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Abstract: Controlling soft robots is a significant challenge due to the nonlinear elastic nature of the
soft materials that conform their structure. This paper studies the identification and control problems
of a novel two-degrees-of-freedom, tendon-actuated, soft robotic arm. A decoupled identification
approach is presented; later, a fractional order control strategy is proposed and tested experimentally,
in comparison with PI solutions. The simulation and experimental results show the goodness of the
modeling and control approaches discussed.
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1. Introduction

One of the main objectives of robotics is to create universal and adaptable machines
capable of performing a variety of tasks and proactively adapting to changing conditions.
While conventional robots are able to perform specific tasks with exceptional precision,
speed or reliability, they find significant difficulties in adapting to other more compliant
tasks as well as in operating in completely unstructured environments.

To overcome these difficulties, the new field of soft robotics has emerged, where soft
elements are used to replace rigid robotic links and joints. The softness of these robots is a
promising feature for improving interaction with the environment. When comparing the
degrees of freedom (DoF) of a rigid manipulator versus a soft manipulator, it is observed
that rigid robots move in 6 DoF (position and orientation), while soft bodies have an infinite
number of DoF [1]. This feature provides them with capabilities such as adaptability and
better shock absorption.

Since soft robotics is a new, innovative and very active field of research, new designs
and methods of operation are continuously emerging. However, with such different
platforms and their unique attributes, it is difficult to find integrative methodologies for
their modeling and control [2].

Deformations of soft robots are difficult to predict, and actuators are often integrated
into the structure, resulting in a coupled actuation [3]. Soft materials also exhibit nonlineari-
ties such as compliance and hysteresis, which restrict high-frequency control. Conventional
control approaches assume the stiffness of the robot links, and when translated directly
to the control of robots with soft links, they do not adapt well. Therefore, new control
algorithms are required when working with soft robotics [4,5].

Concerning soft robot control, two approaches are mainly used: open loop control and
closed loop control. For the open loop approach, the most common technique used is the
finite element method (FEM) [6]. This method approximates the continuous deformation
of the system. For instance, in [3], a real-time FEM control model for a pneumatic robotic
manipulator is proposed. However, due to its high computational cost, FEM is often used
for offline validation of analytical models and experimental results [7]. The closed loop
(feedback) allows the correction of control inaccuracies due to external agents and model
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uncertainties. Nevertheless, a suitable model is also very important in this case in order to
find a suitable controller. The soft robot’s high complexity makes empirical or tuning rules
ineffective in this case. Two different approaches can be found in the literature for closed
loop control: the first focuses on the control of a soft actuator and the second focuses on
the control of the complete robot structure, which integrates all actuators and soft links.
For instance, some actuator control examples can be found in the control of dielectric
elastomers [8], twisted and coiled polymers [9], or shape memory alloys [10]. In this paper,
we apply the second approach.

A greater number of different methodologies are found in the control of the complete
soft system. Some examples are the use of model predictive control (MPC) together with a
simplified physical model of the joint space of a pneumatic soft robotic arm [11]; the soft
robotic arm driven by 12 wires embedded inside a silicon body made at the BioRobotics
Institute of Pisa, which uses a Proportional Integral Derivative (PID) control [12]; or the soft
robotic neck driven by three wires made at the RoboticsLab of the University Carlos III of
Madrid, which uses a fractional order controller (FOC) [13]. From these control techniques,
fractional order controllers have demonstrated to be a good alternative to their integer order
versions [14]. Nevertheless, control remains one of the main challenges in soft robotics.

Fractional order controllers allow the exponents of the integral and derivative actions
to be noninteger (fractional). This way, besides the three proportional (kp), integral (ki)
and derivative (kd) parameters defining the integer PID, a fractional order PID (FOPID)
introduces two other parameters into the tuning process: the orders of the integral (λ) and
derivative (µ) operations, respectively. This order generalization allows a higher number
of control specifications to be met and a wider variety of controller design methods, from
optimization to more intuitive graphical approaches [15].

The features provided by fractional order control are useful for controlling the dy-
namics of soft robotic systems where robustness and precision are important. Different
combinations of control actions can be selected according to each particular control problem.
For instance, an example of the potential of using a fractional order PI (FOPI) for the control
of a soft link is presented in [16], where a robust pose performance is obtained. The control
problem when using a fractional order PD (FOPD) for the case of a soft robotic neck is also
addressed in [17].

