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Abstract: In this paper, a delayed reaction-diffusion neural network model of fractional order and
with several constant delays is considered. Generalized proportional Caputo fractional derivatives
with respect to the time variable are applied, and this type of derivative generalizes several known
types in the literature for fractional derivatives such as the Caputo fractional derivative. Thus, the
obtained results additionally generalize some known models in the literature. The long term behavior
of the solution of the model when the time is increasing without a bound is studied and sufficient
conditions for approaching zero are obtained. Lyapunov functions defined as a sum of squares with
their generalized proportional Caputo fractional derivatives are applied and a comparison result for
a scalar linear generalized proportional Caputo fractional differential equation with several constant
delays is presented. Lyapunov functions and the comparison principle are then combined to establish
our main results.

Keywords: reaction-diffusion neural networks; generalized proportional Caputo fractional derivatives;
delays; asymptotic behavior

1. Introduction

The delay in differential equations is widely used for analysis and predictions in
population dynamics, epidemiology, immunology, physiology, and neural networks. The
time delays or time lags, in these models, can be related to the duration of certain hidden
processes such as the stages of the life cycle, the time between infection of a cell and
the production of new viruses, the duration of the infectious period, the immune period,
and so on (see, for example, [1]). Recently, in [2], there was a discussion on how delays
in differential equations can be applied to understand fundamental design principles
of various natural biological systems, and numerous examples demonstrated that the
inclusion of explicit delays simplifies complex systems in comparison to the more widely
used mechanistic descriptions with ordinary differential equations.

In many models, reaction-diffusion terms are applied to describe more adequately
the time and spatial evolution. Reaction-diffusion equations are traditionally applied to
problems in biology, population dynamics, ecology, and neurosciences (see, for example,
the books [3–5]), in epidemiology and virology (see, for example, [6–9]). The effects of
time delays on the dynamical properties of reaction-diffusion epidemic and virus dynamic
models are also investigated in the literature (see, for example, [10–12]).

In many models, various types of fractional derivatives instead of derivatives of
integer order are applied to model the system more adequately. Note, fractional calculus
arise in various fields, since it was shown to be exceptionally well suited in modeling and
describing the complex nature of real world problems in comparison to local derivatives
(for some models with fractional derivatives, see, for example [13,14]). As it is pointed
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out in [15], the physically consistent continuous time random walk is the basis for the
application of the Riemann-Liouville fractional derivative. However, it is shown in [16] that
a very simple example can have unphysical negative solutions. In [17], the Wright function
is applied to study the reaction-diffusion problem with the Caputo type derivative.

Recently, the generalized proportional Caputo fractional derivative was defined, studied
and applied (see, [18,19]). It is a generalization of the Caputo fractional derivative and it pro-
vides wider possibilities for modeling the more adequate complexity of real world problems.

In this paper, a delayed reaction-diffusion neural network model of fractional or-
der is studied. Note, various types of neural network with the reaction-diffusion term
and Caputo fractional derivative are studied in the literature, such as for example in [20]
(synchronization for a coupled network), [21] (stability and comparison principle) [22]
(synchronization for model with leakage and discrete delays), and [23] (synchronization).
In this paper, we consider the model with the generalized proportional Caputo fractional
derivative; the model has several constant delays. The stability of fractional order systems
with proportional Caputo fractional derivatives was considered recently (see, for exam-
ple [24,25]). The behavior of the solutions of the given model with time increasing without
a bound is studied in this paper by applying Lyapunov functionals and their generalized
Caputo proportional fractional derivatives in time. An example is provided to illustrate
our theoretical results and the dependence of the applied type of fractional derivative on
the behavior of the solutions.

The main novelty of the paper can be summarized in the following way:

- A new model of the delay reaction-diffusion model is defined by the application of
generalized proportional Caputo fractional derivatives in the time variable;

- The asymptotic behavior of the solutions when the time variable is increasing without
any bounds is studied;

- A comparison result for a linear generalized proportional Caputo fractional differential
equation with a constant delay is presented;

- Lyapunov functions defined as a sum of squares and depending sighnificantly on the
particular solution of the model are applied;

- Lyapunov functions are combined with the comparison principle to develop the
main results;

- Sufficient conditions for approaching zero in time are obtained where the comparison
principle for a linear delay generalized proportional Caputo fractional differential
equation is used. The applications are deeply connected with the presence of delay.

