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Abstract: In this article, we provide a metaheuristic-based solution for stability analysis of nonlinear
systems. We identify the optimal level set in the state space of these systems by combining two
optimization phases. This set is in a definite negative region of the time derivative for a polynomial
Lyapunov function (LF). Then, we consider a global optimization problem stated in two phases. The
first phase is an external optimization to search for a definite positive LF, whose derivative is definite
negative under linear matrix inequalities. The candidate LF coefficients are adjusted using a Jaya
metaheuristic optimization algorithm. The second phase is an internal optimization to ensure an
accurate estimate of the attraction region for each candidate LF that is optimized externally. The
key idea of the algorithm is based mainly on a Jaya optimization, which provides an efficient way
to characterize accurately the volume and shape of the maximal attraction domains. We conduct
numerical experiments to validate the proposed approach. Two potential real-world applications
are proposed.
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1. Introduction

A relevant problem in control engineering is examining the equilibrium point’s asymp-
totic stability in nonlinear dynamical processes. A nonlinear analysis regularly estimates
the asymptotic stability domain for equilibrium points [1]. A domain of attraction (DA) is
where the dynamical behavior of the system’s state variables is asymptotically stable. As
the initial states converge to an asymptotic stable equilibrium over varying time, a basin or
DA may be identified in the vicinity of that equilibrium point [2]. Estimating a DA is one
of the leading research subjects in nonlinear stability analysis [3]. The reader is referred
to [4] for other nonlinear stability analyses.

To design control strategies in nonlinear systems, an accurate identification of the
DA’s size and shape is needed [5]. However, estimating a DA in nonlinear systems is
problematic as this has no analytical solution [6]. Although the problem of DA estimation
has been widely studied, the synthesis of a nonlinear control design with attention to DA
maximization has been less explored [3].
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Developing nonlinear control designs that maximize a DA is a complex research topic.
This development involves a variety of significant fundamental issues, such as synthesizing
methods for systems’ asymptotic stability and enlarging the DA neighborhood around
equilibrium points [2]. In control theory, the Lyapunov direct method is used to investigate
the stability of controlled systems [5]. This method examines the asymptotic stability of an
equilibrium point when a positive definite function exists and must prove that its derivative
along the system’s solutions is definite negative [2]. Finding a candidate Lyapunov function
(LF) is challenging, and it is also hard to ensure the asymptotic equilibrium stability [1,6–8].
Aside from that, it has been proven that even if a candidate LF exists, it may not be unique
for an autonomous system representation [2]. A maximal candidate LF is a specific function
on a particular set that can be utilized to define the DA for a specified equilibrium point
which is featured with the asymptotical local stability [9].

Estimation of stability regions was studied in [10]. The authors presented existing
methods with a clear overview of benchmarking results related to the topic. Generally,
the literature shows that the DA estimation results using techniques based on the Lyapunov
theory provide a restricted area when compared with the theoretical domains. This con-
clusion is authentic in the case of finite and infinite areas [2,3]. An open DA’s geometrical
form is typically described using closed-contour level sets, such as ellipses or circles [11]. It
is essential to notice that the Lyapunov theory-based techniques commonly offer accurate
estimates in the vicinity of equilibrium points [12]. The control of rational systems using
linear fractional representations and linear matrix inequalities was studied in [13].

A recursive technique was developed in [14] to restrict the Jacobian matrix eigenvalues
for reactors network control. A steady-state method was used in [15] to analyze the stability
problem by applying bifurcation elements. A benchmark polymerization reactor was used
to validate the designed technique. A robust reactor electromicrobial system controller
based on a structured fractional transformation for renewable energy was proposed in [16].
A fractional-transformation-based intelligent H-infinity controller was proposed in [17].
There were several issues related to mechanical engineering practices that included an
eigenvalue optimization routine, which relied on an inner logarithmic barrier conversion
scheme [18]. In general, the Lyapunov stability theory offers different techniques and
approaches to approximate the DA by a candidate LF level set. In particular, a polynomial
development tool using a Taylor series expansion and the Kronecker product has been
well implemented in [19,20] to compute LFs. Then, it is requested to mainly estimate
the maximal LF level sets, which are included in the negative definite domain of its time
derivative. Computational and theoretical techniques were presented in [9] to estimate
the DA for the class of nonlinear autonomous systems. There, such techniques were
established by exploiting the concept of a maximal LF. Then, a partial differential equation
(PDE) describing a maximal candidate LF was presented, and the relations with the original
Zubov PDE were argued. A recursive algorithm was formulated to solve the new PDE.
This method provided novel rational candidate LFs rather than polynomial functions.

