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Abstract: In this paper, we develop a new class of conservative continuous-stage stochastic Runge–
Kutta methods for solving stochastic differential equations with a conserved quantity. The order
conditions of the continuous-stage stochastic Runge–Kutta methods are given based on the theory
of stochastic B-series and multicolored rooted tree. Sufficient conditions for the continuous-stage
stochastic Runge–Kutta methods preserving the conserved quantity of stochastic differential equa-
tions are derived in terms of the coefficients. Conservative continuous-stage stochastic Runge–Kutta
methods of mean square convergence order 1 for general stochastic differential equations, as well as
conservative continuous-stage stochastic Runge–Kutta methods of high order for single integrand
stochastic differential equations, are constructed. Numerical experiments are performed to verify the
conservative property and the accuracy of the proposed methods in the longtime simulation.

Keywords: stochastic differential equations; numerical analysis; conserved quantity; continuous-
stage stochastic Runge–Kutta methods; stochastic B-series

1. Introduction

Stochastic differential equations (SDEs) are widely used to model stochastic phenom-
ena in physics, engineering, finance, biology, etc. [1]. Since analytical solutions are not
available for most SDEs, numerical methods for solving SDEs have been flourishing in
recent years [2].

Since many systems have important geometrical or physical properties, such as sym-
plectic structure and conserved quantity, it is quite natural to look forward to numerical
methods that can preserve the peculiarities of the original systems. Such methods are
usually called structure-preserving numerical methods. Extensive numerical experiments
have exhibited the distinct advantage of structure-preserving numerical methods, espe-
cially in longtime numerical simulations. It is well known that the theory of conserved
quantities or first integrals is a very significant subject for dynamical systems, because
such quantities usually represent fundamental characteristics of these systems. Therefore,
research on the numerical methods preserving the conserved quantities of dynamical
systems is very important when it comes to performing reliable numerical simulations.
Fruitful numerical methods preserving single or multiple conserved quantities for ordinary
differential equations (ODEs) have been derived over the past few decades (e.g., [3–19]).
Nevertheless, such conservative numerical methods for SDEs are less developed. As far as
we know, the existing conservative numerical methods for SDEs mainly consist of differ-
ence methods [20], discrete gradient methods [21–23], projection methods [22,24], averaged
vector field methods [25,26], and a few others.

As is well known, Runge–Kutta methods are not conservative in general; however,
continuous-stage Runge–Kutta (CSRK) methods can overcome the difficulties. CSRK meth-
ods were first presented by Butcher in the 1970s [27], and are considered an extension
of traditional Runge–Kutta methods. For ODEs, CSRK methods have been investigated
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recently in the construction of energy-preserving methods [4,6,9,16,17]. It is worth mention-
ing that many existing energy-preserving methods for ODEs, such as average vector field
methods [10], energy-preserving trapezoidal methods [11], Hamiltonian boundary value
methods [12,13], continuous time finite element methods [14,15], and energy-preserving
collocation methods [6] all lie in the framework of CSRK methods. Ref. [8] studies the
sufficient energy-preserving conditions of CSRK methods for solving Hamiltonian systems.
Motivated by which, and in view of the fact that there has been little research on CSRK
methods for SDEs so far, in this work, we aim to develop the conservative continuous-stage
stochastic Runge–Kutta (CSSRK) methods to solve SDEs with a general conserved quantity.

The rest of the paper is organized as follows. In Section 2, we present the CSSRK
methods for general SDEs. On the basis of the stochastic B-series theory, we obtain the
order conditions. In Section 3, we apply the CSSRK methods to SDEs with a conserved
quantity to derive the conservative conditions. Furthermore, we derive the conservative
conditions in terms of the coefficients of the polynomials. In Section 4, we construct
conservative CSSRK methods of mean square convergence order 1 for general conservative
SDEs and conservative CSSRK methods of high order for single integrand conservative
SDEs. Numerical experiments are conducted to verify the theoretical results in Section 5.
Some conclusions and remarks on our work are given in Section 6.

2. CSSRK Methods and Order Conditions

Consider the stochastic differential equation (SDE) with d noises in the Stratonovich
sense  dX(t) = g0(X(t))dt +

d
∑

k=1
gk(X(t)) ◦ dWk(t), t ∈ [0, T],

X(0) = x0 ∈ RM,
(1)

where Wk(t) (k = 1, . . . , d) are pairwise independent one-dimensional Wiener processes,
defined on a complete filtered probability space (Ω,F ,P, {F}t>0) fulfilling the usual condi-
tions. We assume the initial value vector x0 is F0-measurable with E‖x0‖2 < ∞; the vector
fields gk : RM → RM, k = 0, 1, . . . , d, are sufficiently smooth and satisfy certain conditions,
such that (1) has a unique solution.

For a uniform partition of the interval [0, T], 0 = t0 < t1 < · · · < tN = T, let yn denote
the numerical approximation of X(t) at tn = nh, n = 0, 1, . . . , N. Given y0 = x0, we define
the following one-step method as the CSSRK method for solving (1)

Yτ = y0 + h
∫ 1

0 Aτ,ξ g0(Yξ)dξ +
d
∑

k=1

r̄
∑

r=1
ωr,k

∫ 1
0 Ãr,k

τ,ξ gk(Yξ)dξ,

y1 = y0 + h
∫ 1

0 Bξ g0(Yξ)dξ +
d
∑

k=1

r̄
∑

r=1
ωr,k

∫ 1
0 B̃r,k

ξ gk(Yξ)dξ,
(2)

where ωr,k are a series of random variables, Aτ,ξ and Ãr,k
τ,ξ are bivariate polynomials with

respect to τ, and ξ, Bξ and B̃r,k
ξ are polynomials with respect to ξ, k = 1, . . . , d, r = 1, . . . , r̄.