2. Some Results for Scalar Generalized Proportional Caputo Fractional
Differential Equations

Let v ∈ C([0, b],R), 0 < b ≤ ∞ (in the case b = ∞, the interval is half open).
Consider the generalized proportional fractional integral (as long as all integrals are well

defined) [18]

(0Iq,ρv)(t) =
1

ρqΓ(q)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)q−1v(s) ds, t ∈ (0, b], q ≥ 0, ρ ∈ (0, 1],

and the generalized proportional Caputo fractional derivative (as long as all integrals are well
defined)

(C
0Dq,ρv)(t) =

1− ρ

ρ1−qΓ(1− q)

∫ t

0
e

ρ−1
ρ (t−s) v(s)

(t− s)q ds

+
ρq

Γ(1− q)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)−qv′(s) ds,

for t ∈ (0, b], q ∈ (0, 1), ρ ∈ (0, 1].
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Consider the following scalar generalized proportional fractional linear differential
equation with multiple delays

(C
0Dq,ρv)(t) = −av(t) +

N

∑
i=1

biv(t− τi), t > 0

v(t) = φ(t), t ∈ [−τ, 0],

(1)

where a, bi, (i = 1, 2, . . . , N) are reals, q ∈ (0, 1), ρ ∈ (0, 1], τi ≥ 0, τ = maxi=1,2,...,N τi,
φ ∈ C([−τ, 0],R).

Take the Laplace transform on both sides of (1) (see [18]) and obtain

(ρs + 1− ρ)qV1(s)− ρ(ρs + 1− ρ)q−1φ(0)

= −aV1(s) +
N

∑
i=1

bie−sτi

(
V1(s) +

∫ 0

−τi

e−sξφ(ξ)dξ

)
,

(2)

where V1 is the Laplace transform of v(t) with V1(s) = L(v(t)).
The Equation (2) could be written in the form

(
(ρs + 1− ρ)q + a−

N

∑
i=1

bie−sτi
)

V1(s) = P(s),

where P(s) = ∑N
i=1 bie−sτi

∫ 0
−τi

e−sξφ(ξ)dξ + ρ(ρs + 1− ρ)q−1φ(0).
The characteristic equation of (2) is

(ρs + 1− ρ)q + a−
N

∑
i=1

bie−sτi = 0. (3)

The distribution of the eigenvalues totally determines the stability of Equation (1). Let
S = ρs + 1− ρ. Then Equation (3) is reduced to

Sq + a−
N

∑
i=1

Bie
−S τi

ρ = 0 (4)

where Bi = bie
1−ρ

ρ . If a >
√

2 ∑N
i=1 Bi and Bi > 0, i = 1, 2, . . . , N, then Equation (4)

has no purely imaginary roots (see the proof of Theorem 1 [21]) and limt→∞ v(t) = 0 if
φ(t) ≥ 0, t ∈ [−τ, 0] (see the proof of Corollary 3 and Theorem 1 [26]). Thus, we obtain the
following result:

Lemma 1. Let a >
√

2e
1−ρ

ρ ∑N
i=1 bi, bi, τi > 0, i = 1, 2, . . . , N, and φ ∈ C([−τ, 0], [0, ∞)).

Then limt→∞ v(t) = 0 where v(t), t ∈ [−τ, ∞), is the solution of (1).

Later, we will use the following result proved in Example 5.7 [18] with a slight modifi-
cation:

Lemma 2. The solution of the scalar linear generalized proportional Caputo fractional initial value
problem

(C
0Dq,ρu)(t) = λu(t) + f (t), u(0) = u0, q ∈ (0, 1), ρ ∈ (0, 1]

where λ ∈ R, f ∈ C([0, ∞),R), has a solution

u(t) = u0e
ρ−1

ρ (t−a)Eq(λ(
t
ρ
)q) +

1
ρq

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)q−1Eq,q(λ(t− s)q) f (s)ds, (5)

where Eq(.) and Eq,q(.) are the Mittag-Leffler functions with one and two parameters, respectively.



Fractal Fract. 2023, 7, 80 4 of 12

Consider the following scalar generalized proportional fractional linear differential
inequality with multiple delays

(C
0Dq,ρv)(t) ≤ −av(t) +

N

∑
i=1

biv(t− τi), t > 0,

v(t) = φ(t), t ∈ [−τ, 0].