The modeling of design structures was proposed in [20] for control systems. There,
the Carleman linearization concept was used to transform a nonlinear system featured
by a finite dimension into an infinite-dimensional linear system. Then, an analysis of a
fixed-order truncation problem for the consequent infinite-dimensional equivalent linear
model was examined. Thus, the correlation between the model’s stability properties
and their equivalent linear property was stated. This approach was demonstrated to
be effective also in [20] if the closed-loop system’s local asymptotic stability is proven.
In [21], an optimization technique was used via linear matrix inequalities (LMIs) to assess
the size of DAs in nonlinear dynamical systems. Techniques that approached the DA
were recommended in [22] as the unification of an infinite number of LFs rather than an
only function.

Notice that the DA maximization and DA estimation are related concepts. Improve-
ments to solutions and novel techniques involve defining specific criteria and using meta-
heuristic optimization methods based on Lyapunov cost functions.
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The equilibrium state can be proved to be locally and asymptotically stable in spe-
cific sets of an optimization area, signifying that no bifurcation arises as the variables
vary [23–27]. The maximization of the DA applied to nonlinear polynomial systems was
studied in [28,29]. A metaheuristic optimization was implemented in [30,31] to maximize
the DA with a tangency constraint. A constrained global optimization technique was pro-
posed in [32,33] to estimate the DA of a stable equilibrium. Such an approach included the
tangency constraint between the level sets and conditions on the sign of the denominator
and numerator of the computed LF. The synthesized strategy avoided possible fake solu-
tions of the nonlinear optimization systems. A novel technique that expanded the DA of a
nonlinear affine system using the Zubov theorem was described in [34]. Note that analytical
estimation techniques that maximize the DA are recommended. The Lyapunov stability
theory that introduces a parameterized LF can be exploited to obtain an approximation
of the DA. Since the DA is defined as a specified candidate LF, the designed approach
involves computing parameters to achieve the optimal asymptotic stability region.

In [35], the authors addressed the problem of estimating the basin of attraction for the
particular class of fractional-order linear systems (FOLS). In that work, a stability study
for FOLS subject to a control input saturation constraint was stated. The problem was
tackled based on the Lyapunov direct method. There, using the ellipsoid technique, novel
stability criteria employing the saturation function were proposed for the DA estimation.
Additionally, the stability region concept was used to enhance the accuracy of the estima-
tion through an auxiliary feedback. The approach proposed in [35] has two interesting
advantages: (i) when employing the Lyapunov direct method, the proposed approach
was effective for designing and analyzing the problem; and (ii) the estimation of the DA
was performed with less conservative solutions. A five-dimensional Lorenz model with
a fractional-order derivative was examined in [36]. Currently, the works are focused on
estimating the global DA. A complete evaluation of the boundedness of the studied system
has been achieved utilizing the Lyapunov theory and the Mittag-Leffler function. Further-
more, an efficient control strategy has been established to ensure the stability of the derived
fractional chaotic system over a finite time. To the best of our knowledge, it is possible to
develop a numerical algorithm that simplifies the implementation of some techniques for
estimating and enlarging the DA.

