistance as a voltage function gives the proposed schemes
their originality.

The analytical equations for all three equivalent circuits are included in the study. The
Lambert W function was used to express the current-voltage dependence solution. The
C-SO algorithm for determining the solar cell equivalent circuit’s parameters was also put
forth in this work.

The RTC France solar cell and the Photowatt-PWP201 module’s parameter estimates
were carried out utilizing the proposed algorithm and the proposed equivalent circuits.
The findings demonstrated that using the suggested methods, as opposed to conventional
equivalent circuits, significantly reduces the RMSE between the measured and estimated
values. Additionally, the error can be decreased by up to 20% with RTC France and up to
40% with the Photowatt-PWP201 module. The Clean Energy Trainer setup laboratory cell
underwent the same analysis.

Future works will consider the voltage-dependent resistance of double and triple solar
cell models for careful investigation of the mathematical analysis of these equivalent solar
cell circuit designs. Additionally, new techniques for estimating the characteristics of solar
cells will be developed with a specific focus on new hybrid optimization techniques.
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Abbreviations

ABC Artificial bee colony
ABCTRR Trust-region reflective (TRR) deterministic algorithm with the artificial

bee colony (ABC) metaheuristic algorithm
ABSO General algorithm for finding the absolute minimum of a function to a

given accuracy
AGDE Adaptive guided differential evolution
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ALO Ant Lion optimization algorithm
BBO Biogeography-based optimization
BPFPA Bee pollinator flower pollination algorithm
BLPSO Biogeography-based learning particle swarm optimization
BLPSO Biogeography-based learning PSO
BHCS Hybridizes cuckoo search (CS) and biogeography-based
BMO Bird mating optimization
BSA Backtracking search algorithm
CPSO Chaos particle swarm optimization
CS Cuckoo search
CSO Competitive swarm optimizer
CSA Competitive swarm algorithm
CMM-DE/BBO DE/BBO with covariance matrix-based migration
CLPSO Comprehensive learning particle swarm optimization
CIABC Chaotic improved the artificial bee colony
CNSMA Boosting slime mould algorithm
COA Chaotic optimization approach
COOA Coyote optimization algorithm
CWOA Chaotic whale optimization algorithm
CPSO Conventional PSO
CPMPSO Classified perturbation mutation-based PSO
DGM Dynamic gaussian mutation
DE Differential evolution
DE/BBO Hybrid differential evolution with biogeography-based optimization
DE/WOA Differential evolution/whale optimization algorithm
EHHO Enhanced Harris Hawks optimization
ERWCA Evaporation rate water cycle algorithm
EDDM-LW Explicit double-diode model based on the Lambert W function
EO Equilibrium optimizer
EOTLBO Equilibrium optimizer teaching-learning-based optimization
EJADE Enhanced joint approximation diagonalization of Eigen matrices algorithm
ELPSO Enhanced leader particle swarm optimization
ELBA Efficient layer-based routing algorithm
EGBO Enhanced gradient-based optimization
EVPS Enhanced vibrating particles systems
FA Firefly algorithm
FCEPSO Fractional chaotic ensemble particle swarm optimizer
FPA Flower pollination algorithm
FPSO Fuzzy particle swarm optimization
HCLPSO Chaotic heterogeneous comprehensive learning particle swarm

optimizer variants
HPSOSA Hybrid particle swarm optimization and simulated annealing
HFAPS Hybrid firefly and pattern search algorithms
HISA Hyperplanes intersection simulated annealing
HS Harmony search
HSMAWOA Hybrid novel slime mould algorithm with a whale optimization algorithm
GA Genetic algorithm
GABC Gbest guided ABC
GAMNU Genetic algorithm based on non-uniform mutation
GAMS General algebraic modeling system
GCPSO Guaranteed convergence particle swarm optimization
GGHS Gaussian global-best harmony search
GSK Gaining-sharing knowledge-based algorithm
GOTLBO Generalized oppositional teaching learning-based optimization
GOFPNAM Algorithm based on FPA, the Nelder-Mead simplex, and the