(6)

Lemma 3. Let a, bi, τi > 0, i = 1, 2, . . . , N, φ(t) ∈ C([−τ, 0], [0, ∞)).
Then v1(t) ≤ v2(t), t ≥ 0, where v1, v2 are solutions of the scalar inequality (6) and the

scalar Equation (1), respectively.

Proof. There exists a function ξ ∈ C(R+,R+) such that (6) is equivalent to

(C
0Dq,ρv)(t) = −av(t) +

n

∑
i=1

biv(t− τi)− ξ(t), t > 0,

v(t) = φ(t), t ∈ [−τ, 0].

(7)

Let v1(t), t ∈ [−τ, ∞), be a solution of the scalar inequality (6). According to Lemma 2,
we have

v1(t) = φ(0)e
ρ−1

ρ (t−a)Eq(−a(
t
ρ
)q)

+
1
ρq

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)q−1Eq,q(−a(t− s)q)(
N

∑
i=1

biv1(s− τi)− ξ(s))ds.
(8)

Let v2(t), t ∈ [−τ, ∞), be a solution of the scalar Equation (1). Then,

v2(t) = φ(0)e
ρ−1

ρ (t−a)Eq(−a(
t
ρ
)q)

+
1
ρq

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)q−1Eq,q(−a(t− s)q)(
N

∑
i=1

biv2(s− τi)))ds.
(9)

Let τ = min{τi : 1 ≤ i ≤ N}.
For t ∈ [0, τ] it is clear that v1(t− τi) = v2(t− τi) = φ(t− τi), i = 1, 2, . . . , N, and

thus, v1(t) ≤ v2(t).
We will use induction with respect to the intervals [(k− 1)τ, kτ], k = 2, 3, . . . , to prove

the inequality. Assume the inequality v1(t) ≤ v2(t)holds for t ∈ [0, (k− 1)τ], k ≥ 2. Then,
for t ∈ [(k− 1)τ, kτ] the inequalities v1(t− τi) ≤ v2(t− τi), i = 1, 2, . . . , N, hold and from
(8) and (9) we have the validity of the inequality in the interval [0, kτ].

3. Generalized Proportional Fractional Integral and Derivative of Functions of Two
Variables

We will use the following notations: R+ = [0, ∞), ||x|| =
√

∑N
i=1 x2

i , x = (x1, x2, . . . , xN),

G ⊂ RN is a bounded open set containing the origin with smooth boundary ∂G and
mesG > 0.

We will use the following notation for u ∈ C(R+ × G,RN
), u = (u1, u2, . . . , uN):

||u||t =

√√√√∫
G

N

∑
i=1

u2
i (t, x)dx, t ≥ 0.

We will give the definitions for fractional type integrals and derivatives with respect
to the time variable of functions of two variables.

Let u ∈ C([0, b]× G,RN), 0 < b ≤ ∞ (in the case b = ∞, the interval is half open).
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Consider the generalized proportional fractional integral with respect to the time variable (as
long as all integrals are well defined)

(0I
q,ρ
t u)(t, x) =

1
ρqΓ(q)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)q−1u(s, x) ds, t ∈ (0, b], q ≥ 0, ρ ∈ (0, 1], x ∈ G,

and the generalized proportional Caputo fractional derivative with respect to the time variable (as
long as all integrals are well defined)

(C
0D

q,ρ
t u)(t, x) =

1− ρ

ρ1−qΓ(1− q)

∫ t

0
e

ρ−1
ρ (t−s) u(s, x)

(t− s)q ds

+
ρq

Γ(1− q)

∫ t

0
e

ρ−1
ρ (t−s)

(t− s)−q ∂u(s, x)
∂s

ds,

for t ∈ (0, b], q ∈ (0, 1), ρ ∈ (0, 1], x ∈ G.

Remark 1. If ρ = 1, then the generalized proportional Caputo fractional derivative w.r.t. the time
variable is reduced to the Caputo fractional derivative w.r.t. the time variable of order q ∈ (0, 1) :
C
a Dq

t u(t, x) = 1
Γ(1−q)

∫ t
0 (t− s)−q ∂

∂s u(s, x) ds.

Definition 1. We say u ∈ Cq,ρ([0, b]× G,RN) if u(t, x) is differentiable w.r.t. its time variable
t (i.e., ∂u(t,x)

∂t exists) and the generalized proportional Caputo fractional derivative w.r.t. the time
variable (C

0D
q,ρ
t u)(t, x) exists for all t ∈ (0, b].