There is a restrictive relation between the internal and final stages for the consistency of the
method, because y1 should coincide with Y1 [8]. Therefore, Bξ is equal to A1,ξ and B̃r,k

ξ is

equal to Ãr,k
1,ξ .

If we denote hAτ,ξ = Z(0)
τ,ξ ,

r̄
∑

r=1
ωr,k Ãr,k

τ,ξ = Z(k)
τ,ξ , hBξ = z(0)ξ ,

r̄
∑

r=1
ωr,k B̃r,k

ξ = z(k)ξ , then a

more brief representation of (2) is derived as

Yτ = y0 +
d
∑

k=0

∫ 1
0 Z(k)

τ,ξ gk(Yξ)dξ,

y1 = y0 +
d
∑

k=0

∫ 1
0 z(k)ξ gk(Yξ)dξ.

(3)
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Next, we show the order conditions of the CSSRK method (2). First, we recall some
definitions and lemmas about stochastic B-series and multicolored rooted trees, which are
very important tools used to perform local error analysis. The B-series theory for ODEs
was introduced by Butcher in 1963 [28], and B-series for SDEs was developed in the past
few decades (e.g., [29–32]).

Definition 1 ([30] Trees). The set of multicolored rooted trees

T = {∅} ∪ T0 ∪ T1 ∪ · · · ∪ Td

is recursively defined by

(I) The graph •k = [∅]k with only one vertex of color k belongs to Tk.
(II) If τ1, τ2, . . . , τl ∈ T, then t = [τ1, τ2, . . . , τl ]k ∈ Tk, where t = [τ1, τ2, . . . , τl ]k denotes the

tree formed by joining the subtrees τ1, τ2, . . . , τl , each by a single branch to a common root of
color k.

Thus, Tk is the set of trees with a k-colored root, and T is the union of these sets.

Definition 2 ([30] Elementary differentials). For a tree t ∈ T, the elementary differential is a
mapping F(t) : RM → RM defined recursively by

(I) F(∅)(x0) = x0.
(II) F(•k)(x0) = gk(x0).
(III) If t = [τ1, τ2, . . . , τl ]k ∈ Tk, then

F(t)(x0) = g(l)k (x0)(F(τ1)(x0), F(τ2)(x0), . . . , F(τl)(x0)).

A stochastic B-series is a formal series of the form

B(ϕ, x0; h) = ∑
t∈T

α(t) · ϕ(t)(h) · F(t)(x0),

where α(t) is defined by

α(∅) = 1, α(•k) = 1, α([τ1, . . . , τl ]k) =
1

µ1!µ2! · · ·
l

∏
j=1

α(τj),

where µ1, µ2, . . . count equal trees among τ1, . . . , τl .
The next lemma shows that if Y(h) is a B-series, then gk(Y(h)) can be written as a

similar series, which is essential to derive a B-series of the exact solution and the numerical
solution.

Lemma 1 ([30]). If Y(h) is a B-series B(ϕ, x0; h) as

Y(h) = B(ϕ, x0; h) = ∑
t∈T

α(t) · ϕ(t)(h) · F(t)(x0),

then gk(Y(h)) can be represented as a formal series

gk(Y(h)) = ∑
t∈Tk

α(t) · ϕ′k(t)(h) · F(t)(x0),

for k = 0, . . . , d, where

ϕ′k(t)(h) =


1, i f t = •k,

l
∏
j=1

ϕ(τj)(h), i f t = [τ1, . . . , τl ]k ∈ Tk.
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Lemma 2 ([30]). The exact solution X(t0 + h) of (1) can be written as a B-series B(φ, x0; h)

X(t0 + h) = B(φ, x0; h) = ∑
t∈T

α(t) · φ(t)(h) · F(t)(x0),

with
φ(∅)(h) = 1, φ(•k)(h) = Wk(h),

φ([τ1, . . . , τl ]k)(h) =
∫ h

0

l
∏
j=1

φ(τj)(s) ∗ dWk(s),

for all [τ1, . . . , τl ]k ∈ Tk, k = 0, 1, . . . , d, where W0(h) = h, ∗dW0(s) = ds and ∗dWk(s) =
◦dWk(s) for k = 1, . . . , d.

In the following theorem, we prove the numerical solution using the CSSRK method (3)
can be represented in the form of a B-series.

Theorem 1. The continuous-stage values Yτ and the numerical solution Y1 in the CSSRK method (3)
can be written in the form of B-series

Yτ = B(Ψτ , y0; h) = ∑
t∈T

α(t) ·Ψτ(t)(h) · F(t)(y0),

Y1 = B(Φ, y0; h) = ∑
t∈T

α(t) ·Φ(t)(h) · F(t)(y0),

with
Ψτ(∅)(h) = 1, Ψτ(•k)(h) =

∫ 1
0 Z(k)

τ,ξ dξ,

Ψτ([τ1, . . . , τl ]k)(h) =
∫ 1

0 Z(k)
τ,ξ

l
∏
j=1

Ψξ(τj)(h)dξ,
(4)

and
Φ(∅)(h) = 1, Φ(•k)(h) =

∫ 1
0 z(k)ξ dξ,

Φ([τ1, . . . , τl ]k)(h) =
∫ 1

0 z(k)ξ

l
∏
j=1

Ψξ(τj)(h)dξ,
(5)

for all [τ1, . . . , τl ]k ∈ Tk, k = 0, 1, . . . , d.