GOBL mechanism
GBABC Gaussian bare-bones ABC
GWO Grey wolf optimizer
GWOCS Grey wolf optimizer cuckoo search



Fractal Fract. 2023, 7, 95 20 of 26

HS Harmony search
HHO Harris Hawks optimization
HCLPSO Heterogeneous comprehensive learning particle swarm optimizer
ICA Independent component analysis
ISCA Improved sine cosine algorithm
ISCE Improved shuffled complex evolution
ISMA Index-based subgraph matching algorithm
IADE Improved differential evolution algorithm
IBBGOA Interval branch and bound global optimization algorithm
IJAYA Improved JAYA
IGHS Improved Gaussian harmony search
IMFO Improved moth-flame optimization
ITLBO Improved teaching-learning-based optimization
IWOA Improved whale optimization algorithm
JADE Joint approximation diagonalization of Eigen matrices algorithm
jDE Self-adaptive DE algorithm
LAPO Lightning attachment procedure optimization
LCJAYA Logistic chaotic JAYA algorithm
LETLBO TLBO with a learning experience of other learners
LBSA List-based simulated annealing algorithm
LSP Loop of the search process
LMSA Least mean squares (LMS) algorithms
MADE Memetic adaptive differential evolution
MABC Modified ABC
MJA Modified JAYA algorithm
MLBSA Modified list-based simulated annealing algorithm
MPA Marine predator algorithm
MFO Moth-flame Optimization
MPSO Particle swarm optimization with adaptive mutation strategy
MPCOA Mutative-scale parallel chaos optimization algorithm
MRFO Manta ray foraging optimization
MSSO Modified simplified swarm optimization
MVO Multi-verse optimizer
nm-NMPSO Nelder-Mead and modified particle swarm optimization
NMMFO Nelder–Mead moth flame method
NIWTLBO Non-linear inertia weighted TLBO
NRM Newton Raphson method
NPSOPC Niche particle swarm optimization in parallel computing
ODE Opposition-based differential evolution
PGJAYA Performance-guided JAYA
pSFS Perturbed stochastic fractal search
PS Pattern search
PSO Particle swarm algorithm
PPSO Parallel particle swarm optimization
RLDE Run length encoding (RLE) compression algorithm
RTLBO Ranking teaching-learning-based optimization
R-II Rao-2 algorithm
R-III Rao-3 algorithm
SA Simulated annealing
SaDE Self-adaptive differential evolution algorithm
SDA Successive discretization algorithm
SDE Stochastic differential evolution
SGDE Stochastic gradient descent algorithm
SHADE Success-history-based parameter adaptation for differential evolution
SCA Sine cosine algorithm
SATLBO Self-adaptive teaching-learning-based optimization
SMA Slime mould algorithm
SFS Stochastic fractal search
STLBO Simplified TLBO
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SATLBO Simulated annealing TLBO
SOS Symbiotic organisms search
SSA Salp swarm algorithm
SSO Simplified swarm optimization
TLABC Teaching-learning-based artificial bee colony
TLBO Teaching-learning-based optimization
TLO Teaching-learning optimization
TVACPSO Time-varying acceleration coefficients particle swarm optimization
TVAPSO Time-varying particle swarm optimization
WLCSODGM Winner-leading CSO with DGM
WCMFO Hybrid algorithm based on the water cycle and moth-flame

optimization algorithm
WOA Whale optimization algorithm
WDO Wind-driven optimization
WHHO Whippy harris hawks optimization

Appendix A

Table A1. Parameters values of the RTC France solar cell.