The aim of this paper is to develop a functional controller for the soft robotic arm
shown in Figure 1, developed at the RoboticsLab of the Universidad Carlos III of Madrid
(see [18] for details). Its innovative design is under a patenting process [19]. The arm acts
by means of a central soft element made up of NinjaFlex (thermoplastic polyurethane),
which allows the flexion in two axes of rotation thanks to the tension produced by three
tendons attached to the tip of the robot.

Figure 1. Soft robotic arm platform.
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In [18], an open loop actuation was performed on the soft arm using a kinematic
approach. However, using an open loop configuration makes it difficult to perform accurate
positioning and to respond to changes in the system, such as external loads. Since precision
is one of the most difficult goals in soft robotics, it is important to find an improvement in
control. Given the soft characteristics of the arm, when high loads are applied, it may bend
excessively. This is a challenge to be faced from the control side, which will be responsible
for limiting this extra bending while ensuring accurate positioning.

From these results, the need to use a closed loop configuration becomes clear. PID
controllers are one of the most widespread control methodologies; over 95% of control
loops are PI/PID type [20]. This is due to advantages such as their simple implementation
and the large number of tuning methods that are available and proving to be very useful
for a multitude of systems. However, this simplicity may become a disadvantage when the
system requires more demanding control constraints. When trying to control the soft arm
under certain conditions, the response may not be stable.

Therefore, a fractional order controller is proposed for the closed loop control of this
innovative soft arm, which presents different morphological characteristics with respect
to other soft robot designs. Designing, prototyping and controlling this robot are very
challenging problems not previously faced in the literature; this work addresses them all at
once and contributes to soft robotics real-world applications, and also to the experimental
application of fractional order controllers.

From the system identification perspective, a new methodology for decoupling the
soft robot model is presented, which allows decomposing the system into a simpler set of
subsystems. From the control system perspective, we propose a fractional order controller
and demonstrate experimentally how the generalization of a robust controller as the PI
into its fractional order version makes it possible to address the very challenging control
problems that arise from the soft nature of the robot.

The rest of the paper is organized as follows. Section 2 presents a detailed descrip-
tion of the soft arm platform and its operation. Section 3 describes the mathematical
methodology to deal with the modeling and decoupling of the system. Section 4 details the
methodology used for the system identification, and Section 5 describes the selection of the
control specifications and development of the controllers. Section 6 analyses the results,
comparing the data obtained from real experiments using different controllers and loads.
Finally, Section 7 summarizes the main conclusions of the work.

2. Description of the Soft Arm Platform

The actuation of the soft robotic arm (Figure 1) is achieved by varying the length of
each of the three tendons placed longitudinally inside its link. The tendons are routed
through the vertices of the triangles and are attached to the free end of the arm and to a
winch at the base. A motor is responsible for the pulling of each tendon and, therefore, for
the bending of the arm.

Unlike other designs that commonly have a cylindrical shape [21,22], this design
has a triangular morphology that allows different locking configurations. As shown in
Figure 2a,b, the maximum curvature is different when bending in the direction of the
triangle vertices than when bending in the direction of the triangle edges. This property
can be used for the protection of the structure when heavy loads are placed at the tip or
when a high flexion of the arm is demanded, which can compromise the integrity of the
robot. In addition, the configurations can be used as locks to help prevent the movement of
load [19].
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(a) (b)

Figure 2. Comparing panels (a,b), the maximum curvatures in the different directions of the soft
arm show that angle θ2 is greater than angle θ1. (a) Maximum curvature of the soft arm, angle θ1,
when bending in the direction of the vertices. (b) Maximum curvature of the soft arm, angle θ2, when
bending in the direction of the edges.

The initial length of the tendons is considered equal to the height of the soft arm,
which is 0.2 m in this design. These lengths are modified by the winding or unwinding
of the tendon as it rotates through the actuation of the motor, a Maxon EC-max 22. The
motors are controlled by Technosoft’s Intelligent Drives iPOS 4808 MX. The combination of
tendon lengths provides different tip positions. The tendons are numbered and arranged
for identification: tendon 1 is positioned on the Y-axis; tendons 2 and 3 are named coun-
terclockwise, 120° apart from each other, at a distance a from the center of the triangle, as
shown in Figure 3.

Figure 3. Description of tendon distribution in the soft arm.

The orientation of the end-effector, in a three-dimensional environment, can be defined
by the combination of the three Euler angles. In this case, Roll—the rotation defined by
the Z-axis—cannot change. Data are obtained from the inertial measurement unit (IMU)
(sensor 3DM-GX5-10) placed at the top of the arm. Therefore, the final orientation can be
described as the combination of Pitch and Yaw, these being the rotation angles around the
X and Y axis, respectively, as illustrated in Figure 4a,b.