Proof. Following the way in [30], we write Yτ as a B-series

Yτ = ∑
t∈T

α(t) ·Ψτ(t)(h) · F(t)(y0). (6)

By use of Lemma 1 together with the first equality of (3), we get

Yτ = y0 +
d
∑

k=0

∫ 1
0 Z(k)

τ,ξ ∑
t∈Tk

α(t) ·Ψ′ξ,k(t)(h) · F(t)(y0)dξ

= y0 +
d
∑

k=0
∑

t∈Tk

α(t) ·
∫ 1

0 Z(k)
τ,ξ Ψ′ξ,k(t)(h)dξ · F(t)(y0),

(7)

where

Ψ′ξ,k(t)(h) =


1, i f t = •k,

l
∏
j=1

Ψξ(τj)(h), i f t = [τ1, . . . , τl ]k ∈ Tk. (8)

Comparing (6) with (7) term by term, we obtain (4).
Similarly, we write

Y1 = ∑
t∈T

α(t) ·Φ(t)(h) · F(t)(y0). (9)



Fractal Fract. 2023, 7, 83 5 of 19

By means of the second equality of (3), Lemma 1 and (6), we obtain

Y1 = y0 +
d
∑

k=0

∫ 1
0 z(k)ξ ∑

t∈Tk

α(t) ·Ψ′ξ,k(t)(h) · F(t)(y0)dξ

= y0 +
d
∑

k=0
∑

t∈Tk

α(t) ·
∫ 1

0 z(k)ξ Ψ′ξ,k(t)(h)dξ · F(t)(y0),
(10)

where

Ψ′ξ,k(t)(h) =


1, i f t = •k,

l
∏
j=1

Ψξ(τj)(h), i f t = [τ1, . . . , τl ]k ∈ Tk, (11)

then, comparing (9) with (10) term by term gives (5).

Definition 3 ([30]). The order of a tree t ∈ T is defined by

ρ(∅) = 0, ρ(t = [τ1, . . . , τl ]k) =
l

∑
j=1

ρ(τj) +

{
1, f or k = 0,
1
2 , otherwise.

With the B-series of the exact solution and the numerical solution in place, we can
derive the order conditions of the proposed CSSRK method.

Theorem 2. The CSSRK method (2) is of mean square convergence order P if

Φ(t)(h) = φ(t)(h), ∀t ∈ T with ρ(t) ≤ P,
EΦ(t)(h) = Eφ(t)(h), ∀t ∈ T with ρ(t) = P + 1

2 .
(12)

The result (12) follows from Lemma 2 and Theorem 1. A similar result for stochastic
Runge–Kutta method can be found in [29].

3. Conservative CSSRK Methods

In this section, we consider the SDE with a conserved quantity I(X) dX(t) = g0(X(t))dt +
d
∑

k=1
gk(X(t)) ◦ dWk(t), t ∈ [0, T],

X(0) = x0 ∈ RM,
(13)

where g0(X(t)) = S∇(I(X(t))), gk(X(t)) = Sk∇(I(X(t))) with S and Sk skew symmetric
matrices, k = 1, . . . , d. It follows from the chain rule for stochastic Stratonovich differen-
tial equations that dI(X(t)) = 0, where X(t) is the exact solution of (13), which shows
I(X(t)) = I(X(0)), a.s. That is to say, I(X) is almost surely invariant along the exact
solution X(t). One can see that the stochastic canonical Hamiltonian system dX(t) = J−1∇H(X(t))dt +

d
∑

k=1
σk J−1∇H(X(t)) ◦ dWk(t), t ∈ [0, T],

X(0) = x0 ∈ RM,

with J =
(

0 Im
−Im 0

)
, where Im denotes an identity matrix, is an example of (13) with the

Hamiltonian H(X) being the conserved quantity.
In the following theorem, we show the sufficient conditions of the CSSRK method (2)

for preserving the conserved quantity I(X) of (13) in terms of the polynomials Aτ,ξ and
Ãr,k

τ,ξ , r = 1, . . . , r̄, k = 1, . . . , d. Below, for simplicity, we restrict ourselves to Aτ,ξ of degree

s1 in τ and s1 − 1 in ξ and Ãr,k
τ,ξ of the degree sr,k

2 in τ and sr,k
2 − 1 in ξ.
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Theorem 3. The CSSRK method (2) is conservative for solving (13) if ∂
∂τ Aτ,ξ and ∂

∂τ Ãr,k
τ,ξ are

symmetric, i.e.,
∂

∂τ Aτ,ξ = ∂
∂ξ Aξ,τ ,

∂
∂τ Ãr,k

τ,ξ = ∂
∂ξ Ãr,k

ξ,τ , r = 1, . . . , r̄, k = 1, . . . , d.

Proof. Express ∂
∂τ Aτ,ξ and ∂

∂τ Ãr,k
τ,ξ as follows:

∂
∂τ Aτ,ξ =

s1−1
∑

l=0
α(l, l)τlξ l + ∑

m<n
[α(m, n)τmξn + α(n, m)τnξm],

∂
∂τ Ãr,k

τ,ξ =
sr,k

2 −1
∑

l=0
α̃r,k(l, l)τlξ l + ∑

m<n
[α̃r,k(m, n)τmξn + α̃r,k(n, m)τnξm].