Method Reference Algorithm Ipv (A) I0 (µA) n RS (Ω) RP (Ω)

1

[15]

EO 0.760759704 0.32628893 1.482193 0.036341 54.206594
2 MPA 0.76079 0.31072 1.4771 0.036546 52.8871
3 HCLPSO 0.76079 0.31062 1.4771 0.036548 52.885
4 BPFPA 0.76 0.3106 1.4774 0.0366 57.7151
5 ER-WCA 0.760776 0.322699 1.48108 0.036381 53.691
6 MPSO 0.760787 0.310683 1.475262 0.036546 52.88971
7 PS 0.7617 0.998 1.6 0.0313 64.10236

8

[25]

BBO-M 0.7607 3.19 × 10−1 1.4798 0.03642 53.36227
9 IMFO 0.7607 3.23 × 10−1 1.4812 0.03638 53.71456

10 MFO 0.7609 3.01 × 10−1 1.4694 0.03596 52
11 WCMFO 0.7607 3.23 × 10−1 1.4812 0.03638 53.69502
12 SCA 0.765 6.79 × 10−1 1.5609 0.03544 50.14796
13 CSO 0.7608 3.23 × 10−1 1.4812 0.03638 53.7185
14 SA 0.762 4.80 × 10−1 1.5172 0.0345 43.103

15

[12]

WHHO 0.76077551 0.32302031 1.48110808 0.0363771 53.71867407
16 EHHO 0.760775 0.323 1.481238 0.036375 53.74282
17 PGJAYA 0.7608 0.323 1.4812 0.0364 53.7185
18 FPSO 0.7607 0.323 1.4811 0.03637 53.7185
19 IJAYA 0.7608 0.3228 1.4811 0.0364 53.7595
20 BMO 0.7607 0.3247 1.4817 0.0363 53.8716
21 GOTLBO 0.7608 0.3297 1.4833 0.0363 53.3664
22 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903
23 PSO 0.7607 0.4 1.5033 0.0354 59.012
24 GA 0.7619 0.8087 1.5751 0.0299 42.3729

25

[26]

GAMNU 0.760774 0.3255954 1.482096 0.0363402 53.89686
26 Rcr-IJADE 0.760776 0.323021 1.481187 0.036377 53.718526
27 DE/BBO 0.7605 0.3248 1.48149 0.0364 53.8753
28 BBO-M 0.76078 0.3187 1.47984 0.03642 53.36227
29 TLBO 0.7607 0.3294 1.4831 0.0363 54.3015
30 MFO 0.760796 0.3086 1.476593 0.0365579 52.50655869
31 JAYA 0.7608 0.3281 1.4828 0.0364 54.9298
32 IADE 0.7607 0.33613 1.4852 0.03621 54.7643
33 CSA 0.768929 0.318 1.479628 0.0364559 52.44667219
34 ABSO 0.7608 0.30623 1.47878 0.03659 52.2903
35 LBSA 0.7609 0.32583 1.482 0.0364 54.1083
36 HS 0.7607 0.30495 1.47538 0.03663 53.5946
37 CLPSO 0.7608 0.34302 1.4873 0.0361 54.1965
38 ABC 0.7609 0.33243 1.4842 0.0363 55.461
39 HHO 0.759864 0.39375 1.5012327 0.035536 76.1719
40 CPSO 0.7607 0.4 1.5033 0.0354 59.012
41 GWO 0.769969 0.91215 1.596658 0.02928 18.103

42

[27]

CNMSMA 0.760776 0.323017 1.481182 0.036377 53.71821
43 IJAYA 0.760782 0.29953 1.474962 0.036685 51.33013
44 GOTLBO 0.760784 0.303556 1.474962 0.036645 52.38834
45 MLBSA 0.760777 0.323118 1.481214 0.036376 53.70918
46 GOFPANM 0.760776 0.323021 1.481184 0.036377 53.71853
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Method Reference Algorithm Ipv (A) I0 (µA) n RS (Ω) RP (Ω)

47

[17]

SMA 0.76076 0.32314 1.48114 0.03637 53.71489
48 Rao 0.76102 0.32312 1.48122 0.03642 53.74568
49 TLO 0.76088 0.33288 1.48466 0.03542 56.03045
50 ABC 0.76054 0.35999 1.49595 0.03602 52.14795
51 PSO 0.76082 0.33018 1.48334 0.03624 53.59878
52 CS 0.76078 0.32954 1.48305 0.03644 54.30202

53

[4]

