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Abstract: The most commonly used model of solar cells is the single-diode model, with five un-
known parameters. First, this paper proposes three variants of the single-diode model, which imply 
the voltage dependence of the series resistance, parallel resistance, and both resistors. Second, ana-
lytical relationships between the current and the voltage expressed were derived using the Lambert 
W function for each proposed model. Third, the paper presents a hybrid algorithm, Chaotic Snake 
Optimization (Chaotic SO), combining chaotic sequences with the snake optimization algorithm. 
The application of the proposed models and algorithm was justified on two well-known solar pho-
tovoltaic (PV) cells—RTC France solar cell and Photowatt-PWP201 module. The results showed that 
the root-mean-square-error (RMSE) values calculated by applying the proposed equivalent circuit 
with voltage dependence of both resistors are reduced by 20% for the RTC France solar cell and 40% 
for the Photowatt-PWP201 module compared to the standard single-diode equivalent circuit. Fi-
nally, an experimental investigation was conducted into the applicability of the proposed models 
to a solar laboratory module, and the results obtained proved the relevance and effectiveness of the 
proposed models. 

Keywords: chaotic snake optimization; Lambert W function; optimization; mathematical models; 
solar PV cells 
 

1. Introduction 
1.1. Background 

In the near future, energy demand will almost double for many reasons, while water 
and food demand is expected to increase significantly. Unfortunately, countries’ econo-
mies are greatly affected by energy shortages, especially when energy resources are not 
independent, as evidenced by the Russian-Ukrainian war and the COVID-19 pandemic. 
Thus, on the one hand, all states aspire to harness their natural resources to serve them 
and to be economically independent. On the other hand, industrial development and en-
vironmental pollution are increasingly affecting the world’s decarbonization [1,2]. The use 
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of renewable energy sources and energy storage technologies can help reduce this pres-
sure on the planet. In this regard, very high expectations and growth in energy use rely 
on solar energy as a promising player in the carbon-free independent energy mix [3]. 

In this context, any energy analysis that looks at how a solar power plant connects to 
the grid has to know how powerful the solar panels are. However, power calculation is 
directly related to solar power plant management to maximize solar energy, based on the 
regulation of output voltage and current to obtain maximum power. The knowledge of 
the solar panel’s mathematical model, i.e., its solar cells’ electrical properties, is funda-
mental to understanding the challenges of power regulation of the solar panel or the so-
called maximum power point tracking (MPPT) [4]. Because of this, estimating the param-
eters of solar models while creating new models to represent solar cells’ performance is of 
considerable interest in energy-based research works. 

Single-diode, double-diode, and triple-diode models are used in the literature to sim-
ulate solar cells electrically. Each of these models consists of a single current generator 
acting as the source of photocurrent (IPV) and two resistances, RS and RP, which are con-
nected in series and parallel, respectively. The number of diodes in an equivalent circuit 
can be determined using the triple-diode, double-diode, and single-diode models. The 
electrical parameters of the diodes employed in the triple-diode and double-diode mod-
els—the ideal factor (n) and reverse saturation current (I0)—are different. The traditional 
single-diode model has five parameters, the double-diode model has seven parameters, 
and the triple-diode model has nine parameters [5,6]. 

1.2. Motivation 
At the beginning of the 2000s, several works were presented to investigate new 

equivalent circuits of solar cell models, which have additional resistors and capacitors [5-
8]. In addition, in the last few years, several works have also been published in which 
modified equivalent circuits of solar models have been proposed, where additional resis-
tors are added in series with the diode [7]. Specifically, a modification of the triple-diode 
equivalent circuit has been proposed in [7], and the single-diode equivalent circuit in [8]. 
However, based on the presented results in these works, it was clear that the proposed 
modifications in the equivalent circuits have not significantly improved the estimation 
accuracy of the solar cell parameters, which represents the main motivation for this re-
search. Therefore, the need for an accurate but simple model of solar cells is still an im-
portant and trendy research goal. It should be emphasized that in one-diode models and 
their modified variants [8], there is an analytical dependence between current and voltage, 
which is not the case in the double-diode and triple-diode models. 

1.3. Methodology 
In the literature, the authors in [9] presented a modified single-diode model of solar 

cells in which the series resistance is represented as a voltage-dependent component. The 
findings of multiple experiments and techniques for modeling this voltage dependency 
were provided in the paper. Based on [9], emphasis will be placed on creating a novel 
model in this study that considers both series and parallel resistance and voltage depend-
ency. The primary cause of this is that it was observed while studying solar cell model 
designs that their characteristics limit the accurate fitting of the simulated and measured 
curves at high voltage values. 

From the point of view of parameter estimation methods, it can be said that the ap-
plication of metaheuristic algorithms dominates in scientific publications [10–18]. These 
algorithms have a straightforward application, fast search, and adaptability for the range 
of parameter changes. The list of metaheuristic algorithms and the data source is given in 
the Appendix A in Tables A1 and A2. The mentioned tables describe the algorithms used 
for estimating the parameters in the literature known as solar cells RTC France and PWP 
Photowatt cell [19,20]. In addition, classical numerical methods were used to estimate the 
parameters of solar cells, especially those based on iterative methods. Besides, there are 
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analytical methods, which, unlike others, involve many approximate solutions and are 
the least accurate [8]. To sum up, the most efficient model has not yet been found, nor has 
the approach for estimating the parameters of solar cells. For this reason, a new hybrid 
variant of a metaheuristic algorithm is proposed in this work. Namely, it was learned from 
the literature that the hybridization of algorithms supports the speed of convergence and 
the obtained solutions [8]. 

1.4. Novelty and Contributions 
The single-diode model is modified in three ways in this study, implying that the 

series resistance, parallel resistance, and both resistances are all voltage-dependent. Ana-
lytical relationships between the expressed current and voltage were developed using the 
Lambert W function for each suggested model. The paper also introduces a hybrid ap-
proach called Chaotic Snake Optimization (Chaotic SO), which combines the snake opti-
mization algorithm and chaotic sequences. The application of the proposed models and 
algorithm was justified on two well-known solar PV cells–RTC France solar cell and Pho-
towatt-PWP201 module. The findings demonstrated that the suggested equivalent circuit 
with voltage dependency of both series and parallel resistance has much lower root-mean-
square-error (RMSE) values than the conventional single-diode equivalent circuit. Finally, 
experimental research was carried out to see whether the suggested models could be used 
in a solar laboratory module, and the outcomes demonstrated the adaptability and effi-
cacy of the proposed models. 

The primary contributions of this work are briefed as follows: 
• Three new variants of the single-diode model of solar cells are proposed. 
• The voltage dependence of the series resistance, parallel resistance and both of them 

are considered. 
• Analytical expressions for current-voltage dependences of the proposed solar cell 

models are derived using the Lambert W function. 
• An improved snake optimization algorithm using chaotic sequences is presented in 

this work for estimating the parameters of the investigated solar cell and module. 
• The results of comparing the proposed algorithm and numerous literature-known 

algorithms are presented. 
• An experimental investigation was conducted into the applicability of the proposed 

models to a solar laboratory module, and the results obtained proved the relevance 
and effectiveness of the proposed models. 

1.5. Organization 
The paper was divided into several sections to present the research results better. In 

Section 2, a mathematical description of the standard single-diode model of solar cells is 
given, as well as the results of calculating current-voltage characteristics for two literature-
known cells whose parameters were determined by applying different optimization meth-
ods. In Section 3, new single-diode equivalent circuits of solar cells are proposed, and the 
analytical relationships of their current and voltage expressions are presented. Section 4 
presents a novel hybrid metaheuristic algorithm called chaotic snake optimization (Cha-
otic SO). Section 5 presents the results of estimating the parameters of the investigated 
solar cells using the standard and the proposed equivalent circuits. Section 6 presents the 
experimental results conducted on a laboratory solar cell. The concluding remarks and 
future research directions are given at the end of the paper in Section 7, followed by the 
appendices. 

2. Single-Diode Solar Cell Model and Discussion of the Related Literature 
This section is divided into two subsections—basic information about the standard 

single-diode solar cell model and a discussion of the related literature review. 
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2.1. Basic Information about the Standard Single-Diode Solar Cell Model 
The standard single-diode solar cell model (SDM) is a commonly used model for so-

lar cell representation [3]. The equivalent circuit of the SDM is explored in Figure 1. In this 
figure, the labels are given as follows: RS is the series resistance, RP is the parallel re-
sistance, Ipv represents the photo-generated current, and D is the diode. 