Therefore, the soft arm can be considered as a multiple-input multiple-output (MIMO)
system with three inputs and two outputs. The inputs are the lengths of the tendons, which
are controlled by motors, and the outputs are the pitch and yaw angles, which are measured
by the IMU.
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(a) (b)

Figure 4. The panels show the flexion of the soft robotic arm (a) from a lateral view in positive
and negative pitch flexion and (b) from a top view in positive and negative yaw flexion. For a
negative pitch bending, panel (a) shows how the vertices will touch, preventing further bending in
that direction. For a positive pitch flexion, the edges need more bending for this contact to occur. The
yaw flexion in panel (b) has symmetry in the positive and negative directions. The combination of
pitch and yaw rotations allows movements with two degrees of freedom, and the limits of flexion
vary according to the combined rotations.

3. Modeling Approach

For modeling of the robotic system, a decoupling method is proposed so that the
MIMO system can be modeled as two independent SISO subsystems by addressing the
kinematic problem separately for the pitch (α) and yaw (β) movements. These two new
subsystems are more easily identifiable, allowing us to obtain the transfer functions Ga(s)
and Gb(s) for α and β, respectively.

To decouple the systems, as explained in [16], the angle α is described by the
following equation:

αi = cos(γi) f (Li) (1)

where αi is the angle contribution of each actuator to the final angle around the X-axis, γi is
the projection factor that depends on the relative angle of each actuator, Li is the variation of
the initial length of each tendon and f is a nonlinear function that describes the relationship
between them. Using the above methodology, a similar equation can be formulated for βi
as the angle contribution of each actuator to the final angle around the Y-axis:

βi = sin(γi) f (Li) (2)

The resulting tip angles depend on the forces produced by the linear actuators. There-
fore, given the construction of the robot, although the f-functions are nonlinear, the angles
can be considered additive, resulting in the following Equations (1) and (2):

α = α1 + α2 + α3 =

cos(γ1) f (L1) + cos(γ2) f (L2) + cos(γ3) f (L3) (3)

β = β1 + β2 + β3 =

sin(γ1) f (L1) + sin(γ2) f (L2) + sin(γ3) f (L3) (4)
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Equations (3) and (4) consider the same distribution of the actuators, and the values of
γi for this specific case are γ1 = 0◦, γ2 = 120◦ and γ3 = 240◦. Therefore, the equations can
be rewritten as

α = f (L1)− 0.5 · f (L2)− 0.5 · f (L3) =

f (L1)− 0.5 · [ f (L2) + f (L3)] (5)

β = 0 · f (L1) + 0.866 · f (L2)− 0.866 · f (L3) =

0.866 · [ f (L2)− f (L3)] (6)

Angles α and β depend on the difference in tendon length. Besides, as the same type of
actuator is used for each tendon, it can be assumed that the functions f relating the actuator
angle and the variation of each tendon length are also similar. Based on this, variables
α and β can be redefined as a linear combination of the tendon lengths without loss of
generality. In addition, it can be observed that, when acting in β, the tendon length L1s has
no influence on the movement, and for L1 = L2 = L3 = 0, angles α and β are 0 and the
length of the soft arm l is the length of the tendons at rest (no flexion).

Taking into account this redefinition of α and β, the variations in the tendon lengths
can be calculated from Equations (5) and (6) as follows:

L1 = α + 0.5 · [L2 + L3] (7)

L2 =
β

0.866
+ L3 (8)

L3 = − β

0.866
+ L2 (9)

The results of Equations (7)–(9) are a system of three unknowns—L1, L2, L3—and two
equations, since Equations (8) and (9) are the same equation. It is then assumed that, during
flexion, the curvature is constant. The assumption of constant curvature means that the
entire arm will have the same angle of curvature while performing, as occurs in the arc of
a circle. Considering the assumption of a constant curvature for this tendon distribution,
the following Equation (10) can be used [23], obtaining the third equation for the three
unknowns system, where the three unknowns can be related:

l =
l1 + l2 + l3

3
= l +

L1 + L2 + L3

3
(10)

where li is the length of the tendon with constant curvature and li = l + Li; consequently,
L1 + L2 + L3 = 0. By solving this system of equations, the resulting tendon lengths as a
function of angles α and β are

L1 =
α

1.5
(11)

L2 =
β

1.732
− α

3
(12)

L3 = − β

1.732
− α

3
(13)

In summary, through the decoupling process, the relationship between the tendon
lengths and angles α and β has been obtained (Equations (11)–(13)). Lengths Li will be the
references to be achieved by the motors when acting to reach a pose given by the pair (α, β).