Notice that ∂
∂τ Aτ,ξ and ∂

∂τ Ãr,k
τ,ξ are symmetric, which means α(m, n) = α(n, m),

α̃r,k(m, n) = α̃r,k(n, m), r = 1, . . . , r̄, k = 1, . . . , d, so we have

I(y1)− I(y0) =
∫ 1

0

d
dτ

I(Yτ)dτ =
∫ 1

0
ẎT

τ ∇I(Yτ)dτ

= h
∫ 1

0

(∫ 1

0

∂

∂τ
Aτ,ξ S∇I(Yξ)dξ

)T

∇I(Yτ)dτ

+
∫ 1

0

d

∑
k=1

r̄

∑
r=1

ωr,k

(∫ 1

0

∂

∂τ
Ãr,k

τ,ξ Sk∇I(Yξ)dξ

)T

∇I(Yτ)dτ

= h
s1−1

∑
l=0

α(l, l)
(∫ 1

0
ξ l∇I(Yξ)dξ

)T

ST
∫ 1

0
τl∇I(Yτ)dτ

+ h ∑
m<n

[α(m, n)
(∫ 1

0
ξn∇I(Yξ)dξ

)T

ST
∫ 1

0
τm∇I(Yτ)dτ

+ α(n, m)

(∫ 1

0
ξm∇I(Yξ)dξ

)T

ST
∫ 1

0
τn∇I(Yτ)dτ]

+
d

∑
k=1

r̄

∑
r=1

ωr,k

sr,k
2 −1

∑
l=0

α̃r,k(l, l)
(∫ 1

0
ξ l∇I(Yξ)dξ

)T

ST
k

∫ 1

0
τl∇I(Yτ)dτ

+
d

∑
k=1

r̄

∑
r=1

ωr,k ∑
m<n

[α̃r,k(m, n)
(∫ 1

0
ξn∇I(Yξ)dξ

)T

ST
k

∫ 1

0
τm∇I(Yτ)dτ

+ α̃r,k(n, m)

(∫ 1

0
ξm∇I(Yξ)dξ

)T

ST
k

∫ 1

0
τn∇I(Yτ)dτ]

= 0.

In the last equality, the first and third terms vanish because of the skew symmetry of S and
Sk, k = 1, . . . , d. The second and fourth terms vanish because of(∫ 1

0 ξn∇I(Yξ)dξ
)T

ST ∫ 1
0 τm∇I(Yτ)dτ)

= −
(∫ 1

0 ξm∇I(Yξ)dξ
)T

ST ∫ 1
0 τn∇I(Yτ)dτ),(∫ 1

0 ξn∇I(Yξ)dξ
)T

ST
k
∫ 1

0 τm∇I(Yτ)dτ)

= −
(∫ 1

0 ξm∇I(Yξ)dξ
)T

ST
k
∫ 1

0 τn∇I(Yτ)dτ), k = 1, . . . , d,

and the symmetry α(m, n) = α(n, m), α̃r,k(m, n) = α̃r,k(n, m), r = 1, . . . , r̄, k = 1, . . . , d.
Thus, the proof is completed.
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In the following theorem, we conduct a further exploration of the CSSRK method (2)
which is conservative for solving (13) in terms of the coefficients of the polynomials Aτ,ξ

and Ãr,k
τ,ξ , r = 1, . . . , r̄, k = 1, . . . , d.

Theorem 4. Assuming that Aτ,ξ =
s1
∑

i,j=1
aijτ

iξ j−1, Ãr,k
τ,ξ =

sr,k
2
∑

i,j=1
ãijτ

iξ j−1, r = 1, . . . , r̄,

k = 1, . . . , d, the CSSRK method (2) for solving (13) is conservative if the coefficients satisfy

iaij = jaji, i, j = 1, . . . , s1,
iãr,k

ij = jãr,k
ji , i, j = 1, . . . , sr,k

2 , r = 1, . . . , r̄, k = 1, . . . , d.
(14)

Proof. Since
∂Aτ,ξ

∂τ =
s1
∑

i,j=1
iaijτ

i−1ξ j−1,

∂Aξ,τ
∂ξ =

s1
∑

i,j=1
iaijξ

i−1τ j−1

=
s1
∑

i,j=1
jajiτ

i−1ξ j−1,

using a direct comparison, we determine that ∂Aτ,ξ
∂τ =

∂Aξ,τ
∂ξ is equivalent to iaij = jaji

for i, j = 1, . . . , s1. Similarly,
∂Ãr,k

τ,ξ
∂τ =

∂Ãr,k
ξ,τ

∂ξ is equivalent to iãij = jãji for i, j = 1, . . . , sr,k
2 ,

r = 1, . . . , r̄, k = 1, . . . , d. According to Theorem 3, we complete the proof.

Compared to Theorem 3, Theorem 4 provides more straightforward conditions under
which to construct conservative CSSRK methods, which is more convenient to employ in
practice.

4. Construction of Conservative CSSRK Methods

By means of the order conditions derived in Section 2 and conservative conditions
derived in Section 3, we can construct conservative CSSRK methods. In this section,
for simplicity, we concentrate only on conservative SDEs with one noise. The derived
results can be easily extended to SDEs with multiple noises. We consider two kinds of
construction below. One is constructing conservative CSSRK methods of order 1 for general
conservative SDEs; the other is constructing conservative CSSRK methods of high order for
single integrand conservative SDEs.

4.1. Construction of Conservative CSSRK Methods of Order 1

In this subsection, we consider the following conservative SDE{
dX(t) = g0(X(t))dt + g1(X(t)) ◦ dW(t), t ∈ [0, T],
X(0) = x0 ∈ RM,

(15)

where g0(X(t)) = S∇I(X(t))), g1(X(t)) = S1∇I(X(t))) with S and S1 skew symmetric
matrices.