Therefore, the main objectives of this work are to derive a precise computation of the
DA size and to obtain an explicit analytical expression that describes its geometric form.
A tangency constraint is examined as part of the optimization strategy about constraints
on the sign of the LF and its level sets. Such constraints ensure a maximum DA close to a
stable asymptotic equilibrium. A notable feature of our technique is that it can be applied
to polynomial nonlinear autonomous systems with second and third degrees. Furthermore,
as a particular outcome of the designed method in this article, it can estimate DAs more
efficiently than other techniques presented in the literature [21,32]. Last but not least, we
must point out that our technique results in significant reductions in computation time,
thereby facilitating its application to online tracking control problems.

The remaining of the present article is organized as follows. Throughout Section 2,
definitions and theorems are outlined to address the stability problem for nonlinear systems
and to establish the conditions under which the DA can be maximized. In Section 3, we
present two loops to enlarge the DA. The first loop is based on an LMI optimization
combined with the metaheuristic Jaya algorithm [37] to obtain the best candidate LF.
The second loop is reserved to describe a statistical approach that provides the DA based
on a combined structure, including the Jaya algorithm and the condition of the Lyapunov
theory. Section 4 provides a global algorithm to calculate the DA. The evaluation of the
investigated techniques in this article is carried out using two numerical applications based
on the Van der Pol oscillator model and an SIR epidemic model with three orders. Section 5
discusses critical performance criteria that characterize the studied method, as well as some
conclusions and future directions. A potential application to fractional epidemic models
for COVID-19 is proposed in the last section.
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2. Background, Definitions, and Theorems
2.1. Definitions and Context

Let the nonlinear autonomous system be defined by

ẋ = f (x), x ∈ Rn, (1)

where f is a polynomial satisfying f (0) = 0 and the origin is an equilibrium point. Note that
a fractional system can be identified when searching for an equilibrium point at f (x) = 0.

Definition 1. A point xeq ∈ Rn is called an equilibrium for the system given in (1) if f (xeq) = 0.

Definition 2. Let x(t, x(0)) denote the trajectory initiated at state x(0) in time t(0). The equilib-
rium xeq = 0 of the system formulated in (1) is asymptotically stable if there exists γ > 0 such that
limt→∞ x(t, x(0)) = 0, whenever ‖x(0)‖ < γ. With the Lyapunov stability theory, equilibrium
points can be assessed using LFs to analyze their stability.

Definition 3 (LF). Let V(x) be a continuously differentiable real-valued function defined on a do-
main Xv ∈ Rn containing an equilibrium xeq = 0. A function V(x) is an LF of equilibrium xeq = 0
for the system established in (1) if the following conditions hold: (i) V(x)/dt = [∇V(x)]> f (x);
(ii) V(x) is positive definite on Xv; and (iii) the time derivative of V(x) is negative definite on Xv.

Definition 4. The DA of the equilibrium point xeq = 0 is given by DA(0) = {x(0) ∈
Rn: limt→∞ x(t, x(0))→ 0}, where x(t, x(0)) denotes the solution of (1) starting at t(0) under
the initial condition x(0). As a result of the Lyapunov stability theory, several techniques can be
applied to identify asymptotic stability regions by mapping DA(0) to a set of levels of an equilibrium
point LF.

Theorem 1. Let V(x) ∈ R be a definite positive, continuously differentiable, and radially un-
bounded function. The bounded set described as Ωc = {x ∈ Rn: V(x) = c, c > 0} is a DA
approximation if Ωc ⊂ Γ, where Γ is defined by Γ = {x ∈ Rn; [∇V(x)]> f (x) < 0}. Therefore,
all trajectories that originate within region Ωc tend to xeq = 0 as time tends to infinity.