 
Figure 1. Equivalent circuit of the standard single-diode solar cell model. 

The current-voltage relationship of this model is formulated as follows [3]: 

0 1
S

t

U IR
nV S

pv
P

U IR
I I I e
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+  + = − − −
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 (1) 

where I is the output current, U denotes the voltage, n is the ideality factor of the diode, 
and Vt = KBT/q is the thermal voltage (KB is the Boltzmann constant, T is the temperature, 
and q is the electron’s charge). 

In SDM, the analytical solution for the current as a function of the voltage is given as 
follows [3]: 
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where W(β) represents the solution of the Lambert W function, a function of the type W(β) 
= β∙exp(−W(β)) that can be solved using several methods. Regarding the analytical solu-
tion of this equation, it is evident that the special trans function theory (STFT) is the most 
efficient and accurate method over other analytical solutions in the available literature 
[3,5]. Therefore, using the STFT, the analytical closed-form solution for the current has the 
following form: 
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(4)

where M represents a positive integer, and the mathematical genesis of the analytical 
closed-form solution of the Lambert W function, in addition to the theoretical derivation 
and proofs, are derived in [21]. 
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2.2. Discussion of the Related Literature Review 
Tables A1 and A2 are given in Appendix A, in which a literature review of the esti-

mated parameters using several literature-known approaches that investigated the RTC 
France solar cell and the Photowatt-PWP201 module are presented. In these tables, values 
of the root-mean-square-error (RMSE) are calculated as follows: 

( )2

1

1 mesN
meas sim
k k

mes k

RMSE I I
N =

= −  (5)

Nmes represents the total number of the measured points, while the simulated current val-
ues are calculated using (2)–(5). Therefore, this metric defines the degree of matching be-
tween measured and simulated curves value. All calculations were carried out in the 
MATLAB software package, 2018 version. 

The graphical presentation of the calculated RMSE values is given in Figure 2a,b for 
the solar cells investigated. The 3D graph, which illustrates the voltage-method-current 
and voltage-method-power for both cells, is given in Figures 3–6. 

Based on the presented results, it is clear that many methods enable almost the same 
results (e.g., values of the estimated parameters) and almost equal RMSE values. This re-
mark is also apparent in the presented 3D graphs. The minimum value of RMSE for the 
RTC France solar cell was provided by Method 204 [13] in Table A1—application of the 
GAMS program. The minimum value of RMSE for the Photowatt-PWP201 module was 
provided by Method 43 [13] in Table A2—application of the guaranteed convergence par-
ticle swarm optimization (GCPSO). For RTC France solar cell, the minimum RMSE value 
is 7.730068 ∙ 10−4, whilst the minimum RMSE value is 2.040452 ∙ 10−3 for the Photowatt-
PWP201 module. 

  

(a) (b) 

Figure 2. RMSE calculated for: (a) RTC France solar cell; (b) Photowatt-PWP201 module. 

R
M
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R
M
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(a) (b) 

 

(c) 

Figure 3. RTC France solar cell: (a) current-voltage characteristics; (b) the corresponding error; (c) 
error in the current values versus the measured voltage for all methods. 
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(a) (b) 

Figure 4. RTC France solar cell: (a) power-voltage characteristics; (b) the corresponding error. 
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Figure 5. Photowatt-PWP201 module: (a) current-voltage characteristics; (b) the corresponding er-
ror; (c) error in the current values versus the measured voltage for all methods. 

  

(a) (b) 

Figure 6. Photowatt-PWP201 module: (a) power-voltage characteristics; (b) the corresponding error. 

3. Equivalent Circuits Proposed 
The modified SDM with voltage-dependent series resistance was proposed in [9] to 

elucidate the electrical behavior of organic solar cells while enhancing the modeling accu-
racy and benefiting from the simplicity of the equivalent circuit. The reasons for introduc-
ing the voltage-dependent series resistance and its physical interpretation were described 
in [9], in which the modification was mainly related to the internal processes of charge 
extraction and charge transport. Besides, in [9], it was concluded that a voltage-dependent 
series resistance provides good knowledge about the behavior of the organic solar cells at 
different applied voltage regions. 

Based on [9], in this section, three novel SDM circuits, shown in Figure 7, are pro-
posed. Unlike the standard SDM, these circuits have voltage-dependent series resistance 
called SDMRS (shown in Figure 7a), voltage-dependent parallel resistance called SDMRP 
(shown in Figure 7b), and voltage dependence of both resistances called SDMRPRS (shown 
in Figure 7c). 

   

(a) (b) (c) 

Figure 7. Proposed equivalent circuit non-linear single diode models of solar cells: (a) SDMRS; (b) 
SDMRP; (c) SDMRPRS. 
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where RS0 is the series resistance at zero voltage (Ω), while 
sn Rk −  is the series resistance- 

voltage coefficient (1/V), applying the STFT [22], the current-voltage expression for this 
model, derived as follows: 
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In SDMRP, the analytical solution for the current (𝐼௡ିோು) as a function of the voltage 
is formulated as follows: 
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where RP0 is the parallel resistance at zero voltage (Ω), while 
Pn Rk −  is the parallel re-

sistance-voltage coefficient (1/V), and applying the STFT [22], the current-voltage expres-
sion is derived for this model as follows: 
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In SDMRPRS, the analytical solution for the current (𝐼௡ିோುோೄ) as a function of the volt-
age is formulated as follows: 

( )( )
( ) ( ) ( ) ( )0 0

0 0 0

1

1 1 1
P

P S P S

s P s

P n R pv t
n R R n R R

S n R P n R S n R

R k U I I U nV
I W

R k U R k U R k U
−

− −
− − −

+ + −
= − β

+ + + +
 (12)

where 

( )( )
( ) ( )( )

( ) ( ) ( )( )
( ) ( )( )

0 0 0 0

0 0

1 1 1

1 10 0 0

0 0

1 1
e

1 1

P n R S n R pv S n RP s s

t S n R P n RP s s P

P S

s P

R k U R k U I R k U I U

nV R k U R k US P n R n R
n R R

t S n R P n R

I R R k U k U

nV R k U R k U

− − −

− −

+ + + + +

+ + +− −
−

− −

+ +
β =

+ + +
 (13)

Applying the STFT [22], the current-voltage expression is derived as follows: 
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4. Chaotic SO Algorithm Proposed 
The snake optimization (SO) algorithm [23] is inspired by the behavior of snakes, 

which can be explained in several phases. If the temperature is low and the food is avail-
able, the snakes’ mating occurs. Otherwise, snakes will search for food or eat the existing 
food, depending on the remaining quantity of food. 

Like all metaheuristic algorithms, the original version of the SO algorithm starts by 
generating a random population to begin the optimization process. This process is carried 
out as represented in (15): 𝑋௜ = 𝑋௠௜௡ + 𝑟𝑎𝑛𝑑(𝑋௠௔௫ − 𝑋௠௜௡ሻ, (15)

where Xi denotes the position of the i-th individual, rand is a random number between 0 
and 1, while Xmax and Xmin are the upper and lower boundaries of the design variables. 

This paper proposes a chaotic version of the SO algorithm, named the chaotic-snake 
optimization (C-SO) algorithm. The proposed algorithm initializes the population using 
chaotic Gauss mapping [24] instead of conventional random initialization. The equations 
that describe the initialization process using chaotic Gauss mapping are given as follows: 𝑦ଵ = 𝑟𝑎𝑛𝑑, 𝑦௜ାଵ = 𝑒𝑥𝑝(−𝛼𝑦௜ଶሻ + 𝛽, 𝑋௜ = 𝑋௠௜௡ + 𝑦௜(𝑋௠௔௫ − 𝑋௠௜௡ሻ. (16)

The parameters α and β are related to the width and height of the Gaussian curve, 
respectively. Interesting chaotic properties occur around −1 ≤ β ≤ 1 on the Gauss map, 
where the map’s value asymptotically oscillates around −1 and 1.25. The parameters α 
and β are set to 4.9 and −0.58, according to the original version of Gauss chaotic maps. The 
main advantage of embedding chaotic maps into the initialization process is obtaining an 
optimal initial population for the optimization process. Obtaining a good starting popu-
lation ensures that the proposed chaotic version of the algorithm will converge to the op-
timal solution faster than the original version. 