We will use the following result, whose proof is similar to the one in Lemma 1 [25], so
we omit it:

Lemma 4. Let q ∈ (0, 1), ρ ∈ (0, 1] and u ∈ Cq,ρ([0, b]× G,R). Then, the inequality

(C
0D

q,ρ
t u2)(t, x) ≤ 2 u(t, x) (C

0D
q,ρ
t u)(t, x), t ∈ (0, b], x ∈ G

holds.

Remark 2. Note, in the special case of functions of one variable and ρ = 1 in Lemma 4 (i.e., the
application of the Caputo fractional derivative) the result was proved in [27].

In our further investigations, we will use the following Poincare-type integral inequality:

Lemma 5 ([28]). Let G = ∏N
k=1[ak, bk], ak, bk ∈ R, ak < bk, Λ = maxk=1,2,...,N |bk − ak|,

w ∈ C1(G,RN
) and w|∂G = 0. Then

∫
G w2(x)dx ≤ Λ2

4N
∫
G ∑N

j=1

(
∂w(x)

∂xj

)2
dx.

4. Reaction-Diffusion Model with Generalized Proportional Fractional Derivative:
Notations, Definitions and Preliminary Notes

In this paper, we will consider a class of fractional-order N-dimensional delayed
reaction-diffusion neural network model of Cohen-Grossberg type with a generalized
proportional Caputo fractional derivative with respect to the time variable for 0 < q <
1, ρ ∈ (0, 1] and several constant delays

(C
0D

q,ρ
t ui)(t, x) = −ai(ui(t, x))bi(ui(t, x)) +

m

∑
k=1

∂

∂xk

(
Dik(t, x)

∂ui(t, x)
∂xk

)

+ ai(ui(t, x))

[
N

∑
j=1

cij(t) f j(uj(t, x)) +
N

∑
j=1

wij(t)gj(uj(t− τi, x))

]
,

t > 0, x ∈ G, i = 1, 2, . . . , N,

(10)
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where x ∈ Rm, m ≥ 2, is the space variable, ui(t, x) represents the population density
of the i-th neural units at time t and in space x, N is the number of the neural units,
the transmission time-delay τj > 0, j = 1, 2, . . . , N, τ = max1≤k≤N τk, the amplification
functions ai ∈ C(R,R+), i = 1, 2, . . . , N, bi ∈ C(R,R), i = 1, 2, . . . , N, are appropriate
behaved functions, cij, wij ∈ C(R,R), i, j = 1, 2, . . . , N, are the connection weight matrices
and time-varying delay connection weight matrices of j-th neuron on the i-th neuron,
respectively, f j, gj ∈ C(R,R), j = 1, 2, . . . , N, are the activation functions, Dik(t, x) ≥ 0
for t ≥ 0, x ∈ G, are the transmission diffusion coefficients along the i-th neuron for
i = 1, 2, . . . , N, k = 1, 2, . . . , m. The term ∑m

k=1
∂

∂xk

(
Dik(t, x) ∂ui(t,x)

∂xk

)
denotes the diffusion.

Remark 3. Note the delays in the reaction–diffusion models have a simple physical interpretation:
the substance transfer in a local non-equilibrium medium possesses inertial properties, i.e., the
reaction of the system is not instantaneous but delayed for τi (see, for example, [29]).

We will investigate the behavior of the solutions of the fractional neural network
model (10) under the following boundary and initial value conditions:

ui(t, x) = 0, t ∈ [−τ, ∞), x ∈ ∂G, (11)

ui(s, x) = Ψi(s, x), s ∈ [−τ, 0], x ∈ G. (12)

We introduce the following assumptions:
(A1). There exist constants Θj, Ξj > 0, j = 1, 2, . . . , N, such that the activation

functions satisfy | f j(v1)− f j(v2)| ≤ Θj|v1− v2|, |gj(v1)− gj(v2)| ≤ Ξj|v1− v2| for v1, v2 ∈
R, j = 1, 2, . . . , N, and f j(0) = gj(0) = 0.

(A2). There exist constants Bj > 0 such that the well-behaved functions bj ∈ C(R,R) :
vbj(v) ≥ Bjv2 for v ∈ R, j = 1, 2, . . . , N and bj(0) = 0.