2.2. Enlarging the Estimated DA

The estimation of the DA is designed by Ωc∗ , such that c∗ = infx∈Rn V(x), subject
to: dV(x)/dt < 0. The problem is: (i) to choose an optimal parametric quadratic LF,
as V(x, P) = (xdv)>P(xdv), where dv is the order of V(x, P) and P is a symmetric parameter
matrix; and (ii) to compute the maximum of the largest estimated DA achievable within the
parametric quadratic LF stated as c∗ = supP>0 c∗(P), for a corresponding optimal matrix
P. Note that dv can be fractional. For all x, there is a positive definite function satisfying
∂V(x, P)/∂x + (c− V(x, P))q(x) < 0 [23]. For the order of a quadratic function V(x, P)
and its derivative specified by the parameters 2dv and dL, suppose that the degree of q(x)
is 2dq as specified in [23]. Then, from

dq ≥
dL
2
− dv, (2)

we have that the polynomial stated as

t(x, P, c, q(x)) =
∂V(x, P)

∂x
+ (c−V(x, P))q(x) (3)

has a degree equal to 2dm, where dm = dq + dv. Hence, we use a square matrix represen-
tation (SMR) and its complete form (CSMR) to attain a proper optimization problem [23].
The CSMR of t(x, P, c, q(x)) is described by T(α, P, c, Q) = D f (α, P) + cQ− F(Q), where
the CSMR of [∇V(x)]> f (x) is designated by D f (α, P), whereas Q and F(Q) correspond to
the polynomial q(x) and V(x, P)q(x), respectively.
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Note that D f (α, P) ∈ Rκ(n,dm)×κ(n,dm) is any appropriate symmetric matrix such that
D f (α, P) = (xdm)>D f (α, P)(xdm), for α ∈ Rτ(n,dm), is a vector of free parameters. Accord-
ingly, it can be established that the quantities κ(n, dm) and τ(n, dm) are written as

κ(n, dm) =
(n + dm)!

n!dm!
− 1,

and
τ(n, dm) =

1
2

κ(n, dm)(κ(n, dm) + 1)− κ(n, 2dm) + n.

From (3), we infer that if:

ĉ∗ = sup
α,Q,P>0

c; (4)

subject to: T(α, P, c, Q) < 0,

then ĉ∗ ≤ c∗. This fact yields nonconvexity. Theorem 2 is a new formulation that defines a
general eigenvalue problem (GEVP), facilitating the overcoming of the constraint stated
in (4).

Theorem 2 ([23]). Consider the system given in (1). For an arbitrary positive real number µ, there
exist matrices Z, D f , and F such that ρ∗ defines the GEVP solution of:

ρ∗ = inf
α,Q,ρ,P>0

ρ; (5)

subject to:


1 + µρ > 0,
Q > 0,
P > 0,
ρZ(Q, P) > D f (α, P)− F(Q, P),

which is feasible. In this case, there exists a quadratic LF for the system, such that, for all x(0) that
originate inside Ω(P, c), the trajectory of x(t) converges to the origin as t→ ∞. Moreover, Ω(P, c)
is a guaranteed ellipsoid DA and the lower bound ĉ∗ is defined by

ĉ∗ = − ρ∗

1 + µρ∗
. (6)

Note that Z(Q, P) can be rewritten as

Z(Q, P) = L>
([

1 0

0 µP

]
⊗ Q

)
L,

with ⊗ being the Kronecker product, and the matrix L satisfying that[
1 x{dv}

]>
⊗ x{dv} = Lx{dv}.

3. The Proposed Approach
3.1. Formulation of the Optimization Problem

The Lyapunov theory does not specify the function sets to which V(x) must belong.
Indeed, restricting this function to a specific set results in constraints on the possible
shapes of the level curves of V(x). Thus, it impacts the characteristics of the basin of the
DA. Statistical and numerical methods such as semidefinite-function-based optimization
techniques can help to approximate the DA [23,25,38–40].
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In the present work, we investigate an accurate technique that enhances the DA
characteristics based on results established in [23]. Then, we improve the method outcomes
by implementing a heuristic evolutionary algorithm as an advanced optimization method
to enlarge the asymptotic domain of stability.

As the DA is related to the LF, the proposed scheme involves the selection of the
optimal LF coefficients leading to the largest DA. These coefficients are calculated while
solving an optimization problem. We implement a metaheuristic method to resolve the
optimization problem. Indeed, metaheuristic methods are well-reputed due to the effective-
ness and robustness of their results in several circumstances and wide physical applications.
Such methods enable the characterization of an optimal LF parameter set. In [23], this
problem was tackled by exploiting the LMI optimization formalism.