With a fixed step size h and initial value y0 = x0, the corresponding CSSRK method
for solving (15) is given by

Yτ = y0 + h
∫ 1

0 Aτ,ξ g0(Yξ)dξ + ∆W(h)
∫ 1

0 Ãτ,ξ g1(Yξ)dξ,
y1 = y0 + h

∫ 1
0 Bξ g0(Yξ)dξ + ∆W(h)

∫ 1
0 B̃ξ g1(Yξ)dξ,

(16)

where Aτ,ξ is a bivariate polynomial of degree s1 in τ and s1 − 1 in ξ while Ãτ,ξ of degree
s2 in τ and s2 − 1 in ξ, ∆W(h) = W(tn+1)−W(tn) are independent N(0, h)-distributed
random variables.
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Since we are interested in constructing conservative CSSRK methods of order 1 here,
one can see that we employ the Wiener increment ∆W(h) as the random variable in (16).
We also point out that methods of higher order could be attained if more random variables
are involved, at the cost of numerous order conditions and tedious computation. According
to the order results in Theorem 2, (16) has mean square convergence order 1 if the following
conditions

Φ(t)(h) = φ(t)(h), ∀t ∈ T with ρ(t) ≤ 1,
EΦ(t)(h) = Eφ(t)(h), ∀t ∈ T with ρ(t) = 1.5,

(17)

are satisfied. Note that a tree t with ρ(t) = 1.5 must have an odd number of stochastic
nodes, which means the expectations are always 0; hence, the second condition in (17)
holds automatically. Thus, we only need to consider the trees with ρ(t) ≤ 1. We list these
trees in Table 1, with •0 denoting a deterministic node, and •1 denoting a stochastic one.

Table 1. Trees with ρ(t) ≤ 1 and the corresponding functions.

No. t ρ(t) φ(t) Φ(t)

1 1 0.5 ∆W(h) ∆W(h)
∫ 1

0 B̃ξ dξ

2 0 1 h h
∫ 1

0 Bξ dξ

3
1
1 1 ∆W2(h)

2
∆W2(h)

∫ 1
0 B̃ξ

∫ 1
0 Ãξ,τdτdξ

According to the first condition in (17), based on a comparison of φ(t) with Φ(t) for
ρ(t) ≤ 1, we determine that the CSSRK method (16) is of mean square convergence order 1
if the coefficients satisfy the following conditions∫ 1

0 Bξ dξ = 1,∫ 1
0 B̃ξ dξ = 1,∫ 1
0 B̃ξ(

∫ 1
0 Ãξ,τdτ)dξ =

1
2

.

(18)

We mention that a quadrature formula is needed for implementation because of the
integrals in CSSRK methods. Applying a quadrature formula (bi, ci)

r
i=1 to the CSSRK

method (16), we retrieve a stochastic Runge–Kutta method as follows:

Yci = y0 + h
r
∑

j=1
bj Aci ,cj g0(Ycj) + ∆W(h)

r
∑

j=1
bj Ãci ,cj g1(Ycj),

y1 = y0 + h
r
∑

i=1
biBci g0(Yci ) + ∆W(h)

r
∑

i=1
bi B̃ci g1(Yci ),

(19)

which can be represented by the following Butcher tableau

(bj Aci ,cj)r×r (bj Ãci ,cj)r×r

(biBci )1×r (bi B̃ci )1×r
.

The next theorem shows the convergence results of the retrieved stochastic Runge–Kutta
method (19).

Theorem 5. If the coefficients of the CSSRK method (16) satisfy the conditions (18), and the
order of the quadrature formula (bi, ci)

r
i=1 is at least max{s1, 2s2}, then the retrieved stochastic

Runge–Kutta method (19) is of mean square convergence order 1.



Fractal Fract. 2023, 7, 83 9 of 19

Proof. Recall that Bξ and B̃ξ are polynomials of the degree s1 − 1 and s2 − 1 with respect
to ξ, respectively, and Ãτ,ξ is a polynomial of the degree s2 in τ and s2 − 1 in ξ. Applying a
quadrature formula (bi, ci)

r
i=1 of the order of at least max{s1, 2s2} to (18) leads to

r
∑

i=1
biBci = 1,

r
∑

i=1
bi B̃ci = 1,

r
∑

i=1

r
∑

j=1
bibj B̃ci Ãci ,cj =

1
2

,

which are the exact conditions of mean square convergence order 1 for the retrieved
stochastic Runge–Kutta method (19). This completes the proof.

According to the conservative conditions (14) and order conditions (18), we can now
construct the conservative CSSRK method (16) of mean square convergence order 1 for
solving (15). In the rest of this subsection, we confine ourselves to the cases s1 ≤ 2, s2 ≤ 2.

Let us start with the case s1 = 1, s2 = 1; that is to say, Aτ,ξ = a11τ and Ãτ,ξ = ã11τ.
In this case, the conservative conditions are automatically satisfied due to (14). So we
only need to determine the coefficients a11 and ã11 satisfying the order conditions. Since
Bξ = A1,ξ = a11, B̃ξ = Ã1,ξ = ã11, inserting them into (18) yields∫ 1

0 a11dξ = 1,∫ 1
0 ã11dξ = 1,∫ 1
0 ã11(

∫ 1
0 ã11ξdτ)dξ =

1
2

,

then we derive
a11 = 1, ã11 = 1, (20)

which means the CSSRK method (16) reduces to a stochastic average vector field method in
this case.

Next we turn to the case s1 = 2, s2 = 2, i.e.,

Aτ,ξ = a11τ + a12τξ + a21τ2 + a22τ2ξ,
Ãτ,ξ = ã11τ + ã12τξ + ã21τ2 + ã22τ2ξ.

First, we consider the conservative conditions. From Theorem 4, the conservative conditions
are

a12 = 2a21, ã12 = 2ã21, (21)

so it follows that
Aτ,ξ = a11τ + 2a21τξ + a21τ2 + a22τ2ξ,
Ãτ,ξ = ã11τ + 2ã21τξ + ã21τ2 + ã22τ2ξ,

and
Bξ = A1,ξ = a11 + 2a21ξ + a21 + a22ξ,
B̃ξ = Ã1,ξ = ã11 + 2ã21ξ + ã21 + ã22ξ.