BMO 0.76077 0.32479 1.48173 0.03636 53.8716
54 CPSO 0.7607 0.4 1.5033 0.0354 59.012
55 HS 0.7607 0.30495 1.47538 0.03663 53.5946
56 GGHS 0.76092 0.3262 1.48217 0.03631 53.0647
57 IGHS 0.76077 0.34351 1.4874 0.03613 53.2845
58 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903

59

[28]

AGDE 0.76077553 0.32301967 1.48118324 0.0363771 53.7183869
60 DE/WOA 0.76077553 0.32302081 1.48118359 0.0363771 53.7185247
61 PPSO 0.76077567 0.32310012 1.48120841 0.0363761 53.72033352
62 IJAYA 0.76072096 0.33004162 1.48335168 0.0362947 54.79216937
63 TLBO 0.76091513 0.32580092 1.48208555 0.0362621 52.16660204
64 GOTLBO 0.76080276 0.32452976 1.48167104 0.0363235 53.31216674
65 ITLBO 0.76077553 0.32302083 1.4811836 0.0363771 53.71852696
66 RTLBO 0.76078148 0.32693782 1.48240012 0.0363231 53.93402232
67 SATLBO 0.76078638 0.3173289 1.47939597 0.0364469 53.22833431
68 TLABC 0.76077562 0.32238031 1.48098405 0.036385 53.64456083
69 EOTLBO 0.76077553 0.32302083 1.48118359 0.0363771 53.71852514

70

[29]

GAMS 0.7607760 0.3230200 1.4811840 0.0363770 53.7185240
71 FPA 0.76079 0.310677 1.47707 0.0365466 52.8771
72 TVA-PSO 0.760788 0.306827 1.475258 0.036547 52.889644
73 BPFPA 0.76 0.3106 1.4774 0.0366 57.7151
74 MPSO 0.760787 0.310683 1.475262 0.036546 52.88971
75 HISA 0.7607078 0.31068459 1.47726778 0.0365469 52.88979426
76 HCLPSO 0.76079 0.31062 1.4771 0.036548 52.885
77 Rcr-IJADE 0.760776 0.323021 1.481184 0.036377 53.718526
78 CSO 0.76078 0.323 1.48118 0.03638 53.7185
79 ISCE 0.76077553 0.32302083 1.4811836 0.0363771 53.71852771
80 GOFP-ANM 0.7607755 0.3230208 1.4811836 0.0363771 53.7185203
81 IJAYA 0.7608 0.3228 1.4811 0.0364 54
82 SATLBO 0.7608 0.32315 1.48123 0.03638 53.7256
83 IWAO 0.760877519 0.3232 1.48122913 0.0363753 53.73168644
84 ITLBO 0.7608 0.323 1.4812 0.0364 53.7185

85

[30]

CPSO 0.760788 0.3106975 1.475262 0.036547 52.892521
86 MPCOA 0.76073 0.32655 1.48168 0.03635 54.6328
87 TVACPSO 0.760788 0.3106827 1.475258 0.036547 52.889644
88 FPA 0.76079 0.310677 1.47707 0.0365466 52.8771
89 GOFPANM 0.7607755 0.3230208 1.4811836 0.0363771 53.7185203
90 MPSO 0.760787 0.310683 1.475262 0.036546 52.88971

91

[31]

Rcr-IJAD 0.760776 0.323021 1.481184 0.036377 53.718526
92 CSO 0.76078 0.323 1.48118 0.03638 53.7185
93 GOTLBO 0.76078 0.331552 1.48382 0.036265 54.115426
94 EHA-NMS 0.760776 0.323021 1.481184 0.036377 53.718521
95 NM-MPSO 0.76078 0.32315 1.48123 0.03638 53.7222
96 SATLBO 0.7608 0.32315 1.48123 0.03638 53.7256
97 CWOA 0.76077 0.3239 1.4812 0.03636 53.7987
98 IJAYA 0.7608 0.3228 1.4811 0.0364 53.7595
99 GOFPANM 0.7607755 0.3230208 1.4811836 0.0363771 53.7185203
100 R-WCA 0.760776 0.322699 1.48108 0.036381 53.691
101 ABC-TRR 0.760776 0.323021 1.481184 0.036377 53.718521
102 ABC-TRR (key points) 0.761127 0.311818 1.47741 0.036661 53.516288