The iterative process starts with dividing the population into male and female snakes. 
Assuming an equal number of male and female snakes in the population, if we denote the 
total number of individuals in the population as N, the number of male snakes as Nm, and 
the number of female snakes as Nf, the following equations can be applied: 𝑁௠ ≈ 𝑁 2⁄ , 𝑁௙ = 𝑁 − 𝑁௠. (17)

Afterward, the temperature T and food quantity Q must be calculated: 𝑇 = 𝑒𝑥𝑝 ൬− 𝑖𝑡𝑒𝑚𝑎𝑥௜௧௘൰, 
𝑄 = 𝑐ଵ 𝑒𝑥𝑝 ൬𝑖𝑡𝑒 − 𝑚𝑎𝑥௜௧௘𝑚𝑎𝑥௜௧௘ ൰. (18)

where ite stands for the current iteration, 𝑚𝑎𝑥௜௧௘ denotes the maximum number of itera-
tions, and c1 is a constant that equals 0.5 [23]. 
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If the Q value is less than the selected threshold (0.25 in [23]), the snakes do not have 
enough food and must search for it. This phase is called the exploration phase, and the 
positions of male and female snakes are updated according to the following equations: 𝑋௜,௠(𝑖𝑡𝑒 + 1ሻ = 𝑋௥௔௡ௗ,௠(𝑖𝑡𝑒ሻ ± 𝑐ଶ𝐴௠൫(𝑋௠௔௫ − 𝑋௠௜௡ሻ𝑟𝑎𝑛𝑑 + 𝑋௠௜௡൯, 𝑋௜,௙(𝑖𝑡𝑒 + 1ሻ = 𝑋௥௔௡ௗ,௙(𝑖𝑡𝑒ሻ ± 𝑐ଶ𝐴௙൫(𝑋௠௔௫ − 𝑋௠௜௡ሻ𝑟𝑎𝑛𝑑 + 𝑋௠௜௡൯. (19)

where Xi,m and Xi,f denote the positions of the i-th male and female snakes, while Xrand,m 
and Xrand,f stand for random male and female snakes, respectively. In the previous equa-
tions, Am and Af denote the male and female ability to find food and can be calculated as 
follows: 𝐴௠ = 𝑒𝑥𝑝 ቆ− 𝑓௥௔௡ௗ,௠𝑓௜,௠ ቇ, 

𝐴௙ = 𝑒𝑥𝑝 ቆ− 𝑓௥௔௡ௗ,௙𝑓௜,௙ ቇ. (20)

where frand,m and frand,f stand for the fitness function values for individuals Xrand,m and Xrand,f. 
Like this, fi,m and fi,f denote the fitness function values for individuals Xi,m(ite) and Xi,f(ite). 

Otherwise, if Q is higher than the threshold value, the food exists, and the exploita-
tion phase occurs. Furthermore, it is necessary to examine the temperature T. If T is higher 
than a certain temperature threshold (selected to be 0.6 as in [23]), the weather is hot, and 
the snakes will move to the food. In that case, the position of the i-th snake Xi,j is updated 
according to the following equation: 𝑋௜,௝(𝑡 + 1ሻ = 𝑋௙௢௢ௗ ± 𝑐ଷ𝑇. 𝑟𝑎𝑛𝑑 ቀ𝑋௙௢௢ௗ − 𝑋௜,௝(𝑡ሻቁ, (21)

where c3 is a constant set to 2 [23], and Xfood is the position of the best snake, i.e., the snake 
whose fitness function has the lowest value. On the other hand, if the temperature T is 
lower than the threshold, the snakes will fight or mate. In the fight mode, the positions of 
Xi,m and Xi,f are updated as follows: 𝑋௜,௠(𝑡 + 1ሻ = 𝑋௜,௠(𝑡ሻ ± 𝑐ଷ𝐹𝑀. 𝑟𝑎𝑛𝑑 ቀ𝑋௕௘௦௧,௙ − 𝑋௜,௠(𝑡ሻቁ, 𝑋௜,௙(𝑡 + 1ሻ = 𝑋௜,௙(𝑡ሻ ± 𝑐ଷ𝐹𝐹. 𝑟𝑎𝑛𝑑 ቀ𝑋௕௘௦௧,௠ − 𝑋௜,௙(𝑡ሻቁ. 

(22)

In the previous equations, Xbest,f and Xbest,m are the best snakes selected from the female 
and male populations, respectively. Additionally, FM and FF denote the fighting ability 
of male and female snakes: 𝐹𝑀 = 𝑒𝑥𝑝 ቆ− 𝑓௕௘௦௧,௙𝑓௜ ቇ, 

𝐹𝐹 = 𝑒𝑥𝑝 ൬− 𝑓௕௘௦௧,௠𝑓௜ ൰. (23)

where fbest,f and fbest,m stand for the fitness function value of the best female and male snakes. 
Additionally, fi denotes the fitness function value of the i-th individual. 

In the mating mode, the positions of the male and female snakes can be calculated 
using the following equations: 𝑋௜,௠(𝑡 + 1ሻ = 𝑋௜,௠(𝑡ሻ ± 𝑐ଷ𝑀௠. 𝑟𝑎𝑛𝑑 ቀ𝑄𝑋௜,௙(𝑡ሻ − 𝑋௜,௠(𝑡ሻቁ, 𝑋௜,௙(𝑡 + 1ሻ = 𝑋௜,௙(𝑡ሻ ± 𝑐ଷ𝑀௙. 𝑟𝑎𝑛𝑑 ቀ𝑄𝑋௜,௠(𝑡ሻ − 𝑋௜,௙(𝑡ሻቁ. (24)

where Mm and Mf denote the mating abilities of male and female snakes, respectively. 
Thus: 𝑀௠ = 𝑒𝑥𝑝 ቆ− 𝑓௜,௙𝑓௜,௠ቇ, (25)
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𝑀௙ = 𝑒𝑥𝑝 ൬− ௙೔,೘௙೔,೑ ൰. 

In the previous equations, fi,f and fi,m are the fitness function values of Xi,f(ite) and 
Xi,m(ite). Finally, the last step of the iteration is to select the worst male snake Xworst,m and 
the worst female snake Xworst,f and replace them as follows: 𝑋௪௢௥௦௧,௠ = 𝑋௠௜௡ + 𝑟𝑎𝑛𝑑(𝑋௠௔௫ − 𝑋௠௜௡ሻ, 𝑋௪௢௥௦௧,௙ = 𝑋௠௜௡ + 𝑟𝑎𝑛𝑑(𝑋௠௔௫ − 𝑋௠௜௡ሻ. (26)

The steps of the proposed C-SO algorithm are summarized in the pseudo-code given 
in Algorithm 1. Additionally, the flowchart shown in Figure 8 depicts the steps of the C-
SO algorithm. 

 
Figure 8. Flowchart of the C-SO algorithm. 



Fractal Fract. 2023, 7, 95 13 of 29 
 

 

Algorithm 1. Procedure of the proposed C-SO algorithm. 
1: Set parameters N, 𝑚𝑎𝑥௜௧௘, Xmin, Xmax, and dimension 
2: Initialize the population using Gauss chaotic maps 
3: Divide the population N into 2 equal groups–male and female 
4: for ite = 1 to 𝑚𝑎𝑥௜௧௘ 
5:   Evaluate each snake from the male and female group 
6:   Find the best male fbest,m and best female fbest,f snake 
7:   Define temperature T and food quantity Q 
8:   if (Q < 0.25) 
9:          Perform the exploration phase 
10: else if (T > 0.6) 

11:        The snakes will move to the food-exploitation phase 
12: else 
13:        if (rand > 0.6) 
14:          Perform the fighting mode of the snakes 
15:        else 
16:          Perform mating of the snakes 
17:          Find the worst male and female snake and update them 
18:        end if 
19:   end if 
20: end for 
21: Return the best solution 

5. Numerical Results 
This section presents the results of applying the C-SO algorithm to estimate the pa-

rameters for standard and proposed solar cell models. The estimation process is used for 
RTC France solar cell and the Photowatt-PWP201 module. The goal of the estimation pro-
cess was the minimization of the RMSE represented in Equation (5). However, the current 
for the proposed circuit was calculated using Equations (8), (11), and (14) based on the 
circuit type. The results are presented in Table 1 for RTC France solar cell and Table 2 for 
the Photowatt-PWP201 module. Besides, in Tables 1 and 2, the values of RMSE calculated 
for all SDM circuits are also given. 

The current-voltage characteristics, power-voltage characteristics, corresponding 
current-voltage errors, corresponding power-voltage errors, series resistance–voltage, 
and parallel resistance–voltage characteristics for both RTC France solar cell and Pho-
towatt-PWP201 module are explored in Figures 9 and 10. Several conclusions can be de-
rived based on the presented results in Tables 1 and 2 and Figures 9 and 10 for both RTC 
France solar cell and the Photowatt-PWP201 module. 
• The proposed algorithm is very efficient in estimating parameters for RTC France 

solar cell and the Photowatt-PWP201 module, as it enables parameters determination 
with a lower RMSE value than methods listed in Tables A1 and A2. 