Although an important nonlinear behavior is expected due to the system and material
properties, as observed in other experiments [16], it is the aim to propose a robust control
strategy based on FOC to overcome these modeling mismatches and achieve a good arm
performance. It is worth mentioning that our arm design approaches constant curvature
performance, and this assumption allows a significant simplification of the system model
versus others that require numerous parameters to be estimated and a high computational
cost when it comes to control [2].
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4. System Identification

This section describes the methodology used to identify the two SISO subsystems
addressed in the previous section. The identification is achieved through the two transfer
functions Ga(s) and Gb(s) introduced before, which are linear functions that use the Laplace
transform to represent the dynamic and stationary behaviors of any system.

The real data used for the identification process are the velocities commanding the
motors (system inputs) and the pitch and yaw angles or the arm measured by the IMU
(system outputs).

The reason behind the use of a velocity input model is the asymmetry of the pitch
performance and the gravity effect. As discussed above, seen from the YZ plane (Figure 4a),
a positive pitch movement is achieved by the actuation of two tendons, which are closer
to the central bending axis of the soft arm, whereas a negative pitch is achieved by the
other tendon further away from the bending axis. When a motor position input is used
for the identification, the system presents a strong asymmetry with respect to the positive
and negative pitch values α achieved, as shown in Figure 5. The data show a nonlinear
behavior that makes it impossible to formulate just one transfer function to represent the
system model for the whole pitch range. This problem is avoided when using a motor
velocity input, as will be discussed below, which yields a more consistent behavior in both
directions and facilitates both the system identification and the later control problem.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

-50

-40

-30

-20

-10

0

10

20

30

40

A
ng

le
 (

de
gr

ee
)

Figure 5. Identification data using motor position input and pitch output. Step references for α

within the range [−50,50] in steps of 10 degrees with a random ±1 noise and with constant β = 0
have been used. It can be seen that the pitch position reached in time is different for positive and
negative bending.

Therefore, the identification of the systems Ga(s) and Gb(s) is now addressed consid-
ering the motor angular velocity as input in radians per second, measured by the motor
encoders, and the pitch and yaw angles in degrees as outputs, respectively, measured by
the IMU. This difference in units has no practical implication other than to increase the gain
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of the identified function. Degrees have been chosen for the output for a better visualization
of the signal range, and radians per second for the motors because these are the units used
by the encoders.

Since this is a system where the input is an angular velocity and the output is an
angular position, the identification made is expected to contain an integrator in it. For the
identification of each system, a pulse train input alternating every two seconds between
the values of 3 and −3 radians per second is used, as shown in Figure 6 for the pitch
case. Since an integrator is expected, a step cannot be applied as the bending would grow
without limit.

During the identification tests, the variation of the angular position of the arm tip was
measured both in pitch and yaw directions. Due to the flexible nature of the arm, a slight
vibration occurs in the system when an abrupt change in velocity is applied. This effect is
more visible for the pitch case due to the action of gravity, as can be seen in Figure 6. The
parameters are initialized through the Instrument Variable (IV) method, and updated by
means of a nonlinear least-squares search method [24].
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Figure 6. Identification data using motor velocity input and pitch (left) and yaw (right) output.

Once the identification data are obtained, the corresponding two transfer functions
Ga(s) and Gb(s) are identified by defining some parameters such as the number of poles,
zeros and delay [25], which yields the following two second-order functions:

Ga(s) =
402.41

(s + 59.33)(s + 0.008883)
(14)

Gb(s) =
372.2

(s + 43.51)(s + 0.006044)
(15)

As can be observed, both transfer functions have a pole very close to the origin, which
represents dynamics similar to an integrator, as expected.

5. Control Specification and Tuning

In the following, integer and fractional order control approaches will be discussed
and analyzed. PI and FOPI controllers will be addressed. The PI structure has been
chosen against the conventional PID due to the fact that the derivative action amplifies
the vibration noise of the soft arm, and it is preferable to avoid it. Regarding the design
specifications, constraints on the phase margin (φm) and the gain crossover frequency (ωgc)
of the open loop control system will be imposed. These specifications are chosen because
they allow us through the phase margin (φm) to act on the damping ratio and through the
gain crossover frequency (ωgc) on the speed of the system response and stability.