103

[32]

HFAPS 0.760777 0.322622 1.48106 0.0363819 53.6784
104 SA 0.762 0.4798 1.5172 0.0345 43.1034
105 LSP 0.761 0.3635 1.4935 0.0366 62.574
106 PS 0.7617 0.998 1.6 0.0313 64.1026
107 NRM 0.7608 0.3223 1.4837 0.0364 53.7634
108 HPSOSA 0.7608 0.3107 1.4753 0.0365 52.8898
109 CPSO 0.7607 0.4 1.5033 0.0354 59.012
110 QPSO 0.7606 0.273 1.46 0.037 51.18
111 CM 0.7608 0.4039 1.5039 0.0364 49.505
112 BPFPA 0.76 0.3106 1.4774 0.0366 57.7151
113 HS 0.760700 0.304950 1.475380 0.036630 53.594600
114 IGHS 0.76077 0.34351 1.4874 0.03613 53.2845
115 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903
116 GGHS 0.76092 0.3262 1.48217 0.03631 53.0647
117 GOTLBO 0.76078 0.331552 1.48382 0.036265 54.115426
118 SSO 0.760803 0.321044 1.480468 0.036392 53.152466
119 ABC 0.7608 0.3251 1.4817 0.0364 53.6433
120 BMO 0.76077 0.32479 1.48173 0.03636 53.87
121 MSSO 0.760777 0.323564 1.481244 0.03637 53.742465
122 FA 0.760872 0.258459 1.45907 0.037247 48.3069
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Method Reference Algorithm Ipv (A) I0 (µA) n RS (Ω) RP (Ω)

123

[11]

ITLBO 0.76077553 0.323 1.48118359 0.0363771 53.7185236
124 TLBO 0.76103591 0.298 1.47314963 0.036594 47.7862925
125 MLBSA 0.76077553 0.3230 1.4811835 0.0363771 53.7185461
126 MADE 0.76078 0.32300 1.48118 0.03638 53.71853
127 CPMPSO 0.76077553 0.323 1.48118309 0.0363771 53.7183835
128 WOA 0.76012199 0.404 1.50384555 0.0356717 70.1196706
129 MTLBO 0.76077553 0.323 1.48118359 0.0363771 53.7185251

130

[33]

ELPSO 0.760788 3.11 × 10−1 1.475256 0.036547 52.889336
131 CPSO 0.760788 3.11 × 10−1 1.475262 0.036547 52.892521
132 BSA 0.761051 4.79 × 10−1 1.519642 0.034695 79.569251
133 ABC 0.761012 3.35 × 10−1 1.483057 0.035994 48.784551

134

[14]

SDA 0.76077300 0.32444600 1.4816400 0.036360 53.842700
135 BHCS 0.76078000 0.32302000 1.481180 0.036380 53.718520
136 HISA 0.76078800 0.31068500 1.4772700 0.036547 52.889790
137 ICSA 0.76077600 0.32302100 1.4817180 0.036377 53.718524
138 CIABC 0.76077600 0.32302000 1.4810200 0.036377 53.718670
139 LAPO 0.76071000 0.96105000 1.5980000 0.031142 99.144000
140 ISCE 0.76077600 0.32302100 1.4811840 0.036377 53.718530
141 ITLBO 0.76080000 0.32300000 1.481200 0.036400 53.718500
142 SSA 0.76116000 0.89870000 1.590000 0.031595 96.935000
143 SDO 0.76080000 0.32300000 1.48120 0.036400 53.718500
144 GCPSO 0.76080000 0.31068000 1.4773000 0.036550 52.889800
145 pSFS 0.76080000 0.32300000 1.4812000 0.036400 53.718500
146 IBBGOA 0.76077100 0.32345900 1.4820460 0.036373 53.798171
147 ISCA 0.76077600 0.32301700 1.4811820 0.036377 53.718217
148 NMMFO 0.76077600 0.32302100 1.4811840 0.036377 53.718531
149 LFBSA 0.76077600 0.32302100 1.4811840 0.036377 53.718520