• Recalling Section 2, the RMSE for RTC France solar cell determined for standard SDM 
is 7.730062689943169 × 10−4, slightly better than the results available in the literature. 
For the Photowatt-PWP201 module, the RMSE is 0.002039992273216, which is a better 
result than the results available in the literature. 

• Additionally, the voltage dependence of RP or RS or both enables better fitting be-
tween the measured and simulated characteristics for both investigated solar 
cells/modules. 

• The impact of voltage dependence on individual series or parallel resistance cannot 
be generally guaranteed as a better effect of the voltage dependence of series re-
sistance for the Photowatt-PWP201 module on the results was observed in Table 2. 
In contrast, a better impact of the voltage dependence of the parallel resistance for 
the RTC France solar cell was observed in Table 1. 
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• The value of RMSE can be reduced by 40% for the Photowatt-PWP201 module and 
20% for RTC France solar cell, considering the voltage dependence of both resistances 
in the solar cell model. Therefore, the matching between measured and simulated 
curves is significantly improved. 

Table 1. Estimated parameters value for the proposed equivalent circuits for the investigated RTC 
France solar cell. 

Parameter Standard SDM SDMRS  SDMRP  SDMRPRS 
Ipv (A) 0.7607879665080 0.7608049248859 0.7610468429411 0.7613631203879 
I0 (μA) 0.3106846042013 0.2991003927335 0.2310892217190 0.0409996462319 

n 1.4772677889166 1.4734669046357 1.4488935673420 1.3045585894008 
RS (Ω) 0.0365469451928 - 0.0373848509444   
RP (Ω) 52.8897883285066 52.6797662689792 -   
RS0 (Ω) - 0.0376221542230 - 0.0618725707814 
RP0 (Ω) -   66.7442335923146 83.3942065127408 
kn − Rs - 0.0440721596083 - 0.5094232140590 
kn − Rp - - 0.8898254600473 1.5685793413223 

RMSE × 10−4 7.7300626899432 7.7289464947487 6.9494430170526 6.1899974615364 

Table 2. Estimated parameters value for the proposed equivalent circuits for the investigated Pho-
towatt-PWP201 module. 

Parameter Standard SDM SDMRS  SDMRP  SDMRPRS 
Ipv (A) 1.0323575940489 1.0342899634638 1.0336560526298 1.0385507500932 
I0 (μA) 2.4965956963769 0.5898019648459 3.1895652071363 0.1402290648789 

n 47.3985550384409 42.6481872737510 48.2903258581200 38.7679613812771 
RS (Ω) 1.2405473296235 - 1.2205195472483 - 
RP (Ω) 748.323004851098 636.813538190211 - - 
RS0 (Ω) - 2.1086757391782 - 2.8316185090761 
RP0 (Ω) - - 414.225359045698 404.119541040858 
kn − Rs - 0.0211826846962 - 0.0288655047700 
kn − Rp - - −0.0848837309056 −0.0270864444391 

RMSE 0.0020399922732 0.0015210625963 0.0018322922805 0.0012129409135 

Finally, to test the proposed algorithm’s efficiency over other known algorithms, we 
compared the original variant of the SO algorithm, the proposed C-SO, particle swarm 
optimization (PSO), the Aquila optimizer (AO) algorithm and henry gas solubility opti-
mization (HGSO). The results were compared using the same starting conditions and the 
number of iterations. The algorithm ran 30 independent times, and the best, worst, mean, 
median, and standard deviation (STD) results were calculated for the same number of 
iterations. A summary of the results obtained is presented in Table 3. 

Additionally, using the collected data, we performed the Wilcoxon p-value test, and 
the results obtained are given in Table 4. Based on these results, it is evident that the C-
SO algorithm enables improvement of the original SO algorithm, outperforming the other 
algorithms. Additionally, based on the Wilcoxon p-value test, chaotic sequence improved 
the repeatability of the results. The convergence curve for the algorithms considered in 
the Wilcoxon p-value test is presented in Figure 11. Based on these results, it is evident 
that the proposed C-SO algorithm is superior to other literature-known algorithms. 
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Figure 9. RTC France solar cell: (a) current-voltage characteristics; (b) power-voltage characteristics; 
(c) corresponding current-voltage errors; (d) corresponding power-voltage errors; (e) series re-
sistance–voltage dependence characteristics; (f) parallel resistance–voltage dependence characteris-
tics. 
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Figure 10. Photowatt-PWP201 module: (a) current-voltage characteristics; (b) power-voltage char-
acteristics; (c) corresponding current-voltage errors; (d) corresponding power-voltage errors; (e) se-
ries resistance–voltage dependence characteristics; (f) parallel resistance–voltage dependence char-
acteristics. 
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Table 3. Statistical measures for the obtained results using different algorithms over 30 independent 
runs. 

Measure C-SO Proposed Original SO PSO AO HGSO 
Best 7.730066720825 × 10−4 7.730112887551 × 10−4 7.757602348738 × 10−4 0.00288037656117 0.00526106472624 

Worst 8.468025234636 × 10−4 8.322080126651 × 10−4 0.00198685445976 0.00851885985240 0.01474037311829 
Mean 7.826453665352 × 10−4 7.831299232730 × 10−4 0.00105448589746 0.00556610811629 0.01091282953358 

Median 7.784837234895 × 10−4 7.786564960706 × 10−4 9.853004240075 × 10−4 0.00574743127044 0.01118504603992 
Std 1.408324862610 × 10−5 1.234187862853 × 10−5 3.249036540248 × 10−4 0.00145918070830 0.00250149664426 

Table 4. Wilcoxon test results. 

C-SO versus SO C-SO versus AO C-SO versus HGSO C-SO versus PSO 
6.84322586762450 × 10−3 3.019859359162151 × 10−11 3.019859359162151 × 10−11 1.856733730733403 × 10−9 

 
Figure 11. Convergence curve of C-SO versus different algorithms. 

6. Experimental Verification 
The usefulness of using the new equivalent schemes and the new algorithm to esti-

mate solar cell parameters was covered in the previous section. The applicability of the 
modified models to a solar laboratory module (part of the laboratory set Clean Energy 
Trainer) is examined in this section. The method of measurement is as follows. Connect 
the PC device first, then the USB data monitor, solar cells, and then the USB data monitor. 
A PC and an active component, such as a solar cell, are connected via a power-electronic 
device called a USB data monitor. This tool makes it possible to test voltages and currents 
and scales the results on the computer. Solar cells must also be connected in parallel or in 
series. After that, we measured the solar module’s temperature, activated solar measure-
ment equipment (in our case, the TES 133R), and set solar lamps at a specific distance. It 
is required to specify the current and measure the voltage values using the Clean Energy 
Trainer program loaded on the PC, checking the temperature and insolation of the solar 
cell or module during all measurements. Figure 12 shows a block diagram of all devices 
connected. 

Measurements were carefully performed, monitoring all variables (irradiance—1335 
W/m2, temperature 44 °C, voltage and current measures). The obtained results are then 
used for solar cell parameters estimation. Furthermore, we determined solar cell parame-
ters for all equivalent circuits proposed. The results are summarized in Table 5. The meas-
ured and estimated characteristics of current, power, current error, power error, series 
resistance-voltage, and parallel resistance-voltage versus voltage are depicted in Figure 
13. 
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Figure 12. Experimental setup of the solar laboratory module. 

Table 5. Estimated parameters value for proposed equivalent circuits for the observed solar labor-
atory module. 

Parameter Standard SDM SDMRS  SDMRP SDMRPRS 
Ipv (A) 0.573103853383459 0.574513627819549 0.573197838345865 0.573000469924812 
I0 (μA) 0.306664697651680 0.303792633051805 0.303290021746827 0.302816131087847 

n 0.388241333333333 0.388215384615385 0.388215384615385 0.388214999538461 
RS (Ω) 0.058300000000000 - 0.0570 - 
RP (Ω) 120.79060 116.907 - - 
RS0 (Ω) - 0.0581 - 0.057 
RP0 (Ω) - - 117.227264 116.8833792 
kn − Rs - −0.0111 - − 0.0125 
kn − Rp - - 0.013110 0.023110 

RMSE 0.001940250703697 0.001605316586546 0.001583230030742 0.001504856980387 
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Figure 13. Solar laboratory module: (a) current-voltage characteristics; (b) power-voltage character-
istics; (c) corresponding current-voltage errors; (d) corresponding power-voltage errors; (e) series 
resistance–voltage dependence characteristics; (f) parallel resistance–voltage dependence character-
istics. 