The design of the PI controllers, which have the transfer function given in Equation (16),
has been widely discussed in the control literature [26–28], and there are different method-
ologies for the tuning of the controller parameters. In this work, the PID Tuning Algorithm
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of [20] has been used to obtain the parameters kp and ki that make it possible for the pitch
Ga(s) and yaw Gb(s) decoupled systems to fulfill the specifications of phase margin and
the gain crossover frequency.

CPI(s) = kp +
ki
s

(16)

Fractional order controllers rely on the use of noninteger orders (exponents of the
integral and derivative operations in the Laplace domain) to achieve design specifications
that their integer counterparts cannot meet, allowing the fulfillment of robust performance
constraints. In this work, the term robustness is used to refer to the ability to cope with the
action of external disturbances or loads that cause unwanted deformations in soft bodies,
while providing sufficient accuracy and keeping the overshoot of the response constant to
gain changes [15].

Fractional order PID controllers are proposed as a generalization of integer order PID
due to the fact that they offer a robust performance against changing plant parameters and
nonlinearities, as explained in [29]. As discussed above, the fractional order proportional
integral (FOPI) variant of this controller will be used in this case, whose transfer function is

CFOPI(s) = kp +
ki

sλ
(17)

where λ is the fractional order of the integral operator.
Classic tuning methods cannot be applied for fractional order controllers; therefore,

other techniques have been developed such as optimization [30], graphical approaches [31]
or others [15]. In this work, the iso-m method [13] will be applied, which allows for
controller tuning in a simple and intuitive way while avoiding optimization problems
such as local minima or graphical resolution. This approach provides all fractional order
controller parameters defined in Equation (17) for specific values of the phase margin and
gain crossover frequency, but keeping the open loop system phase flat, thus meeting the
desired specifications of stability and responsiveness of the system while providing a robust
system performance. In the case of the soft arm, the system itself shows a variable gain
during the operation, making the robust controller a need in order to achieve a constant
performance for all motions.

In order to analyze and compare the performance of the controllers, tuning with
different design conditions will be carried out.

Regarding the variation of the performance speed, this is achieved by the selection of
different values of the gain crossover frequency ωgc. The bigger the frequency, the faster
the system response. Regarding the variation of the soft arm loads, they are expected to
affect the nominal model of the system, mainly changing its gain. Therefore, the controller
has to perform robustly to gain changes, guaranteeing not only the system stability for
the whole gain range but a constant overshoot of the time response, which will limit the
undesired bending of the arm when heavy loads are carried.

5.1. The First Control Specifications: φm = 60◦ and ωgc = 1.5 rad/s

First, a PI controller is designed for each of the systems Ga(s) and Gb(s), defined
in Equations (14) and (15), using the PID tuning method cited before. The resulting
controller parameters are shown in Table 1, and their transfer functions are given by
Equations (18) and (19), respectively.

Table 1. PI controller parameters for φm = 60◦ and ωgc = 1.5 rad/s.

Plant kp ki

Ga(s) 0.1937 0.1603
Gb(s) 0.1546 0.1246

CPIα(s) = 0.1937 +
0.1603

s
(18)
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CPIβ
(s) = 0.1546 +

0.1246
s

(19)

Using the same specifications, the corresponding FOPI controllers are also designed
using the iso-m tuning method described in [13]. The following operations must be carried
out for the iso-m controller tuning for the pitch case:

Step 1. The system phase and phase slope found at ωgc are Φs = −91.1deg and
ms = −4.1deg/log(ω), respectively.

Step 2. The controller is required to contribute with a phase slope opposite to that of the
system—that is, m = 4.1deg/log(ω). Besides, in order to achieve the phase margin
specification, the controller has to provide a phase Φc = (−(−91.1) + 60− 180)deg
at ωcg—that is, Φc = −28.9deg.

Step 3. Based on these two values from Step 2, the fractional order resulting from the
slopes graph available in [13] is α = −0.38.

Step 4. Using these values, τa is computed (see [13] for more details), resulting τa = 6.1026.
Step 5. Finally, the controller gain k is computed, resulting k = 0.0361.
Step 6. Therefore, according to the method, the controller parameters are kp = 0.0361,

ka = 0.2205 and α = −0.38.

Following the same steps, the yaw controller was tuned, obtaining a slightly different
result. The corresponding controller parameters are shown in Table 2, and their transfer
functions are given by Equations (20) and (21), respectively.

Table 2. FOPI controller parameters for φm = 60o and ωgc = 1.5 rad/s.