(A3). There exist positive constants αi, βi such that the amplification functions ai ∈
C(R,R+) and αi ≤ ai(v) ≤ βi, i = 1, 2, . . . ,N, v ∈ R.

(A4). The connection functions cij, wij ∈ C(R+,R), i, j = 1, 2, . . . , N and there exist
constants C̄, W̄ such that C̄ ≥ |cij(t)|, W̄ ≥ |wij(t)| for t ≥ 0, i, j = 1, 2, . . . , N.

(A5). There exist constants D̄i ≥ 0, i = 1, 2, . . . , N, such that Dij(t, x) ≥ D̄i for
t ≥ 0, x ∈ G, j = 1, 2, . . . , N.

Remark 4. Note the inequality vbj(v) ≥ Bjv2 in assumption (A2) could not be replaced by
bj(v) ≥ Bjv because this inequality is not applicable in the second line of (16) (see also, Assumption
A2 [30]).

The goal of our paper is to study the behaviour of the solutions of (10) when time is
increasing without bounds.

Theorem 1. Let the following conditions be satisfied:

1. The set G = {x ∈ RN : x = (x1, x2, . . . , xm), dk ≤ |xk| ≤ pk, k = 1, 2, . . . , m} where
dk, pk ∈ R+, Λ = max1≤k≤m(pk − dk).

2. The assumptions (A1)–(A5) are satisfied.
3. The delays τk > 0, k = 1, 2, . . . , N and τ = max{τk, k = 1, 2, . . . , N}.
4. The functions Ψj ∈ C([−τ, 0]× G, (0, ∞)), j = 1, 2, . . . , N.
5. The inequality

2 min
1≤k≤N

αkBk +
8m min1≤k≤N D̄k

Λ2

> max
1≤k≤N

βk

N

∑
j=1

(C̄Θj + W̄Ξj) + C̄ max
1≤j≤N

Θj

N

∑
k=1

βk +
√

2e
1−ρ

ρ NW̄ max
1≤k≤N

βk max
1≤j≤N

Ξj

(13)
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holds.

Then, any solution u ∈ Cq,ρ([0, ∞)× G,RN
) of the model (10) with the boundary and initial

value conditions (11) and (12) satisfies limt→∞ ||u||t = 0.

Proof. Let u ∈ Cq,ρ([0, ∞) × G,RN
), u = (u1, u2, . . . , uN) be a solution of (10) with the

boundary and initial value conditions (11), (12) for t ∈ [−τ, ∞), x ∈ G.
Consider the function V ∈ C([−τ, ∞),R+) defined by

V(t) =

{
0.5 ∑N

k=1
∫
G u2

k(t, x)dx = 0.5
∫
G ∑N

k=1 u2
k(t, x)dx t ≥ 0,

0.5
∫
G ∑N

k=1 Ψ2
k(t, x)dx t ∈ [−τ, 0].

Note V(t) = 0.5(||u||t)2, t ≥ 0 and the function V depends on the particularly chosen
solution of (10).

According to Lemma 4 we obtain for t > 0,

(C
0D

q,ρ
t V)(t) = 0.5

∫
G

N

∑
k=1

(C
0D

q,ρ
t u2

k)(t, x)dx ≤
∫
G

N

∑
k=1

uk(t, x)
(

C
0D

q,ρ
t uk

)
(t, x)dx. (14)

From the Green’s formula for the corresponding boundary condition, condition (A5)
and Lemma 5 we have the following estimate

∫
G

uk(t, x)
m

∑
j=1

∂

∂xj

(
Dkj(t, x)

∂uk(t, x)
∂xj

)
dx = −

m

∑
j=1

∫
G

Dkj(t, x)
(∂uk(t, x)

∂xj

)2
dx

≤ −4m
Λ2 D̄k

∫
G

u2
k(t, x)dx, t ≥ 0.