150

[10]

SGDE 0.76078 0.32302 1.48118 0.03638 53.71853
151 ELBA 0.76078 0.32302 1.48119 0.03638 53.71852
152 EHHO 0.76078 0.323 1.48124 0.03638 53.74282
153 LCJAYA 0.7608 0.323 1.4819 0.0364 53.7185
154 NPSOPC 0.7608 0.3325 1.4814 0.03639 53.7583
155 GWOCS 0.76077 0.32192 1.4808 0.03639 53.632
156 FC-EPSO 0.76079 0.31131 1.4773 0.03654 52.944

157

[34]

WDO 0.7608 0.3223 1.4808 0.036768 57.74614
158 BPFPA 0.76 0.3106 1.4774 0.03666 57.7156
159 GOTLBO 0.76078 0.3315 1.48382 0.036265 54.115426
160 FPA 0.76079 0.3106 1.47707 0.0365466 52.8771
161 ABSO 0.7608 0.3062 1.47583 0.03659 52.2903
162 HS 0.7607 0.30495 1.47538 0.03663 53.5946

163

[35]

GSK 0.7608 0.3231 1.4812 0.0364 53.7227
164 ABC 0.7606 0.3174 1.479 0.0365 57.0609
165 BBO 0.7608 0.2839 1.4681 0.0373 51.7597
166 DE 0.7608 0.3231 1.4812 0.0364 53.7185
167 JAYA 0.7608 0.3152 1.477 0.0367 55.3139
168 PSO 0.7608 0.3412 1.4868 0.0362 55.0458
169 WOA 0.7608 0.3241 1.4843 0.0358 55.3054
170 TLBO 0.7608 0.3325 1.4839 0.0363 55.3129
171 GOTLBO 0.7608 0.342 1.487 0.0362 53.8599
172 ITLBO 0.7608 0.323 1.4812 0.0364 53.7187
173 RTLBO 0.7608 0.3423 1.4871 0.0361 55.3065
174 SATLBO 0.7608 0.3423 1.487 0.0361 55.3462
175 LETLBO 0.7608 0.3322 1.4809 0.0364 53.6655
176 BSA 0.7608 0.3257 1.4865 0.0363 54.3242
177 TLABC 0.7608 0.3231 1.4812 0.0364 53.7164
178 IWOA 0.7608 0.3232 1.4812 0.0364 53.7185
179 IJAYA 0.7608 0.3228 1.4811 0.0364 53.7959

180

[16]

GWO 0.7606 0.22496 1.4455 0.0385 54.6069
181 MVO 0.763 0.39989 1.5027 0.0377 56.3258
182 SCA 0.7515 0.25606 1.4593 0.0372 54.2298
183 MFO 0.7607 0.39953 1.5029 0.0355 60
184 ALO 0.7601 0.24432 1.4534 0.0375 57.2379
185 MRFO 0.7608 0.30908 1.4767 0.0366 52.7129

186

[36]

BPFPA 0.76 0.3106 1.4774 0.0366 57.7151
187 FPA 0.76077 0.310677 1.47707 0.03654 52.8771
188 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903
189 CPSO 0.7607 0.4 1.5033 0.0354 59.012

190

[37]

FPA 0.76079 0.310677 1.47707 0.0365466 52.8771
191 LMSA 0.76078 0.31849 1.47976 0.03643 53.32644
192 MPCOA 0.76073 0.32655 1.48168 0.03635 54.6328
193 CS 0.7608 0.323 1.4812 0.0364 53.7185
194 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903
195 ABC 0.7608 0.3251 1.4817 0.0364 53.6433
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196

[18]