As previously noted, ensuring the stability of internal dynamics over various op-
erational conditions is one of the most challenging problems when analyzing nonlinear
systems. As part of the present work, we propose an advanced LF approach. As a result of
this approach, the Lyapunov criteria are met, and the LF is calculated to maximize the DA
of the studied system. It follows that, with the appropriate LF, the dynamics will also be
asymptotically stable.

Having selected several candidate LFs, we find that each LMI associated with (5) can
be resolved by computing Ωc(P, c). For instance, one can define an objective function to
maximize the volume of the domain Ωc(P, c) such as

ϑ(Ωc(P, c)) =

√
cn

det(V(P, c))
.

This leads to the following convex optimization problem:

ϑ∗(Ωc(P, c)) = max
c,P>0

ϑ(Ωc(P, c)); (7)

subject to: (5)-(6).

Metaheuristic optimization techniques are implemented to estimate the coefficients for the
parameters P of the LF. The user-defined candidate LF is approved for both V(P, c) being
positive and dV(P, c)/dt being negative, as well as the relevant domain and conditions as
outlined by the problem formulated in (7). Unless these conditions are met, the LMI-GEVP
optimization outlined in (5) cannot be achieved. Consequently, we repeatedly estimate
the LF coefficients until a solution to the LMI-GEVP optimization is found. The reasoning
behind this criterion is that the parameters can be optimally estimated using metaheuristic
algorithms, and therefore, the volume ϑ(Ωc(P, c)) can be maximized. Our study focused
on the Jaya approach as an evolutionary optimization technique.

3.2. Proposed Jaya Algorithm and Its Steps

In its original form, the Jaya algorithm was conceived to solve both constrained and
unconstrained optimization problems. In essence, this algorithm is a population-based
metaheuristic that incorporates the properties of warm-based intelligence and evolutionary
algorithms [41–43]. Adapted from the law of survival of the fittest, Jaya is founded upon
the principles of natural selection. By contrast, the population of Jaya is attracted to the
finest global solutions while neglecting the worst. Moreover, this algorithm offers various
advantages over other peer-based optimization algorithms, including that it is easy to
implement and does not require algorithm-specific parameters’ initialization, such as the
size of the population and the number of iterations.

The procedure of the Jaya algorithm is discussed in detail in the following steps:

• Step 1: Set up the parameters of Jaya. The absence of control parameters characterizes
this algorithm. More specifically, it relies on two sets of parameters, the size of the
population Npop and the number of iterations Imax. To maximize the stability of the DA,
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the constrained problem to be optimized was illustrated in (7). Note that ϑ(Ωc(P, c))
is the objective function and Pl is the lth candidate solution position presented as

Pl =


a1,1 a1,2 a1,3 . . . a1,r
a2,1 a2,2 a2,3 . . . a2,r
a3,1 a3,2 a3,3 . . . a3,r

...
...

...
. . .

...
ar,1 ar,2 ar,3 . . . ar,r

, Pl = P>l , l ∈ {1, . . . , K}, (8)

with ai,j, for i, j ∈ {1, . . . , r}, being the coefficients of the LF and K the number of
Lyapunov matrix candidates.

• Step 2: State the range of ai,j between Lj and Uj. Initially, ai,j may be generated as

ai,j = Lj + (Uj − Lj)randi,j,

where randi,j is a random number between 0 and 1, and Lj and Uj are upper and lower
boundaries of the jth dimension. We specify an augmented matrix denoted by MJ
of size N × K as illustrated in (7), where K is the number of solutions and N is the
dimension of the solution. Note that

MJ =


P1

1 P1
2 . . . P1

K
P2

1 P2
2 . . . P2

K
...

...
. . .

...
PN

1 PN
2 . . . PN

K

.

For each solution, the objective function ϑ(Ωc(P, c)) is calculated and the solutions
of the matrix MJ are ordered increasingly based on their objective function values,
where the best solution is P1

1 , while the worst solution is PN
K .