The first conclusion from all the results presented is that the results are close to each 
other (as evident in Figure 13 and current and voltage errors in Table 5). Second, the agree-
ment between measured and estimated characteristics is remarkable for all figures. Third, 
the lowest value of RMSE gives the usage of the equivalent circuit with both resistance 
variables as a function of voltage. Therefore, for this example it is evident that the pro-
posed equivalent circuits are effective for the current-voltage representation of solar cells. 
Additionally, the proposed algorithm enables effective solar cell parameter determina-
tion. 

7. Conclusions 
The selection of an appropriate equivalent circuit and the calculation of its parame-

ters are necessary for modeling PV solar cells. In this regard, three new PV equivalent 
circuits are proposed in this study, in contrast to the many methods proposed in the liter-
ature, typically based on basic PV equivalent circuits and modified versions with added 
resistance. The definition of appropriate resistance as a voltage function gives the pro-
posed schemes their originality. 
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The analytical equations for all three equivalent circuits are included in the study. 
The Lambert W function was used to express the current-voltage dependence solution. 
The C-SO algorithm for determining the solar cell equivalent circuit’s parameters was also 
put forth in this work. 

The RTC France solar cell and the Photowatt-PWP201 module’s parameter estimates 
were carried out utilizing the proposed algorithm and the proposed equivalent circuits. 
The findings demonstrated that using the suggested methods, as opposed to conventional 
equivalent circuits, significantly reduces the RMSE between the measured and estimated 
values. Additionally, the error can be decreased by up to 20% with RTC France and up to 
40% with the Photowatt-PWP201 module. The Clean Energy Trainer setup laboratory cell 
underwent the same analysis. 

Future works will consider the voltage-dependent resistance of double and triple so-
lar cell models for careful investigation of the mathematical analysis of these equivalent 
solar cell circuit designs. Additionally, new techniques for estimating the characteristics 
of solar cells will be developed with a specific focus on new hybrid optimization tech-
niques. 
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Abbreviations 
ABC  Artificial bee colony 

ABCTRR 
Trust-region reflective (TRR) deterministic algorithm with the artificial bee colony 
(ABC) metaheuristic algorithm 

ABSO 
General algorithm for finding the absolute minimum of a function to a given accu-
racy 

AGDE Adaptive guided differential evolution 
ALO Ant Lion optimization algorithm 
BBO Biogeography-based optimization 
BPFPA  Bee pollinator flower pollination algorithm 
BLPSO  Biogeography-based learning particle swarm optimization 
BLPSO Biogeography-based learning PSO 
BHCS Hybridizes cuckoo search (CS) and biogeography-based 
BMO  Bird mating optimization 
BSA  Backtracking search algorithm 
CPSO  Chaos particle swarm optimization 
CS Cuckoo search 
CSO Competitive swarm optimizer 
CSA Competitive swarm algorithm 
CMM-DE/BBO  DE/BBO with covariance matrix-based migration 
CLPSO  Comprehensive learning particle swarm optimization 
CIABC Chaotic improved the artificial bee colony 



Fractal Fract. 2023, 7, 95 21 of 29 
 

 

CNSMA Boosting slime mould algorithm 
COA  Chaotic optimization approach 
COOA Coyote optimization algorithm 
CWOA  Chaotic whale optimization algorithm 
CPSO  Conventional PSO 
CPMPSO Classified perturbation mutation-based PSO 
DGM  Dynamic gaussian mutation 
DE  Differential evolution 
DE/BBO  Hybrid differential evolution with biogeography-based optimization 
DE/WOA Differential evolution/whale optimization algorithm 
EHHO Enhanced Harris Hawks optimization 
ERWCA Evaporation rate water cycle algorithm 
EDDM-LW  Explicit double-diode model based on the Lambert W function 
EO Equilibrium optimizer 
EOTLBO Equilibrium optimizer teaching-learning-based optimization 
EJADE Enhanced joint approximation diagonalization of Eigen matrices algorithm 
ELPSO  Enhanced leader particle swarm optimization 
ELBA Efficient layer-based routing algorithm 
EGBO Enhanced gradient-based optimization 
EVPS Enhanced vibrating particles systems 
FA  Firefly algorithm 
FCEPSO Fractional chaotic ensemble particle swarm optimizer 
FPA Flower pollination algorithm 
FPSO Fuzzy particle swarm optimization 
HCLPSO Chaotic heterogeneous comprehensive learning particle swarm optimizer variants 
HPSOSA  Hybrid particle swarm optimization and simulated annealing 
HFAPS  Hybrid firefly and pattern search algorithms 
HISA Hyperplanes intersection simulated annealing 
HS Harmony search 
HSMAWOA Hybrid novel slime mould algorithm with a whale optimization algorithm 
GA Genetic algorithm 
GABC  Gbest guided ABC 
GAMNU Genetic algorithm based on non-uniform mutation 
GAMS General algebraic modeling system 
GCPSO Guaranteed convergence particle swarm optimization 
GGHS Gaussian global-best harmony search 
GSK Gaining-sharing knowledge-based algorithm 
GOTLBO  Generalized oppositional teaching learning-based optimization 
GOFPNAM Algorithm based on FPA, the Nelder-Mead simplex, and the GOBL mechanism 
GBABC  Gaussian bare-bones ABC 
GWO Grey wolf optimizer 
GWOCS Grey wolf optimizer cuckoo search 
HS Harmony search 
HHO Harris Hawks optimization 
HCLPSO  Heterogeneous comprehensive learning particle swarm optimizer 
ICA Independent component analysis 
ISCA  Improved sine cosine algorithm 
ISCE Improved shuffled complex evolution 
ISMA Index-based subgraph matching algorithm 
IADE  Improved differential evolution algorithm 
IBBGOA Interval branch and bound global optimization algorithm 
IJAYA  Improved JAYA 
IGHS Improved Gaussian harmony search 
IMFO Improved moth-flame optimization 
ITLBO  Improved teaching-learning-based optimization 
IWOA  Improved whale optimization algorithm 
JADE Joint approximation diagonalization of Eigen matrices algorithm 
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jDE Self-adaptive DE algorithm 
LAPO Lightning attachment procedure optimization 
LCJAYA Logistic chaotic JAYA algorithm 
LETLBO  TLBO with a learning experience of other learners 
LBSA List-based simulated annealing algorithm 
LSP Loop of the search process 
LMSA Least mean squares (LMS) algorithms 
MADE Memetic adaptive differential evolution 
MABC Modified ABC 
MJA  Modified JAYA algorithm 
MLBSA Modified list-based simulated annealing algorithm 
MPA Marine predator algorithm 
MFO Moth-flame Optimization 
MPSO  Particle swarm optimization with adaptive mutation strategy 
MPCOA  Mutative-scale parallel chaos optimization algorithm 
MRFO Manta ray foraging optimization 
MSSO Modified simplified swarm optimization 
MVO Multi-verse optimizer 
nm-NMPSO  Nelder-Mead and modified particle swarm optimization 
NMMFO Nelder–Mead moth flame method 
NIWTLBO  Non-linear inertia weighted TLBO 
NRM Newton Raphson method 
NPSOPC Niche particle swarm optimization in parallel computing 
ODE  Opposition-based differential evolution 
PGJAYA  Performance-guided JAYA 
pSFS  Perturbed stochastic fractal search 
PS  Pattern search 
PSO  Particle swarm algorithm 
PPSO Parallel particle swarm optimization 
RLDE Run length encoding (RLE) compression algorithm 
RTLBO  Ranking teaching-learning-based optimization 
R-II  Rao-2 algorithm 
R-III  Rao-3 algorithm 
SA Simulated annealing 
SaDE Self-adaptive differential evolution algorithm 
SDA Successive discretization algorithm 
SDE Stochastic differential evolution 
SGDE Stochastic gradient descent algorithm 
SHADE Success-history-based parameter adaptation for differential evolution 
SCA Sine cosine algorithm 
SATLBO  Self-adaptive teaching-learning-based optimization 
SMA Slime mould algorithm 
SFS  Stochastic fractal search 
STLBO  Simplified TLBO 
SATLBO Simulated annealing TLBO 
SOS Symbiotic organisms search 
SSA Salp swarm algorithm 
SSO Simplified swarm optimization 
TLABC  Teaching-learning-based artificial bee colony 
TLBO  Teaching-learning-based optimization 
TLO  Teaching-learning optimization 
TVACPSO  Time-varying acceleration coefficients particle swarm optimization 
TVAPSO  Time-varying particle swarm optimization 
WLCSODGM  Winner-leading CSO with DGM 
WCMFO Hybrid algorithm based on the water cycle and moth-flame optimization algorithm 
WOA  Whale optimization algorithm 
WDO Wind-driven optimization 
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WHHO Whippy harris hawks optimization 

Appendix A 

Table A1. Parameters values of the RTC France solar cell. 