Next, we consider the order conditions. According to (18), the conditions of mean square
convergence order 1 are equivalent to∫ 1

0 (a11 + 2a21ξ + a21 + a22ξ)dξ = 1,∫ 1
0 (ã11 + 2ã21ξ + ã21 + ã22ξ)dξ = 1,∫ 1
0

∫ 1
0 (ã11 + 2ã21ξ + ã21 + ã22ξ)(ã11ξ + 2ã21ξτ + ã21ξ2 + ã22ξ2τ)dτdξ =

1
2

,
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then, through calculation, we derive

2a11 + 4a21 + a22 = 2, 2ã11 + 4ã21 + ã22 = 2. (22)

Therefore, in this case, the CSSRK method (16) is conservative and of mean square con-
vergence order 1 if the coefficients satisfy (21) and (22). It is clear that there are various
solutions to the Equations (21) and (22); hence, we can construct a variety of conservative
CSSRK methods of order 1.

Similarly, we conclude that for the case s1 = 1, s2 = 2, i.e.,

Aτ,ξ = a11τ,
Ãτ,ξ = ã11τ + ã12τξ + ã21τ2 + ã22τ2ξ,

the CSSRK method (16) is conservative and of mean square convergence order 1 if the
coefficients satisfy

a11 = 1, ã12 = 2ã21, 2ã11 + 4ã21 + ã22 = 2. (23)

For the case s1 = 2, s2 = 1, i.e.,

Aτ,ξ = a11τ + a12τξ + a21τ2 + a22τ2ξ,
Ãτ,ξ = ã11τ,

the CSSRK method (16) is conservative and of mean square convergence order 1 if the
coefficients satisfy

a12 = 2a21, 2a11 + 4a21 + a22 = 2, ã11 = 1. (24)

4.2. Construction of Conservative CSSRK Methods of High Order for Single Integrand
Conservative SDEs

As is well known, numerical methods of mean square convergence order higher than
1 are difficult to attain to solve general SDEs. However, in some special cases, we can
derive numerical methods of higher order. In this subsection, we consider a special class of
conservative single integrand SDEs as{

dX(t) = f (X(t))(dt + σ ◦ dW(t), t ∈ [0, T],
X(0) = x0 ∈ RM,

(25)

where f (X(t)) = S∇I(X(t))) with S a skew symmetric matrix and I(X(t)) the conserved
quantity; σ is a constant. Given a fixed step size h and initial value y0 = x0, the correspond-
ing CSSRK method for solving (25) is

Yτ = y0 + µ(h)
∫ 1

0 Aτ,ξ f (Yξ)dξ,
y1 = y0 + µ(h)

∫ 1
0 Bξ f (Yξ)dξ,

(26)

where µ(h) = h + σ∆W(h), Aτ,ξ is a bivariate polynomial of degree s in τ and s− 1 in ξ

represented by Aτ,ξ =
s
∑

i,j=1
aijτ

iξ j−1, Bξ = A1,ξ , Cτ =
∫ 1

0 Aτ,ξ dξ.

For the following discussion, we write the deterministic counterpart of (25) as{
dX(t) = f (X(t))dt, t ∈ [0, T],
X(0) = x0 ∈ RM,

(27)

and the corresponding CSRK method as

Yτ = y0 + h
∫ 1

0 Aτ,ξ f (Yξ)dξ,
y1 = y0 + h

∫ 1
0 Bξ f (Yξ)dξ.

(28)
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Single-integrand SDEs have been investigated in many works (e.g., [33–35]). The next
Lemma shows the convergence results of the CSSRK methods (26) for solving this kind
of SDEs.

Lemma 3 ([35]). If the CSRK method (28) for solving the deterministic differential Equation (27)
is of order pd, then the CSSRK method (26) for solving (25) is of mean square convergence order
bpd/2c.

Lemma 3 indicates that we can derive a CSSRK method (26) of high convergence order
as long as the corresponding deterministic method (28) has sufficiently high order. The
construction of high-order CSRK methods were investigated by [6,36]. Now, we review
some existing results.

The following conditions for the CSRK method (28) are so-called simplifying
assumptions [6]

B̆(ρ) :
∫ 1

0 BτCk−1
τ dτ =

1
k

, k = 1, . . . , ρ,

C̆(α) :
∫ 1

0 Aτ,ξCk−1
ξ dξ =

1
k

Ck
τ , k = 1, . . . , α,

D̆(β) :
∫ 1

0 BτCk−1
τ Aτ,ξdτ =

1
k

Bξ(1− Ck
ξ), k = 1, . . . , β.

(29)

It is more convenient to use (29) to construct high-order CSRK methods than to use order
conditions via B-series.

Lemma 4 ([36]). If the coefficients (Aτ,ξ , Bτ , Cτ) of the CSRK method (28) fulfill B̆(ρ), C̆(α) and
D̆(β), then the method is of the order of at least min(ρ, 2α + 2, α + β + 1).

For ease of discussion, in the rest of this subsection, we assume Bξ = 1, which has been
proved reasonable in [36]. Next, we show Bξ = 1 is equivalent to Cτ = τ if the conservative
conditions iaij = jaji, i, j = 1, . . . , s, are satisfied.