• Step 3: Carry out iterations so that Jaya evolves. All solutions to the matrix MJ
are subject to adjustment as a result of the Jaya operator formulated as anew

i,j =

ai,j + rand1(abest,j − |ai,j|)− rand2(aworst,j − |ai,j|), where anew
i,j is the newly updated

solution; ai,j is the current solution; and rand1, rand2 are numbers generated randomly
in the range of [0, 1], which act as scaling factors and ensure a good diversification.
Note that aworst,j and abest,j are values of the jth dimension for the worst and best
solutions; |ai,j| is the absolute value of the jth dimension for the ith solution; and
anew

i,j , ai,j are the updated and original values of the jth dimension for the ith solution,
respectively. The term (abest,j − |ai,j|) indicates the tendency to seek the optimal solu-
tion, while (aworst,j − |ai,j|) states the tendency to reject the least-effective solution.

• Step 4: Update the memory MJ. If the generated individual Pnew
l outperforms the

original individual Pl , the new individual Pnew
l replaces the original individual Pl .

If not, the original is retained. Mathematically, this process can be summarized as:

Pl =

{
Pnew

l , if ϑ(Ω(Pnew
l , cnew)) > ϑ(Ω(Pl , c));

Pl , otherwise.

• Step 5: Repeat Steps 3 and 4 of the Jaya algorithm until the stopping condition is
reached. The latter is referred to as Imax, the maximum number of iterations.

The work procedure of the Jaya algorithm used for estimating the coefficients of an LF
is outlined in Algorithm 1.
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Algorithm 1 Search of DA.

Inputs:
Population size Npop.
Number of design variables K.
Number of iterations Imax.

Generate the initial population P0 by using (8).
Evaluate the fitness ϑ(Ωc(P0)) resolving the LMI-GEVP optimization stated in (5) and (6).
Obtain the radius c0.
Sort the population based on abest and aworst for each Pl candidate.
Fix k = 1 (k ≤ Imax) for l ∈ {1, . . . , K} and i, j ∈ {1, . . . , r}.
Generate rand1 ∈ [0, 1] and rand2 ∈ [0, 1].
Obtain anew

i,j = ai,j + rand1(abest,j − |ai,j|)− rand2(aworst,j − |ai,j|).
Apply LMI-GEVP in (5) and (6) if ϑ(Ω(Pnew

l , cnew)) ≥ ϑ(Ω(Pl , c)).
Determine P = Pnew

l and c = cnew.
Iterate for t = t + 1.
Output: the optimal solution is given by

Pbest =


abest

1,1 abest
1,2 abest

1,3 . . . abest
1,r

abest
2,1 abest

2,2 abest
2,3 . . . abest

2,r
abest

3,1 abest
3,2 abest

3,3 . . . abest
3,r

...
...

...
. . .

...
abest

r,1 abest
r,2 abest

r,3 . . . abest
r,r

; Pbest = (Pbest)
>,

and its corresponding fitness value ϑ(Ω(Pbest, cbest)).

3.3. Search for Optimal State Solution

Suppose that an LF V(x) is given, which means that:

V(x) > 0, Xv ∈ Rn,
∂V(x, P)

∂x
< 0, Xv ∈ Rn. (9)

According to Algorithm 1, we must choose the best LF that represents the objec-
tive function of the corresponding radius of the DA. Then, it is possible to calculate the
maximum level set of the LF, which is, in fact, an estimate of the DA, by solving the
pseudo-optimization problem stated as:

copt = max
x, c∈R

c; (10)

subject to: x ∈ {V(x)− c = 0} = Ωc, ∀x ∈ Ωc ⊆ Xv.

The philosophy behind the problem established in (10) is to find the set of maximum
levels of V(x) that is entirely contained in the definite negative region. Obtaining this result
involves solving a minimization problem for global optimality defined by:

copt = min
x, c∈R

c; (11)

subject to: V(x)− c = 0; c > 0,
∂V(x)

∂x
f (x) = 0.