Plant kp ki λ

Ga(s) 0.0361 0.2205 0.3800
Gb(s) 0.0361 0.1682 0.3900

CFOPIα
(s) = 0.0361 +

0.2205
s0.38 (20)

CFOPIβ
(s) = 0.0361 +

0.1682
s0.39 (21)

An approximation of the fractional order operator sλ is then needed in order to
implement the FOPI controller in the feedback control scheme of the soft arm. One of
the most common techniques is the equivalent pole-zero approximation described in [32],
based on the operator frequency response (see for example [33]). Using this method, the
resulting controller approximations are

C∗FOPIα
(s) =

14.24s3 + 89.98s2 + 40.91s + 1.583
s4 + 140.3s3 + 362.7s2 + 70.47s + 0.9836

(22)

C∗FOPIβ
(s) =

13.38s3 + 78.35s2 + 33.81s + 1.268
s4 + 158.8s3 + 391.7s2 + 72.29s + 0.9619

(23)

5.2. The Second Control Specifications: φm = 60◦ and ωgc = 5 rad/s

These specifications imply a faster system response but keeping a similar overshoot in
comparison with the first experiment. Following the previous tuning methods, the resulting
PI controller parameters and transfer functions are shown in Table 3 and Equations (24)
and (25), respectively; and the resulting FOPI controller parameters and transfer functions
are shown in Table 4 and Equations (26), (27), (28) and (29), respectively.

CPIα(s) = 0.6689 +
1.5800

s
(24)

CPIβ
(s) = 0.5395 +

1.1740
s

(25)



Fractal Fract. 2023, 7, 8 11 of 18

CFOPIα
(s) = 0.3083 +

0.9967
s0.46 (26)

CFOPIβ
(s) = 0.3168 +

0.7401
s0.52 (27)

C∗FOPIα
(s) =

515.2s3 + 7383s2 + 9064s + 1060
s4 + 1192s3 + 8329s2 + 4252s + 151.6

(28)

C∗FOPIβ
(s) =

717.2s3 + 7771s2 + 8203s + 901.6
s4 + 1849s3 + 1.043e04s2 + 4371s + 125.4

(29)

Table 3. PI controller parameters for φm = 60◦ and ωgc = 5 rad/s.

Plant kp ki

Ga(s) 0.6689 1.5800
Gb(s) 0.5395 1.1740

Table 4. FOPI controller parameters for φm = 60◦ and ωgc = 5 rad/s.

Plant kp ki λ

Ga(s) 0.3083 0.9967 0.4600
Gb(s) 0.3168 0.7401 0.5200

6. Experimental Results

In this section, the performance of the different controllers proposed will be compared
by means of their Bode and time response plots. The purpose is to test the system behavior
at different speeds and with different loads placed at its tip. The system robustness will be
addressed through a load test consisting of adding a 500 g disc at the tip of the arm.

6.1. First Experiment: Using Control Specifications φm = 60◦ and ωgc = 1.5 rad/s

The Bode plots of the open loop systems with the corresponding PI and FOPI con-
trollers are shown in Figure 7 for the PI case and Figure 8 for the FOPI case.

As can be seen, the phase margin and gain crossover frequency specifications are met
in all cases. However, regarding the robustness of the system, the effect of the iso-damping
property can be clearly observed in the Bode phase curves of the systems with the FOPI
controllers. A flat phase around the gain crossover frequency has been forced, ensuring
that variations in the gain of the system will not significantly affect the phase margin and,
therefore, achieving a constant overshoot.

Tests are carried out on the real system with the proposed controllers, testing the
time response to a pitch step reference of α = 40◦ and keeping a constant yaw angle of
β = 0◦. Figures 9 and 10 show the ideal time response represented as the dashed red line,
the experimental response of the system without load as the blue continuous line and the
experimental response with a load of 500 g as the orange continuous line.

Tables 5 and 6 show the response metrics of the systems with and without loads for
the PI and FOPI controllers, respectively. Data related to the peak value, peak time and
overshoot are presented together with the value of the root mean square error (RMSE)
during the first 8 s of the response calculated as

RMSE =

√
∑N

i=1(ŷi − yi)2

N
(30)
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where ŷi is the ideal response at sample i, yi is the corresponding experimental response
and N = 400 samples (8 s at 50 Hz). In addition, settling times of ts = 4.55 s and ts = 5.31 s
have been obtained for the PI and FOPI cases, respectively.