Method Reference Algorithm Ipv (A) I0 (μA) n RS (Ω) RP (Ω) 
1 

[15] 

EO 0.760759704 0.32628893 1.482193 0.036341 54.206594 
2 MPA 0.76079 0.31072 1.4771 0.036546 52.8871 
3 HCLPSO 0.76079 0.31062 1.4771 0.036548 52.885 
4 BPFPA 0.76 0.3106 1.4774 0.0366 57.7151 
5 ER-WCA 0.760776 0.322699 1.48108 0.036381 53.691 
6 MPSO 0.760787 0.310683 1.475262 0.036546 52.88971 
7 PS 0.7617 0.998 1.6 0.0313 64.10236 
8 

[25] 

BBO-M 0.7607 3.19 × 10−1 1.4798 0.03642 53.36227 
9 IMFO 0.7607 3.23 × 10−1 1.4812 0.03638 53.71456 

10 MFO 0.7609 3.01 × 10−1 1.4694 0.03596 52 
11 WCMFO 0.7607 3.23 × 10−1 1.4812 0.03638 53.69502 
12 SCA 0.765 6.79 × 10−1 1.5609 0.03544 50.14796 
13 CSO 0.7608 3.23 × 10−1 1.4812 0.03638 53.7185 
14 SA 0.762 4.80 × 10−1 1.5172 0.0345 43.103 
15 

[12] 

WHHO 0.76077551 0.32302031 1.48110808 0.0363771 53.71867407 
16 EHHO 0.760775 0.323 1.481238 0.036375 53.74282 
17 PGJAYA 0.7608 0.323 1.4812 0.0364 53.7185 
18 FPSO 0.7607 0.323 1.4811 0.03637 53.7185 
19 IJAYA 0.7608 0.3228 1.4811 0.0364 53.7595 
20 BMO 0.7607 0.3247 1.4817 0.0363 53.8716 
21 GOTLBO 0.7608 0.3297 1.4833 0.0363 53.3664 
22 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903 
23 PSO 0.7607 0.4 1.5033 0.0354 59.012 
24 GA 0.7619 0.8087 1.5751 0.0299 42.3729 
25 

[26] 

GAMNU 0.760774 0.3255954 1.482096 0.0363402 53.89686 
26 Rcr-IJADE 0.760776 0.323021 1.481187 0.036377 53.718526 
27 DE/BBO 0.7605 0.3248 1.48149 0.0364 53.8753 
28 BBO-M 0.76078 0.3187 1.47984 0.03642 53.36227 
29 TLBO 0.7607 0.3294 1.4831 0.0363 54.3015 
30 MFO 0.760796 0.3086 1.476593 0.0365579 52.50655869 
31 JAYA 0.7608 0.3281 1.4828 0.0364 54.9298 
32 IADE 0.7607 0.33613 1.4852 0.03621 54.7643 
33 CSA 0.768929 0.318 1.479628 0.0364559 52.44667219 
34 ABSO 0.7608 0.30623 1.47878 0.03659 52.2903 
35 LBSA 0.7609 0.32583 1.482 0.0364 54.1083 
36 HS 0.7607 0.30495 1.47538 0.03663 53.5946 
37 CLPSO 0.7608 0.34302 1.4873 0.0361 54.1965 
38 ABC 0.7609 0.33243 1.4842 0.0363 55.461 
39 HHO 0.759864 0.39375 1.5012327 0.035536 76.1719 
40 CPSO 0.7607 0.4 1.5033 0.0354 59.012 
41 GWO 0.769969 0.91215 1.596658 0.02928 18.103 
42 

[27] 

CNMSMA 0.760776 0.323017 1.481182 0.036377 53.71821 
43 IJAYA 0.760782 0.29953 1.474962 0.036685 51.33013 
44 GOTLBO 0.760784 0.303556 1.474962 0.036645 52.38834 
45 MLBSA 0.760777 0.323118 1.481214 0.036376 53.70918 
46 GOFPANM 0.760776 0.323021 1.481184 0.036377 53.71853 
47 

[17] 

SMA 0.76076 0.32314 1.48114 0.03637 53.71489 
48 Rao 0.76102 0.32312 1.48122 0.03642 53.74568 
49 TLO 0.76088 0.33288 1.48466 0.03542 56.03045 
50 ABC 0.76054 0.35999 1.49595 0.03602 52.14795 
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51 PSO 0.76082 0.33018 1.48334 0.03624 53.59878 
52 CS 0.76078 0.32954 1.48305 0.03644 54.30202 
53 

[4] 

BMO 0.76077 0.32479 1.48173 0.03636 53.8716 
54 CPSO 0.7607 0.4 1.5033 0.0354 59.012 
55 HS 0.7607 0.30495 1.47538 0.03663 53.5946 
56 GGHS 0.76092 0.3262 1.48217 0.03631 53.0647 
57 IGHS 0.76077 0.34351 1.4874 0.03613 53.2845 
58 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903 
59 

[28] 

AGDE 0.76077553 0.32301967 1.48118324 0.0363771 53.7183869 
60 DE/WOA 0.76077553 0.32302081 1.48118359 0.0363771 53.7185247 
61 PPSO 0.76077567 0.32310012 1.48120841 0.0363761 53.72033352 
62 IJAYA 0.76072096 0.33004162 1.48335168 0.0362947 54.79216937 
63 TLBO 0.76091513 0.32580092 1.48208555 0.0362621 52.16660204 
64 GOTLBO 0.76080276 0.32452976 1.48167104 0.0363235 53.31216674 
65 ITLBO 0.76077553 0.32302083 1.4811836 0.0363771 53.71852696 
66 RTLBO 0.76078148 0.32693782 1.48240012 0.0363231 53.93402232 
67 SATLBO 0.76078638 0.3173289 1.47939597 0.0364469 53.22833431 
68 TLABC 0.76077562 0.32238031 1.48098405 0.036385 53.64456083 
69 EOTLBO 0.76077553 0.32302083 1.48118359 0.0363771 53.71852514 
70 

[29] 

GAMS 0.7607760 0.3230200 1.4811840 0.0363770 53.7185240 
71 FPA 0.76079 0.310677 1.47707 0.0365466 52.8771 
72 TVA-PSO 0.760788 0.306827 1.475258 0.036547 52.889644 
73 BPFPA 0.76 0.3106 1.4774 0.0366 57.7151 
74 MPSO 0.760787 0.310683 1.475262 0.036546 52.88971 
75 HISA 0.7607078 0.31068459 1.47726778 0.0365469 52.88979426 
76 HCLPSO 0.76079 0.31062 1.4771 0.036548 52.885 
77 Rcr-IJADE 0.760776 0.323021 1.481184 0.036377 53.718526 
78 CSO 0.76078 0.323 1.48118 0.03638 53.7185 
79 ISCE 0.76077553 0.32302083 1.4811836 0.0363771 53.71852771 
80 GOFP-ANM 0.7607755 0.3230208 1.4811836 0.0363771 53.7185203 
81 IJAYA 0.7608 0.3228 1.4811 0.0364 54 
82 SATLBO 0.7608 0.32315 1.48123 0.03638 53.7256 
83 IWAO 0.760877519 0.3232 1.48122913 0.0363753 53.73168644 
84 ITLBO 0.7608 0.323 1.4812 0.0364 53.7185 
85 

[30] 

CPSO 0.760788 0.3106975 1.475262 0.036547 52.892521 
86 MPCOA 0.76073 0.32655 1.48168 0.03635 54.6328 
87 TVACPSO 0.760788 0.3106827 1.475258 0.036547 52.889644 
88 FPA 0.76079 0.310677 1.47707 0.0365466 52.8771 
89 GOFPANM 0.7607755 0.3230208 1.4811836 0.0363771 53.7185203 
90 MPSO 0.760787 0.310683 1.475262 0.036546 52.88971 
91 

[31] 