On one hand, since Bξ = A1,ξ =
s
∑

i,j=1
aijξ

j−1, we get Bξ = 1, which suggests

s

∑
i=1

ai1 = 1,
s

∑
i=1

aij = 0 (j 6= 1). (30)

On the other hand, from Cτ =
∫ 1

0 Aτ,ξ dξ =
∫ 1

0

s
∑

i,j=1
aijτ

iξ j−1dξ =
s
∑

i,j=1

aij

j
τi, we see

that Cτ = τ suggests
s

∑
j=1

a1j

j
= 1,

s

∑
j=1

aij

j
= 0 (i 6= 1). (31)

If the conservative conditions iaij = jaji, i, j = 1, . . . , s, are satisfied, then we have

a1j

j
= aj1,

aij

j
=

aji

i
(i 6= 1). (32)

Substituting (32) into (31) leads to

s

∑
j=1

aj1 = 1,
s

∑
j=1

aji = 0 (i 6= 1),

which coincides with (30); thus, the statement is completed.
With Bξ = 1 and Cτ = τ, it is clear the simplifying assumption B̆(∞) holds.
When applying a quadrature formula (bi, ci)

r
i=1 to (28) and (26), respectively, we

retrieve a r-stage Runge–Kutta method by
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Yi = y0 + h
r
∑

j=1
bj Aci ,cj f (Yj),

y1 = y0 + h
r
∑

i=1
biBci f (Yi),

(33)

and the counterpart stochastic Runge–Kutta method by

Yi = y0 + µ(h)
r
∑

j=1
bj Aci ,cj f (Yj),

y1 = y0 + µ(h)
r
∑

i=1
biBci f (Yi).

(34)

The next two lemmas give the order results of the retrieved Runge–Kutta method (33) and
stochastic Runge–Kutta method (34).

Lemma 5 ([36]). If the CSRK method (28) with coefficients (Aτ,ξ , Bτ , Cτ) satisfies Bτ = 1, Cτ = τ

as well as C̆(α) and D̆(β) hold; meanwhile, if the quadrature formula (bi, ci)
r
i=1 is of order p, then

the retrieved Runge–Kutta method (33) is of the order of at least min(p, 2α + 2, α + β + 1).

Lemma 6 ([33,34]). If the Runge–Kutta method (33) for solving (27) is of the order Pd, then the
counterpart stochastic Runge–Kutta method (34) for solving (25) is of the order bPd/2c under
certain conditions.

In what follows, we expect to derive a concrete conservative CSSRK method (26)
of mean square convergence order 2 for solving (25). To this end, we need to derive a
CSRK method (28) of order 4 for solving (27) first. Because a one-degree polynomial
Aτ,ξ = a11τ cannot satisfy the conditions of order 4, we start with a CSRK method (28) with
the coefficient Aτ,ξ , which is a two-degree polynomial:

Aτ,ξ = a11τ + a12τξ + a21τ2 + a22τ2ξ. (35)

First, we consider the conservative conditions. It is obvious that when the second
equality in (14) vanishes, the results reduce to the conservative conditions for the CSRK
method (28) as well as the CSSRK method (26), so we find that the CSRK method (28)
with (35) is conservative if a12 = 2a21; that is,

Aτ,ξ = a11τ + 2a21τξ + a21τ2 + a22τ2ξ.

Second, we consider the order conditions. From the assumption Bξ = 1, we get

a11 + a21 = 1, 2a21 + a22 = 0. (36)

Substituting (36) into the simplifying assumptions (29) for α = 2, β = 1, we find that

a21 = −3, a11 = 4, a22 = 6, a12 = −6.

So the derived CSRK method (28) with

Aτ,ξ = 4τ − 6τξ − 3τ2 + 6τ2ξ (37)

is conservative and of convergence order 4 for solving (27). According to Lemma 3, the
CSSRK method (26) with (37) is conservative and of mean square convergence order 2 for
solving (25).

Lastly, we mention that if we apply a quadrature formula (bi, ci)
r
i=1 of the order of at

least 4 to the CSRK method (28) with (37), due to Lemma 5, the retrieved Runge–Kutta
method (33) for solving (27) is of order 4; then, according to Lemma 6, the counterpart
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stochastic Runge–Kutta method (34) for solving (25) is of mean square convergence order 2,
which will be verified in the next section.

5. Numerical Experiments

In this section, we present two numerical experiments to confirm the effectiveness of
the derived conservative CSSRK methods in Section 4. The first example is a general con-
servative SDE and the second one is a single-integrand conservative SDE. We will employ
a conservative CSSRK method of mean square convergence order 1 and a conservative
CSSRK method of mean square convergence order 2 to solve the two SDEs, respectively.

Example 1. The stochastic cyclic Lotka–Volterra system.

Consider the following stochastic dynamical system
d

x(t)
y(t)
z(t)

 =

x(t)(z(t)− y(t))
y(t)(x(t)− z(t))
z(t)(y(t)− x(t))

dt + σ

x(t)( 1
2 z(t)− 1

3 y(t))
y(t)( 1

2 x(t)− 1
2 z(t))

z(t)( 1
3 y(t)− 1

2 x(t))

 ◦ dW(t),

x(0) = x0, y(0) = y0, z(0) = z0,

(38)

where σ is a constant. (38) can be considered as a cyclic Lotka–Volterra system of three
competing species in a chaotic environment. It is easy to verify that this system possesses a
conserved quantity I(x, y, z) = xyz.

We employ a CSSRK method (16) which satisfies the conditions of being conservative
and of mean square convergence order 1 (24) as

Yτ = y0 + 2τ2h
∫ 1

0 ξg0(Yξ)dξ + τ∆W(h)
∫ 1

0 g1(Yξ)dξ,
y1 = y0 + 2h

∫ 1
0 ξg0(Yξ)dξ + ∆W(h)

∫ 1
0 g1(Yξ)dξ.