Even if the system performance is robust for both control approaches and only slight
differences can be noticed, it is remarkable that the overshoot for the FOPI case (15.1% for
simulation test) is smaller and its variation is also more constrained than for the PI case
(23.8% for simulation test).

In order to test the system performance under more demanding speed and trajectory
conditions, a second experiment will be carried out, as described in the following section.
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Bode plots for PI control of the pitch system.
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Bode plots for PI control of the yaw system.
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Figure 7. Bode plots of the open loop systems with the resulting PI controllers. Control specifications:
φm = 60◦ and ωgc = 1.5 rad/s. (a) Bode plots of the open loop system with the PI controller
corresponding to the pitch system. (b) Bode plots of the open loop system with the PI controller
corresponding to the yaw system.
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Figure 8. Bode plots of the open loop systems with the resulting FOPI controllers. Control specifica-
tions: φm = 60◦ and ωgc = 1.5 rad/s. (a) Bode plots of the open loop system with the FOPI controller
corresponding to the pitch system. (b) Bode plots of the open loop system with the FOPI controller
corresponding to the yaw system.



Fractal Fract. 2023, 7, 8 13 of 18

0 1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

Pitch 0g
Pitch 500g
Simulation

Figure 9. System response with the PI controller for a pitch step reference of α = 40◦ and a constant
yaw angle of β = 0◦. Control specifications: φm = 60◦ and ωgc = 1.5 rad/s.
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Figure 10. System response with the FOPI controller for a pitch step reference of α = 40◦ and a
constant yaw angle of β = 0◦. Control specifications: φm = 60◦ and ωgc = 1.5 rad/s.

Table 5. PI system response. Control specifications: φm = 60◦ and ωgc = 1.5 rad/s.

Data Peak Value (deg) Peak Time (s) Overshoot (%) RMSE

Simulation 49.5 2.2 23.8% -
PI: 0 g 50.4337 2.3 26.0842% 0.9765
PI: 500 g 52.8717 2.26 32.1794% 2.9153

Table 6. FOPI system response. Control specifications: φm = 60◦ and ωgc = 1.5 rad/s.

Data Peak Value (deg) Peak Time (s) Overshoot (%) RMSE

Simulation 46 2.05 15.1% -
FOPI: 0 g 46.4978 1.98 16.24% 0.8020
FOPI: 500 g 48.4998 1.96 21.24% 2.8854

6.2. Second Experiment: Using Control Specifications φm = 60◦ and ωgc = 5 rad/s

Now, a faster performance speed is required and the gain crossover frequency is
increased up to ωgc = 5 rad/s. The Bode plots of the open loop systems with the corre-
sponding PI and FOPI controllers are shown in Figure 11 for the PI case and Figure 12 for
the FOPI case.

As can be seen, the phase margin and gain crossover frequency specifications are
met in all the cases, and again, the robustness (iso-damping) constraint is fulfilled for the
FOPI case. The phase margin for frequencies close to ωgc drops rapidly to the instability
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region for the PI case, whereas the specified margin is maintained over a wider range of
frequencies for the FOPI case.
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Bode plots for PI control of the pitch system.
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Figure 11. Bode plots of the open loop systems with the resulting PI controllers. Control specifications:
φm = 60◦ and ωgc = 5 rad/s. (a) Bode plots of the open loop system with the PI controller
corresponding to the pitch system. (b) Bode plots of the open loop system with the PI controller
corresponding to the yaw system.
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Bode plots for FOC control of the yaw system.
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Figure 12. Bode plots of the open loop systems with the resulting FOPI controllers. Control specifica-
tions: φm = 60◦ and ωgc = 5 rad/s. (a) Bode plots of the open loop system with the FOPI controller
corresponding to the pitch system. (b) Bode plots of the open loop system with the FOPI controller
corresponding to the yaw system.

In order to test the system performance, an input reference has been selected for
the soft arm tip involving both pitch and yaw components. The trajectory is based on
a slight modification of the lemniscate of Bernoulli, with α and β following the next
parametric equations:

α =
(d
√

2cos(nt))
2(sin(nt)2 + 1)

(31)

β =
(d
√

2cos(nt)sin(nt))
(sin(nt)2 + 1)

(32)

where d is the distance from the focus to the origin and nt is the angle of the focal ratio
varying by steps of 0.005 radians at a frequency of 50 Hz.
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Figure 13 shows the time response of the system for the PI and FOPI cases with no
load at the tip. It can be seen that both controllers perform correctly and the arm tracks the
reference quite accurately.