(15)

From Equation (10), conditions (A1)–(A4), we obtain for any k = 1, 2, . . . , N and
t > 0, x ∈ G,

uk(t, x) (C
0D

q,ρ
t uk)(t, x)

= −uk(t, x)ak(uk(t, x))bk(uk(t, x)) + uk(t, x)
m

∑
j=1

∂

∂xj

(
Dkj(t, x)

∂uk(t, x)
∂xj

)

+ uk(t, x)ak(uk(t, x))

[
N

∑
j=1

ckj(t) f j(uj(t, x)) +
N

∑
j=1

wij(t)gj(uj(t− τk, x))

]

≤ −αkBku2
k(t, x) + uk(t, x)

m

∑
j=1

∂

∂xj

(
Dkj(t, x)

∂uk(t, x)
∂xj

)

+ βk

[
N

∑
j=1
|ckj(t)|Θj|uk(t, x)| |uj(t, x)|+

N

∑
j=1
|wkj(t)|Ξk|uk(t, x)| |uj(t− τk, x)|

]

≤ −αkBku2
k(t, x) + uk(t, x)

m

∑
j=1

∂

∂xj

(
Dkj(t, x)

∂uk(t, x)
∂xj

)

+ 0.5βku2
k(t, x)

N

∑
j=1

(
C̄Θj + W̄Ξj

)
+ 0.5βk

N

∑
j=1

C̄Θju2
j (t, x) + 0.5βk

N

∑
j=1

W̄Ξju2
j (t− τj, x).

(16)
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From (14)–(16), we obtain the inequality

(C
0D

q,ρ
t V)(t) ≤ −

N

∑
k=1

αkBk

∫
G

u2
k(t, x)dx

+
N

∑
k=1

∫
G

uk(t, x)
m

∑
j=1

∂

∂xj

(
Dkj(t, x)

∂uk(t, x)
∂xj

)
dx

+ 0.5
N

∑
k=1

βk

∫
G

u2
k(t, x)dx

N

∑
j=1

(
C̄Θj + W̄Ξj

)
+ 0.5

N

∑
k=1

βk

N

∑
j=1

C̄Θj

∫
G

u2
j (t, x)dx + 0.5

N

∑
k=1

βk

N

∑
j=1

W̄Ξj

∫
G

u2
j (t− τj, x)dx

≤ −
[

min
1≤k≤N

αkBk +
4mB
Λ2 − 0.5β̄

N

∑
j=1

(C̄Θj + W̄Ξj)− 0.5C̄ max
1≤j≤N

Θj

N

∑
k=1

βk

]
V(t)

+ 0.5W̄ β̄ max
1≤j≤N

Ξj

N

∑
k=1

V(t− τk), t > 0,

(17)

where B = min1≤k≤N D̄k, β̄ = max1≤k≤N βk.
Thus, the function V(t) satisfies the scalar fractional differential inequality (6) with

a = min
1≤k≤N

αkBk +
4m min1≤k≤N D̄k

Λ2

− 0.5 max
1≤k≤N

βk

N

∑
j=1

(C̄Θj + W̄Ξj)− 0.5C̄ max
1≤j≤N

Θj

N

∑
k=1

βk,

bi = 0.5W̄ max
1≤k≤N

βk max
1≤j≤N

Ξj, i = 1, 2, . . . , N

φ(t) = 0.5
∫
G

N

∑
k=1

Ψ2
k(t, x)dx ≥ 0, t ∈ [−τ, 0].

(18)

From Lemma 3 the inequality V(t) ≤ v2(t), t ∈ [−τ, ∞) holds where v2(t) is the solu-
tion of the scalar fractional Equation (1) with a, bi, i = 1, 2 . . . , N, and φ ∈ C([−τ, 0], [0, ∞))
defined by (18). Moreover, note V(t) ≥ 0 for t ≥ 0 so 0 ≤ V(t) ≤ v2(t) for t ≥ 0. From
Lemma 1 if (13) holds then limt→∞ v2(t) = 0 and so limt→∞ V(t) i.e., 0 = limt→∞ V(t) =
0.5 limt→∞ ||u||t. This completes the proof.

According to Remark 1 we obtain the following result for the model (10), in which
the Caputo fractional derivative is applied instead of the generalized proportional Caputo
fractional derivative.