(39)

Next, we apply the CSSRK method (39) to solving the system (38). We take the step
size h = 0.1, the constant σ = 0.1, and the initial values x0 = 1, y0 = 2, z0 = 0.5. A
quadrature formula of order 6 is used in the implementation of the experiment.

Figure 1 reports the errors in the conserved quantity I(x, y, z) computed by the CSSRK
method (39) on the long interval [0, 1500], where the conserved quantity error is de-
noted by |I(xn, yn, zn) − I(x0, y0, z0)|. As seen in this figure, the scheme preserves the
conserved quantity well in the longtime simulation. Figure 2 demonstrates the conver-
gence order. To achieve this, 1000 independent sample paths and five different step sizes
h = 2−2, 2−3, 2−4, 2−5, 2−6 are adopted. The mean square errors at the terminal T = 1 are
estimated by√√√√( 1000

∑
i=1

(|x(1, ωi)− xN(ωi)|2 + |y(1, ωi)− yN(ωi)|2 + |z(1, ωi)− zN(ωi)|2)
)

/1000.

One can observe the expected convergence order 1 by comparison with the reference
solutions obtained by mid-point method with the step size h = 2−12. Figure 3 plots
the global mean square errors on the interval [0, 100]. Figure 4 reports the phase por-
trait based on the numerical solutions from different angles on the interval [0, 1500],
where we see that the numerical solutions marked in blue exactly lie in the manifold
M = {(x, y, z)|I(x, y, z) = I(x0, y0, z0)}marked in orange.

Example 2. The stochastic mathematical pendulum.
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Consider the following stochastic mathematical pendulum d
(

p(t)
q(t)

)
=

(
− sin(q(t))

p(t)

)
(dt + β ◦ dW(t)),

p(0) = p0, q(0) = q0,
(40)

where β is a constant denoting the noise intensity. This single-integrand conservative SDE

is a stochastic canonical Hamiltonian system. The Hamiltonian H(p, q) =
p2

2
− cos q, also

known as the energy function, is the conserved quantity.

Figure 1. Errors in the conserved quantity I for Example 1 with h = 0.1.

Method (39)

Reference Slope = 1

Figure 2. Convergence order for Example 1.
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Figure 3. Global mean square errors for Example 1 with h = 0.1.

Figure 4. Phase space plot of the numerical solutions from different angels for Example 1 with
h = 0.1.

We employ the CSSRK method (26) with (37), which satisfies the conditions of being
conservative and of mean square convergence order 2; that is,

Yτ = y0 + µ(h)
∫ 1

0 (4τ − 6τξ − 3τ2 + 6τ2ξ) f (Yξ)dξ,
y1 = y0 + µ(h)

∫ 1
0 f (Yξ)dξ.

(41)

We take the step size h = 0.01, the constant β = 0.1, and the initial values p0 = 0, q0 = 0.5.
A quadrature formula of order 4 is used in the implementation of the experiment.

Figure 5 exhibits the errors in the conserved quantity H(p, q) according to the CSSRK
method (41) on the interval [0, 500], where we can see the method is successfully preserving
the conserved quantity. Figure 6 demonstrates the convergence order, where 1000 inde-
pendent sample paths and five different step sizes h = 2−2, 2−3, 2−4, 2−5, 2−6 are adopted,
as in the previous example. The mean square errors at the terminal T = 1 are estimated

by

√( 1000
∑

i=1
(|p(1, ωi)− pN(ωi)|2 + |q(1, ωi)− qN(ωi)|2)

)
/1000, and the results are shown

in Figure 6, where we can observe that the convergence order is 2 as expected. Figure 7
reports the global mean square errors on the interval [0, 100]. Figure 8 plots a numerical
sample path of the CSSRK method (41) on the interval [0, 500].
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Figure 5. Errors in the conserved quantity H for Example 2 with h = 0.01.

Method (41)

Reference Slope = 2

Figure 6. Convergence order for Example 2.

Figure 7. Global mean square errors for Example 2 with h = 0.01.
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Figure 8. Phase space plot of the numerical solutions for Example 2 with h = 0.01.

6. Conclusions and Remarks

In this paper, we studied the conservative CSSRK methods for solving SDEs. Firstly,
we presented the CSSRK methods and investigated the order conditions via the stochastic
B-series theory. Secondly, we provided the sufficient conditions in terms of the coefficients
of the CSSRK methods, as well as the coefficients of the polynomials for preserving the
conserved quantity of SDEs. It turns out that the derived conservative conditions in
terms of the coefficients of the polynomials are very easy to use. Then, we constructed
conservative CSSRK methods of mean square convergence order 1 in various cases for
general conservative SDEs, as well as conservative CSSRK methods of high order for single-
integrand conservative SDEs. Notably, for the numerical simulation of conservative SDEs,
most of the existing conservative methods are of low convergence order; here, we construct
a high-order conservative method easily realized for single-integrand conservative SDEs.
Finally, we provide some remarks and future work concerning this paper.

(i) In our construction of conservative CSSRK methods of mean square convergence
order 1, we find the known stochastic averaged vector field method is a special case
of the derived conservative CSSRK methods. It seems that CSSRK methods may have
promising applications in constructing structure-preserving numerical methods.

(ii) It should be pointed out that we restrict ourselves to the case that the degree of ξ is
one less than that of τ in Aτ,ξ and Ãr,k

τ,ξ when proving the conservative conditions for
CSSRK methods. A further investigation for other cases is of interest in our future
work.

(iii) In this paper, we have only considered conservative SDEs with a single conserved
quantity. On the other hand, some SDEs possess multiple conserved quantities. Hence,
based on the results in this paper, we would proceed to study CSSRK methods for
SDEs, leaving multiple conserved quantities numerically invariant.
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