Rcr-IJAD 0.760776 0.323021 1.481184 0.036377 53.718526 
92 CSO 0.76078 0.323 1.48118 0.03638 53.7185 
93 GOTLBO 0.76078 0.331552 1.48382 0.036265 54.115426 
94 EHA-NMS 0.760776 0.323021 1.481184 0.036377 53.718521 
95 NM-MPSO 0.76078 0.32315 1.48123 0.03638 53.7222 
96 SATLBO 0.7608 0.32315 1.48123 0.03638 53.7256 
97 CWOA 0.76077 0.3239 1.4812 0.03636 53.7987 
98 IJAYA 0.7608 0.3228 1.4811 0.0364 53.7595 
99 GOFPANM 0.7607755 0.3230208 1.4811836 0.0363771 53.7185203 
100 R-WCA 0.760776 0.322699 1.48108 0.036381 53.691 
101 ABC-TRR 0.760776 0.323021 1.481184 0.036377 53.718521 
102 ABC-TRR (key points) 0.761127 0.311818 1.47741 0.036661 53.516288 
103 

[32] 

HFAPS 0.760777 0.322622 1.48106 0.0363819 53.6784 
104 SA 0.762 0.4798 1.5172 0.0345 43.1034 
105 LSP 0.761 0.3635 1.4935 0.0366 62.574 
106 PS 0.7617 0.998 1.6 0.0313 64.1026 
107 NRM 0.7608 0.3223 1.4837 0.0364 53.7634 



Fractal Fract. 2023, 7, 95 25 of 29 
 

 

108 HPSOSA 0.7608 0.3107 1.4753 0.0365 52.8898 
109 CPSO 0.7607 0.4 1.5033 0.0354 59.012 
110 QPSO 0.7606 0.273 1.46 0.037 51.18 
111 CM 0.7608 0.4039 1.5039 0.0364 49.505 
112 BPFPA 0.76 0.3106 1.4774 0.0366 57.7151 
113 HS 0.760700 0.304950 1.475380 0.036630 53.594600 
114 IGHS 0.76077 0.34351 1.4874 0.03613 53.2845 
115 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903 
116 GGHS 0.76092 0.3262 1.48217 0.03631 53.0647 
117 GOTLBO 0.76078 0.331552 1.48382 0.036265 54.115426 
118 SSO 0.760803 0.321044 1.480468 0.036392 53.152466 
119 ABC 0.7608 0.3251 1.4817 0.0364 53.6433 
120 BMO 0.76077 0.32479 1.48173 0.03636 53.87 
121 MSSO 0.760777 0.323564 1.481244 0.03637 53.742465 
122 FA 0.760872 0.258459 1.45907 0.037247 48.3069 
123 

[11] 

ITLBO 0.76077553 0.323 1.48118359 0.0363771 53.7185236 
124 TLBO 0.76103591 0.298 1.47314963 0.036594 47.7862925 
125 MLBSA 0.76077553 0.3230 1.4811835 0.0363771 53.7185461 
126 MADE 0.76078 0.32300 1.48118 0.03638 53.71853 
127 CPMPSO 0.76077553 0.323 1.48118309 0.0363771 53.7183835 
128 WOA 0.76012199 0.404 1.50384555 0.0356717 70.1196706 
129 MTLBO 0.76077553 0.323 1.48118359 0.0363771 53.7185251 
130 

[33] 

ELPSO 0.760788 3.11 × 10−1 1.475256 0.036547 52.889336 
131 CPSO 0.760788 3.11 × 10−1 1.475262 0.036547 52.892521 
132 BSA 0.761051 4.79 × 10−1 1.519642 0.034695 79.569251 
133 ABC 0.761012 3.35 × 10−1 1.483057 0.035994 48.784551 
134 

[14] 

SDA 0.76077300 0.32444600 1.4816400 0.036360 53.842700 
135 BHCS 0.76078000 0.32302000 1.481180 0.036380 53.718520 
136 HISA 0.76078800 0.31068500 1.4772700 0.036547 52.889790 
137 ICSA 0.76077600 0.32302100 1.4817180 0.036377 53.718524 
138 CIABC 0.76077600 0.32302000 1.4810200 0.036377 53.718670 
139 LAPO 0.76071000 0.96105000 1.5980000 0.031142 99.144000 
140 ISCE 0.76077600 0.32302100 1.4811840 0.036377 53.718530 
141 ITLBO 0.76080000 0.32300000 1.481200 0.036400 53.718500 
142 SSA 0.76116000 0.89870000 1.590000 0.031595 96.935000 
143 SDO 0.76080000 0.32300000 1.48120 0.036400 53.718500 
144 GCPSO 0.76080000 0.31068000 1.4773000 0.036550 52.889800 
145 pSFS 0.76080000 0.32300000 1.4812000 0.036400 53.718500 
146 IBBGOA 0.76077100 0.32345900 1.4820460 0.036373 53.798171 
147 ISCA 0.76077600 0.32301700 1.4811820 0.036377 53.718217 
148 NMMFO 0.76077600 0.32302100 1.4811840 0.036377 53.718531 
149 LFBSA 0.76077600 0.32302100 1.4811840 0.036377 53.718520 
150 

[10] 

SGDE 0.76078 0.32302 1.48118 0.03638 53.71853 
151 ELBA 0.76078 0.32302 1.48119 0.03638 53.71852 
152 EHHO 0.76078 0.323 1.48124 0.03638 53.74282 
153 LCJAYA 0.7608 0.323 1.4819 0.0364 53.7185 
154 NPSOPC 0.7608 0.3325 1.4814 0.03639 53.7583 
155 GWOCS 0.76077 0.32192 1.4808 0.03639 53.632 
156 FC-EPSO 0.76079 0.31131 1.4773 0.03654 52.944 
157 

[34] 

WDO 0.7608 0.3223 1.4808 0.036768 57.74614 
158 BPFPA 0.76 0.3106 1.4774 0.03666 57.7156 
159 GOTLBO 0.76078 0.3315 1.48382 0.036265 54.115426 
160 FPA 0.76079 0.3106 1.47707 0.0365466 52.8771 
161 ABSO 0.7608 0.3062 1.47583 0.03659 52.2903 
162 HS 0.7607 0.30495 1.47538 0.03663 53.5946 
163 

[35] 
GSK 0.7608 0.3231 1.4812 0.0364 53.7227 

164 ABC 0.7606 0.3174 1.479 0.0365 57.0609 
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165 BBO 0.7608 0.2839 1.4681 0.0373 51.7597 
166 DE 0.7608 0.3231 1.4812 0.0364 53.7185 
167 JAYA 0.7608 0.3152 1.477 0.0367 55.3139 
168 PSO 0.7608 0.3412 1.4868 0.0362 55.0458 
169 WOA 0.7608 0.3241 1.4843 0.0358 55.3054 
170 TLBO 0.7608 0.3325 1.4839 0.0363 55.3129 
171 GOTLBO 0.7608 0.342 1.487 0.0362 53.8599 
172 ITLBO 0.7608 0.323 1.4812 0.0364 53.7187 
173 RTLBO 0.7608 0.3423 1.4871 0.0361 55.3065 
174 SATLBO 0.7608 0.3423 1.487 0.0361 55.3462 
175 LETLBO 0.7608 0.3322 1.4809 0.0364 53.6655 
176 BSA 0.7608 0.3257 1.4865 0.0363 54.3242 
177 TLABC 0.7608 0.3231 1.4812 0.0364 53.7164 
178 IWOA 0.7608 0.3232 1.4812 0.0364 53.7185 
179 IJAYA 0.7608 0.3228 1.4811 0.0364 53.7959 
180 

[16] 

GWO 0.7606 0.22496 1.4455 0.0385 54.6069 
181 MVO 0.763 0.39989 1.5027 0.0377 56.3258 
182 SCA 0.7515 0.25606 1.4593 0.0372 54.2298 
183 MFO 0.7607 0.39953 1.5029 0.0355 60 
184 ALO 0.7601 0.24432 1.4534 0.0375 57.2379 
185 MRFO 0.7608 0.30908 1.4767 0.0366 52.7129 
186 

[36] 

BPFPA 0.76 0.3106 1.4774 0.0366 57.7151 
187 FPA 0.76077 0.310677 1.47707 0.03654 52.8771 
188 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903 
189 CPSO 0.7607 0.4 1.5033 0.0354 59.012 
190 

[37] 

FPA 0.76079 0.310677 1.47707 0.0365466 52.8771 
191 LMSA 0.76078 0.31849 1.47976 0.03643 53.32644 
192 MPCOA 0.76073 0.32655 1.48168 0.03635 54.6328 
193 CS 0.7608 0.323 1.4812 0.0364 53.7185 
194 ABSO 0.7608 0.30623 1.47583 0.03659 52.2903 
195 ABC 0.7608 0.3251 1.4817 0.0364 53.6433 
196 