Corollary 1. Let the Conditions 1, 2, 3, 4 of Theorem 1 be satisfied and the inequality

2 min
1≤k≤N

αkBk +
8m min1≤k≤N D̄k

Λ2

> max
1≤k≤N

βk

N

∑
j=1

(C̄Θj + W̄Ξj) + C̄ max
1≤j≤N

Θj

N

∑
k=1

βk +
√

2NW̄ max
1≤k≤N

βk max
1≤j≤N

Ξj

(19)

holds.
Then, any solution u ∈ Cq,1([0, ∞)× G,RN

) of the model (10) with the Caputo fractional
derivative w.r.t. the time variable C

a Dq
t u(t, x) (instead of the generalized proportional Caputo

fractional derivative C
a Dq,ρ

t u(t, x)) and the boundary and initial value conditions (11), (12) satisfies
limt→∞ ||u||t = 0.
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Remark 5. Fractional neural networks with Caputo fractional derivatives and reaction-diffusion
terms are studied in [30,31] but the applied derivative of the Lyapunov function has no memory so
it could not be connected and replaced in the fractional model (see Definition 5 [31], line 16 page
4 right column [30]). Differently, in our paper we use the corresponding fractional derivative of
Lyapunov functions, which can be easily connected with the studied model.

Remark 6. The established comparison result (Lemma 2) for the scalar linear Equation (6) and its
combination with Lyapunov functions gives us the opportunity to avoid any assumption concerning
the behavior of the solution such as u(t− h) ≤ u(t), which is necessary for the proof of the main
results in some papers.

Remark 7. Note some authors apply the function V(t) defined as a sum of absolute values
instead of the quadratic function as in our work. However, the equality (C

t0
Dq,ρ|u(.)|)(t) =

sign u(t) (C
t0
Dq,ρu)(t) could be applied only if the sign of u(.) is not changeable in the considered

interval (see Lemma 2 [32]). Unfortunately, if we use the solution of the model, it is restrictive to
assume its sign to be unchangeable.

5. Applications

Example 1. Consider the following model with q ∈ (0, 1), ρ = 0.7

(C
0D

q,0.7
t u1)(t, x) = −[6 + 0.9 cos(u1(t, x))]u1(t, x)

+ (3 + cos(t))
∂2u1(t, x)

∂x2
1

+
∂2u1(t, x)

∂x2
2

+ [2 + 0.3 cos(u1(t, x))]
[
(0.2− 0.1 cos(t))

[
0.5(|u1(t, x) + 1| − |u1(t, x)− 1|)

]
+ (0.3− 0.1 sin(t))

[
0.5(|u2(t, x) + 1| − |u2(t, x)− 1|)

]
+ (0.1 + 0.1 cos(t))

[
0.5(|u1(t−

et

et + 1
, x) + 1| − |u1(t−

et

et + 1
, x)− 1|)

]
+ (0.2− 0.1 sin(t))

[
0.5(|u2(t−

et

et + 1
, x) + 1| − |u2(t−

et

et + 1
, x)− 1|)

]]
(C

0D
q,0.7
t u2)(t, x) = −[4 + 0.6 cos(u2(t, x))]u2(t, x)

+
∂2u2(t, x)

∂x2
1

+ (4 + sin(t))
∂2u2(t, x)

∂x2
2

+ [2 + 0.3 cos(u2(t, x))]
[
(0.3− 0.2 sin(t))[0.5(|u1(t, x) + 1| − |u1(t, x)− 1|)]

+ (0.4− 0.2 cos(t))[0.5(|u2(t, x) + 1| − |u2(t, x)− 1|)]

+ (0.3− 0.1 cos(t))
[
0.5(|u1(t−

et

et + 1
, x) + 1| − |u1(t−

et

et + 1
, x)− 1|)

]
+ (0.3− 0.1 cos(t))

[
0.5(|u2(t−

et

et + 1
, x) + 1| − |u2(t−

et

et + 1
, x)− 1|)

]]
,

for t > 0, |x1| ≤ 2, |x2| ≤ 2

(20)

under the following boundary and initial value conditions:

u1(t,±2,±2) = u2(t,±2,±2) = 0, t ∈ [−1, ∞), (21)

u1(s, x) = Ψ1(s, x), u2(s, x) = Ψ2(s, x). s ∈ [−1, 0], |x1| ≤ 2, |x2| ≤ 2. (22)

where x = (x1, x2).
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Thus, in the model (20) we have N = m = 2, fk(v) = gk(v) = 0.5(|v + 1| − |v− 1|),
τ1(t) = τ2(t) = et

et+1 , ak(v) = 2 + 0.3 cos(v), k = 1, 2, b1(v) = 3v, b2(v) = 2v for v ∈ R and[
c11 c12
c21 c22

]
=

[
0.2− 0.1 cos(t) 0.3− 0.1 sin(t)
0.3− 0.2 sin(t) 0.4− 0.2 cos(t)

]
,

[
w11 w12
w21 w22

]
=

[
0.1 + 0.1 cos(t) 0.2− 0.1 sin(t)
0.3− 0.2 sin(t) 0.3− 0.1 cos(t)

]
,

[
D11(t, x) D12(t, x)
D21(t, x) D22(t, x)

]
=

[
3 + cos(t) 1

1 4 + sin(t)

]
.