CLPSO 0.76064 0.33454 1.48469 0.03623 56.0342
197 BLPSO 0.76063 0.42518 1.5094 0.03523 62.58528
198 ABC 0.76085 0.33016 1.48339 0.03629 53.59884
199 GOTLBO 0.76077 0.32256 1.48106 0.03637 53.33877
200 TLABC 0.76078 0.32302 1.48118 0.03638 53.71636
201 IJAYA 0.76078 0.32304 1.48119 0.03638 53.71441
202 SFS 0.76078 0.32302 1.48118 0.03638 53.71852
203 pSFS 0.76078 0.32302 1.48118 0.03638 53.71852

204

[13]

GAMS 0.760788 0.310684 1.477268 0.036547 52.889789
205 MADE 0.760787 0.310684 1.475258 0.036546 52.889734
206 ITLBO 0.760787 0.310684 1.475258 0.036546 52.88979
207 IMFO 0.760787 0.31083 1.475305 0.036544 52.904381
208 MLBSA 0.760787 0.310684 1.475258 0.036546 52.88979
209 TVACPSO 0.760788 0.310684 1.475258 0.036546 52.890001
210 IJAYA 0.760822 0.305965 1.473717 0.036634 52.920663
211 CAO 0.760787 0.310684 1.475258 0.036546 52.889778
212 SOS 0.760786 0.310641 1.475244 0.036548 52.905131
213 EVPS 0.76078 0.317061 1.477295 0.036458 53.337698

214

[38]

ISMA 0.760775 0.323034 1.481188 0.036377 53.7198
215 IJAYA 0.76076 0.32258 1.481048 0.036378 53.6319
216 GOTLBO 0.760794 0.326744 1.482346 0.036323 53.7571
217 MLBSA 0.760776 0.323021 1.481184 0.036377 53.7185
218 GOFPANM 0.760776 0.323021 1.481184 0.036377 53.7185
219 EHHO 0.761366 0.475432 1.521366 0.034608 53.655
220 HSMA_WOA 0.762746 0.306559 1.476448 0.0359219 35.3161

221

[39]

TVACPSO 0.760788 0.3106827 1.475258 0.036547 52.889644
222 CPSO 0.760788 0.3106975 1.475262 0.036547 52.892521
223 ICA 0.760624 0.2440691 1.451194 0.037989 56.052682
224 TLBO 0.760809 0.312244 1.47578 0.036551 52.8405
225 GWO 0.760996 0.2430388 1.451219 0.037732 45.116309
226 WCA 0.760908 0.413554 1.504381 0.035363 57.669488

Table A2. Parameters values of the Photowatt-PWP201 module.

Method Reference Algorithm Ipv (A) I0 (µA) n RS (Ω) RP (Ω)

1

[26]

GAMNU 1.030766 3.016227 48.09755 1.219119 906.27545
2 GACCC 1.030514 3.482263 48.642835 1.201271 981.98554
3 CPSO 1.0286 8.301 52.243 1.0755 1850.1
4 EHHO 1.030499 3.488188 48.6428 1.20111 984.49648
5 SGDE 1.0305 3.4823 48.6428 1.20127 981.9822
6 SA 1.0331 3.6642 48.8211 1.1989 833.3333
7 Rcr-IJADE 1.030514 3.482263 48.642835 1.201271 981.98224

8

[19]

RLDE 1.0305 3.4823 48.6428 1.2013 981.9823
9 SGDE 1.0305 3.4823 48.6428 1.20127 981.9822

10 IJAYA 1.0302 3.4703 48.6298 1.2016 977.3752
11 SATLBO 1.0305 3.4827 48.6433 1.2013 982.4038
12 TLBO 1.0305 3.4872 48.6482 1.2011 984.876
13 GWOCS 1.0305 3.465 48.6237 1.2019 982.7566
14 IWOA 1.0305 3.4717 48.6313 1.2016 978.6771
15 MADE 1.0305 3.4823 48.6428 1.2013 981.9823
16 CLPSO 1.0304 3.6131 48.7847 1.1978 1017

17

[12]