[18] 

CLPSO 0.76064 0.33454 1.48469 0.03623 56.0342 
197 BLPSO 0.76063 0.42518 1.5094 0.03523 62.58528 
198 ABC 0.76085 0.33016 1.48339 0.03629 53.59884 
199 GOTLBO 0.76077 0.32256 1.48106 0.03637 53.33877 
200 TLABC 0.76078 0.32302 1.48118 0.03638 53.71636 
201 IJAYA 0.76078 0.32304 1.48119 0.03638 53.71441 
202 SFS 0.76078 0.32302 1.48118 0.03638 53.71852 
203 pSFS 0.76078 0.32302 1.48118 0.03638 53.71852 
204 

[13] 

GAMS 0.760788 0.310684 1.477268 0.036547 52.889789 
205 MADE 0.760787 0.310684 1.475258 0.036546 52.889734 
206 ITLBO 0.760787 0.310684 1.475258 0.036546 52.88979 
207 IMFO 0.760787 0.31083 1.475305 0.036544 52.904381 
208 MLBSA 0.760787 0.310684 1.475258 0.036546 52.88979 
209 TVACPSO 0.760788 0.310684 1.475258 0.036546 52.890001 
210 IJAYA 0.760822 0.305965 1.473717 0.036634 52.920663 
211 CAO 0.760787 0.310684 1.475258 0.036546 52.889778 
212 SOS 0.760786 0.310641 1.475244 0.036548 52.905131 
213 EVPS 0.76078 0.317061 1.477295 0.036458 53.337698 
214 

[38] 

ISMA 0.760775 0.323034 1.481188 0.036377 53.7198 
215 IJAYA 0.76076 0.32258 1.481048 0.036378 53.6319 
216 GOTLBO 0.760794 0.326744 1.482346 0.036323 53.7571 
217 MLBSA 0.760776 0.323021 1.481184 0.036377 53.7185 
218 GOFPANM 0.760776 0.323021 1.481184 0.036377 53.7185 
219 EHHO 0.761366 0.475432 1.521366 0.034608 53.655 
220 HSMA_WOA 0.762746 0.306559 1.476448 0.0359219 35.3161 
221 [39] TVACPSO 0.760788 0.3106827 1.475258 0.036547 52.889644 
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222 CPSO 0.760788 0.3106975 1.475262 0.036547 52.892521 
223 ICA 0.760624 0.2440691 1.451194 0.037989 56.052682 
224 TLBO 0.760809 0.312244 1.47578 0.036551 52.8405 
225 GWO 0.760996 0.2430388 1.451219 0.037732 45.116309 
226 WCA 0.760908 0.413554 1.504381 0.035363 57.669488 

Table A2. Parameters values of the Photowatt-PWP201 module. 

Method Reference Algorithm Ipv (A) I0 (μA) n RS (Ω) RP (Ω) 
1 

[26] 

GAMNU 1.030766 3.016227 48.09755 1.219119 906.27545 
2 GACCC 1.030514 3.482263 48.642835 1.201271 981.98554 
3 CPSO 1.0286 8.301 52.243 1.0755 1850.1 
4 EHHO 1.030499 3.488188 48.6428 1.20111 984.49648 
5 SGDE 1.0305 3.4823 48.6428 1.20127 981.9822 
6 SA 1.0331 3.6642 48.8211 1.1989 833.3333 
7 Rcr-IJADE 1.030514 3.482263 48.642835 1.201271 981.98224 
8 

[19] 

RLDE 1.0305 3.4823 48.6428 1.2013 981.9823 
9 SGDE 1.0305 3.4823 48.6428 1.20127 981.9822 

10 IJAYA 1.0302 3.4703 48.6298 1.2016 977.3752 
11 SATLBO 1.0305 3.4827 48.6433 1.2013 982.4038 
12 TLBO 1.0305 3.4872 48.6482 1.2011 984.876 
13 GWOCS 1.0305 3.465 48.6237 1.2019 982.7566 
14 IWOA 1.0305 3.4717 48.6313 1.2016 978.6771 
15 MADE 1.0305 3.4823 48.6428 1.2013 981.9823 
16 CLPSO 1.0304 3.6131 48.7847 1.1978 1017 
17 

[12] 

WHHO 1.030514 3.482109 48.599532000000004 1.201274 981.90523 
18 EHHO 1.030583 3.459968 48.575303999999996 1.201853 971.276026 
19 JAYA 1.0307 3.4931 48.650399999999998 1.2014 1000 
20 STLBO 1.0305 3.4824 48.639600000000002 1.2013 982.0387 
21 TLABC 1.0305 3.4826 48.643200000000000 1.2013 982.1815 
22 CLPSO 1.0304 3.6131 48.783600000000000 1.1978 1000 
23 BLPSO 1.0305 3.5176 48.679200000000002 1.2002 992.7901 
24 DE/BBO 1.0303 3.6172 48.787199999999999 1.1969 1000 
25 

[35] 

GSK 1.0305 3.4823 48.6428 1.2013 981.9823 
26 ABC 1.0281 4.9125 49.9917 1.1671 990.8662 
27 BBO 1.036 3.2658 48.3836 1.2545 994.8378 
28 DE 1.0305 3.4823 48.6848 1.2012 981.9823 
29 JAYA 1.0304 3.5622 48.7315 1.1967 970.1747 
30 PSO 1.0305 3.4258 48.5756 1.2032 971.2958 
31 TLBO 1.0306 3.4426 48.5913 1.2027 967.7212 
32 GOTLBO 1.0305 3.5214 48.686 1.1978 984.656 
33 ITLBO 1.0305 3.4823 48.6428 1.2013 981.9823 
34 RTLBO 1.0305 3.5033 48.666 1.2006 988.5601 
35 SATLBO 1.0307 3.3927 48.5435 1.2308 952.6635 
36 LETLBO 1.0305 3.4827 48.6522 1.2084 981.9822 
37 BSA 1.0306 3.2292 48.3503 1.2118 994.3068 
38 TLABC 1.0306 3.4715 48.6313 1.2017 972.9357 
39 IWOA 1.0305 3.4218 48.6523 1.2113 983.9964 
40 

[13] 

DSO 1.032357 2.496596 47.33406 1.240547 748.32309 
41 MPSO 1.03223 2.552134 47.47824 1.23845 762.9058 
42 WDOWOAPSO 1.032382 2.512911 47.422944 1.239288 744.71435 
43 GCPSO 1.032382 2.512922 47.42298 1.239288 744.71663 
44 TVACPSO 1.031435 2.6386 47.556648 1.235611 821.59514 
45 SDA 1.030517 3.481614 48.59892 1.201288 981.59961 
46 EHA-NMS 1.030514 3.482263 48.64284 1.201271 981.98225 
47 DE-WAO 1.030514 3.482263 48.64284 1.201271 981.98214 
48 ABC-TRR 1.030514 3.482263 48.64284 1.201271 981.98223 
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49 ISCE 1.030514 3.482263 48.64284 1.201271 981.98228 
50 PGJAYA 1.0305 3.4818 48.642372 1.2013 981.8545 
51 HFAPS 1.0305 3.4842 48.644892 1.2013 984.2813 
52 TLABC 1.03056 3.4715 48.63132 1.20165 972.93567 
53 GOFPANM 1.030514 3.482263 48.64284 1.201271 981.98232 
54 ORcr-IJAD 1.030514 3.482263 48.64284 1.201271 981.98224 
55 (IWAO) 1.0305 3.4717 48.631284 1.2016 978.6771 
56 

[20] 

JADE 1.0305 3.48 48.6428 1.2012 981.9823 
57 jDE 1.0305 3.48 48.6428 1.2012 981.9823 
58 SaDE 1.0305 3.48 48.6425 1.2012 981.899 
59 AGDE 1.0305 3.48 48.6428 1.2012 981.9824 
60 SHADE 1.0305 3.48 48.6426 1.2012 981.9454 
61 SDE 1.0305 3.48 48.6412 1.2013 982.456 
62 ITLBO 1.0305 3.48 48.6428 1.2013 981.9824 
63 EJADE 1.0305 3.48 48.6428 1.2012 981.9823 
64 EGBO 1.0305 3.48 48.6428 1.2013 981.9822 
65 JADE 1.0305 3.48 48.6428 1.2012 981.9823 
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