Assumptions (A1)–(A6) are satisfied with Θk = Ξk = 1, k = 1, 2, αk = 1.7, βk =
2.3, k = 1, 2, B1 = 3, B2 = 2, C̄ = 0.6, W̄ = 0.4, D̄1 = D̄2 = 0. Then

2 min
1≤k≤N

αkBk +
8N min1≤k≤N D̄k

Λ2 = 2(1.7)2 +
8(2)(1)

22 = 10.8

> max
1≤k≤N

βk

N

∑
j=1

(C̄Θj + W̄Ξj) + C̄ max
1≤j≤N

Θj

N

∑
k=1

βk +
√

2e
1−ρ

ρ NW̄ max
1≤k≤N

βk max
1≤j≤N

Ξj

= 1.3(0.6 ∗ 2 + 0.4 ∗ 2) + 0.6 ∗ 2.6 +
√

2 ∗ 2 ∗ 0.4 ∗ 1.3 e
1−0.7

0.7 = 6.05.

(23)

Therefore, all the conditions of Theorem 1 are satisfied and for any initial functions
Ψk(s, x1, x2) > 0, s ∈ [−1, 0], |x1| ≤ 2, |x2| ≤ 2, k = 1, 2 the corresponding solution
u(t, x) = (u1(t, x), u2(t, x)) of the model (20)–(22) satisfies

lim
t→∞
||u||t = lim

t→∞

∫
max{|x1|,|x2|}≤2

(
u2

1(t, x) + u2
2(t, x)

)
dx = 0 (24)

with x = (x1, x2).
Note inequality (23) holds for ρ ∈ [0.4, 1]. Therefore, according to Theorem 1 the

solutions of the model (20), (21), (22) satisfy (24) if ρ = 0.7 is replaced by any number on
the interval [0.4, 1]. Moreover, the behavior does not depend on the order q ∈ (0, 1) of the
fractional derivative.

Example 2. Consider the following fractional generalization of the standard reaction–diffusion
model [33] with q ∈ (0, 1), ρ = 0.7 and

(C
0D

q,0.7
t u)(t, x) = −ru2(t, x) + ru(t, x) + D

∂2u(t, x)
∂x2 , (25)

under the following boundary and initial value conditions:

u(t,±2,±2) = 0, t ≥ 0, u(0, x) = Ψ(x), |x| ≤ 2. (26)

Thus, in the model (20) we have N = m = 1, a(v) = v, b(v) = v for v ∈ R, fk(v) =
1, g(v) = 0, and c(t) = 1. Thus, Θ = 1, b = 1, C̃ = 1, α = β = 1, and D̃ = 1. Moreover, we
could consider W̄ = 0. Then, the inequality (13) is reduced to

2 +
8
22 = 4 > (1 + W̄Ξ) + 1 +

√
2e

1−ρ
ρ W̄Ξ = 2. (27)

Therefore, according to Theorem 1 the solutions of the model (25), (26) satisfy limt→∞ |u(t, x)| =
0 for |x| ≤ 2.
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6. Conclusions

In this paper, a delayed reaction-diffusion neural network model of fractional order
is investigated and the model consists of several constant delays. The generalized pro-
portional Caputo fractional derivative with respect to the time variable is applied; thus,
it gives opportunities for more adequate modeling of the behavior of the system. The
long-term behavior of the solution of the model, when the time is increasing without a
bound is studied. The Lyapunov functional approach combined with the generalized
proportional Caputo fractional derivative and the comparison principle are employed in
the development of the main results. As a special case of our results, we obtain some results
for delay Caputo fractional reaction-diffusion models known and studied in the literature.
The main goal of the example we provide is to illustrate the application of our obtained
sufficient conditions. In a future study, we hope to apply these theoretical results to some
particular models in science, biology, engineering or neurocomputing. Another practical
question concerns the existence of strictly positive solutions of the considered model, and
we hope to study this in the future.
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