There are three trajectory points where the arm tip is observed to slightly move away
from the reference: around [−22, 2], [−5, −11] and [5, −11], where the first coordinate
corresponds to the yaw angle and the second to the pitch. This is not due to the control but
to the mechanical nature of the arm and its constant curvature, which forces winding and
unwinding changes of the tendons when different movement regions are reached in order
to correctly track the reference.
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m gc = 5 rad/s. Tip load: 0g
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PI response

Figure 13. PI and FOPI system response to a lemniscate of Bernoulli input reference. Control
specifications: φm = 60◦ and ωgc = 5 rad/s. Tip load: 0 g.

When the same test is performed with a disc of 500 g placed at the arm tip, the system
shows the response of Figure 14. The presence of load makes the PI system unable to
track the reference in three of the four movement regions, and very significant oscillations
are observed. However, a better performance is fulfilled for the FOPI case, where model
mismatches caused by the mass are robustly faced, allowing much more accurate reference
tracking and ensuring the system stability. Only slight oscillations appear in some parts
of the trajectory, which could be reduced from the design stage by selecting the adequate
elasticity of the soft material according to the loads to be managed.
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Figure 14. PI and FOPI system response to a lemniscate of Bernoulli input reference. Control
specifications: φm = 60◦ and ωgc = 5 rad/s. Tip load: 500 g.

Table 7 shows the RMSE values both for pitch and yaw trajectory components for the
PI and FOPI controllers with and without load. It can be observed that, in comparison with
the RMS values obtained from the first experiment, where a step trajectory was selected, the
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tracking error in this second experiment has been reduced. As expected, the PI performance
with the 500 g load shows the worst results (more affected by the influence of gravity),
whereas the FOPI performance is remarkable.

Table 7. RMSE of controllers designed with φm = 60◦ and ωgc = 5 rad/s.

Trajectory Component FOPI: 0 g PI: 0 g FOPI: 500 g PI: 500 g

Pitch 0.8576 0.7357 0.6749 11.5717
Yaw 0.4862 0.4556 0.2271 0.6521

In order to asses the system behavior when a more demanding reference is used,
Figure 15 shows the PI and FOPI responses to a step input of α = 40◦ and β = 0◦ for the
500 g load case. The PI system shows a limit cycle performance, whereas the FOPI response
is far from instability.
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Figure 15. FOPI and PI controller (φm = 60◦ and ωgc = 5 rad/s) response to α = 40◦ and β = 0◦

with 500 g mass at the end.

From the tests, the difficulties that arise when controlling soft robots can be appreciated.
Working with masses or velocities causes the nonlinearities of the system to show up,
demonstrating a performance that is difficult to handle and predict. It has been observed
that for tasks without loads or where the soft body movement does not have to be fast, both
PI and FOPI work properly. However, when a faster response is needed, and when loads
are involved, the PI controller is not able to perform correctly, while the FOPI manages to
perform much more robustly.

A video of the experimental results discussed in this section for the case of the robot
supporting a load of 500 g (worst case) can be seen here: https://vimeo.com/762360018
(accessed on 15 December 2022).

7. Conclusions

The soft arm presented is a complex platform where new problems arise that require
methodologies to be used in real environments with precision. Due to deformations and
nonlinearities, these platforms are difficult to model and control. This work addresses this
challenge for the first time for this robotic platform.

Several conclusions can be drawn from the results presented in this paper. First
of all, satisfactory results have been obtained from the system identification based on
two decoupled transfer functions that accurately model the response of the arm. Second,
different controllers have been developed and a comparison has been made between them
based on tests such as the tracking of a trajectory with the shape of the Lemniscate curve
and the performance when a load is connected to the arm tip.

https://vimeo.com/762360018
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In this work, controllers have been designed with the following specifications: φm = 60◦

and ωgc = 1.5 rad/s. PI controllers are proposed and show stable responses when acting
under load, and this is also fulfilled by the FOPI controller. However, the challenge of soft
robot control lies in performing tasks with faster responses. This is the reason why tests
with specifications φm = 60◦ and ωgc = 5 rad/s have been carried out. In this case, the
PI controller that had previously been able to perform the control correctly encounters
difficulties in performing load management, not following the reference and showing an
oscillatory behavior. As a novel solution for this robot, the use of the FOPI controller
shows stable and robust performance, being able to perform the task demanded of the soft
arm correctly.

Future works will deal with the use of machine learning techniques for the modeling and
control of the soft arm in order to study how they compare with these analytical approaches.
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