WHHO 1.030514 3.482109 48.599532000000004 1.201274 981.90523
18 EHHO 1.030583 3.459968 48.575303999999996 1.201853 971.276026
19 JAYA 1.0307 3.4931 48.650399999999998 1.2014 1000
20 STLBO 1.0305 3.4824 48.639600000000002 1.2013 982.0387
21 TLABC 1.0305 3.4826 48.643200000000000 1.2013 982.1815
22 CLPSO 1.0304 3.6131 48.783600000000000 1.1978 1000
23 BLPSO 1.0305 3.5176 48.679200000000002 1.2002 992.7901
24 DE/BBO 1.0303 3.6172 48.787199999999999 1.1969 1000

25

[35]

GSK 1.0305 3.4823 48.6428 1.2013 981.9823
26 ABC 1.0281 4.9125 49.9917 1.1671 990.8662
27 BBO 1.036 3.2658 48.3836 1.2545 994.8378
28 DE 1.0305 3.4823 48.6848 1.2012 981.9823
29 JAYA 1.0304 3.5622 48.7315 1.1967 970.1747
30 PSO 1.0305 3.4258 48.5756 1.2032 971.2958
31 TLBO 1.0306 3.4426 48.5913 1.2027 967.7212
32 GOTLBO 1.0305 3.5214 48.686 1.1978 984.656
33 ITLBO 1.0305 3.4823 48.6428 1.2013 981.9823
34 RTLBO 1.0305 3.5033 48.666 1.2006 988.5601
35 SATLBO 1.0307 3.3927 48.5435 1.2308 952.6635
36 LETLBO 1.0305 3.4827 48.6522 1.2084 981.9822
37 BSA 1.0306 3.2292 48.3503 1.2118 994.3068
38 TLABC 1.0306 3.4715 48.6313 1.2017 972.9357
39 IWOA 1.0305 3.4218 48.6523 1.2113 983.9964
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Table A2. Cont.

Method Reference Algorithm Ipv (A) I0 (µA) n RS (Ω) RP (Ω)

40

[13]

DSO 1.032357 2.496596 47.33406 1.240547 748.32309
41 MPSO 1.03223 2.552134 47.47824 1.23845 762.9058
42 WDOWOAPSO 1.032382 2.512911 47.422944 1.239288 744.71435
43 GCPSO 1.032382 2.512922 47.42298 1.239288 744.71663
44 TVACPSO 1.031435 2.6386 47.556648 1.235611 821.59514
45 SDA 1.030517 3.481614 48.59892 1.201288 981.59961
46 EHA-NMS 1.030514 3.482263 48.64284 1.201271 981.98225
47 DE-WAO 1.030514 3.482263 48.64284 1.201271 981.98214
48 ABC-TRR 1.030514 3.482263 48.64284 1.201271 981.98223
49 ISCE 1.030514 3.482263 48.64284 1.201271 981.98228
50 PGJAYA 1.0305 3.4818 48.642372 1.2013 981.8545
51 HFAPS 1.0305 3.4842 48.644892 1.2013 984.2813
52 TLABC 1.03056 3.4715 48.63132 1.20165 972.93567
53 GOFPANM 1.030514 3.482263 48.64284 1.201271 981.98232
54 ORcr-IJAD 1.030514 3.482263 48.64284 1.201271 981.98224
55 (IWAO) 1.0305 3.4717 48.631284 1.2016 978.6771

56

[20]

JADE 1.0305 3.48 48.6428 1.2012 981.9823
57 jDE 1.0305 3.48 48.6428 1.2012 981.9823
58 SaDE 1.0305 3.48 48.6425 1.2012 981.899
59 AGDE 1.0305 3.48 48.6428 1.2012 981.9824
60 SHADE 1.0305 3.48 48.6426 1.2012 981.9454
61 SDE 1.0305 3.48 48.6412 1.2013 982.456
62 ITLBO 1.0305 3.48 48.6428 1.2013 981.9824
63 EJADE 1.0305 3.48 48.6428 1.2012 981.9823
64 EGBO 1.0305 3.48 48.6428 1.2013 981.9822
65 JADE 1.0305 3.48 48.6428 1.2012 981.9823
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