In the expression given in (11), the problem is formulated as a nonlinear optimization.
This means that many of the solutions may be inaccurate estimates of the DA for the system
under study. We can have two types of solutions. The first can have a value of c less than
the desired estimate, which corresponds to a transverse intersection between the level set
V(x) and the level set V̇(x). A second solution checks the desired tangential intersection
between the level sets.
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The optimization problem can be analyzed graphically by intersections between sets
of levels, either by transverse intersections or tangent intersections. In the case of transverse
intersections, the solution of the optimization problem stated in (11) is evaluated with
a value of c less than that of the desired estimate. This solution does not correspond to
an optimal solution. Contrary to the solution of the transverse intersection, the tangential
intersection checks the desired solution between the level sets. Therefore, the solution of
the intersection corresponds to the correct optimization problem solution.

Considering the description earlier discussed, it can be stated that within a specific set
of levels V(x) = c to be an optimal estimate of the DA, it must satisfy the criteria:

C1. The level sets V(x)− c and ∂V(x)/∂x f (x) = 0 are cut tangentially.
C2. The optimal solution leaves the portion of the state space before a sign change of V(x)

and ∂V(x)/∂t takes place when |x| → ∞.
C3. The level set V(x) = c is qualified as a global minimum.

The verification of C1 eliminates dummy solutions such as that obtained from the
transverse intersection. C2 proves the desired solution, while C3 guarantees a global
minimum solution. Now, we perform a Jaya sampling on V(x) and V̇(x) in a region of
interest in the state space Xv ⊆ Rn. Automatic differentiation is applied to calculate the
time derivative V̇(x) for the nonlinear system. An estimation of the DA is carried out using
Algorithm 2, a modified version of the algorithm established in [38]. Samples V(x) are
stored in a list E, which is subsequently employed to estimate the DA.

Algorithm 2 Computation of the optimum solution of the largest estimated DA.

Inputs:
System ẋ = f (x); V(x) = x>Px, P > 0.
Ωc0 = {x ∈ Rn: V(x) = x>Px = c0}.
From Algorithm 1, E = {0}, cmax = +∞, cmin = 0.

For k = 1: Imax
Pick randomly x(k) using the Jaya algorithm.
Identify the best solution xbest and its corresponding fitness value V(xbest), V̇(xbest).
State the best solution xworst and its corresponding fitness value V(xworst), V̇(xworst).
Update the population and generate the trial matrix given by
xnew

i,j = xi,j + rand1(xbest,j − |xi,j|)− rand2(xworst,j − |xi,j|).
Evaluate V(xnew

i,j ) and V̇(xnew
i,j ) = ∂V(xnew

i,j )/∂x f (xnew
i,j ) considering V̇(xnew

i,j ) < 0 and
V(xnew

i,j ) < cmax.
State E = {V(xnew

i,j )} if V(xnew
i,j ) > cmin.

Determine cmin = V(xnew
i,j ) else V̇(xnew

i,j ) ≥ 0 and V(xnew
i,j ) < cmax.

Establish cmax = V(x(k)) if cmin ≥ cmax.
Obtain cmax,best = sup{c ∈ E, c ≤ cmax}.
Output: cmax,best, xopt,best.

4. Applications
4.1. Global Algorithm

A candidate LF algorithm with steps A–C (Loops 1–3) is proposed to synthesize the
optimal LF and the corresponding estimated DA as follows:

A. Loop 1 [Search for V(x, P) = x>Px and P = P>, with V(x) fixed]: Specify a parametric
LF V(x, P), given a CSMR of polynomials that provides all the possible representations
in terms of a quadratic form to obtain an LMI, and determine its maximum sublevel
set c∗ by using a bilinear search in two steps:

A1. Find a CSMR for the polynomial t(x, c, P, q(x)) = V̇(x, P) + (c − V(x, P))q(x)
and pick randomly P(a) using the Jaya algorithm anew

i,j = ai,j + rand1(abest,j −
|ai,j|)− rand2(aworst,j)|ai,j|).
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A2. State the maximum sublevel set and then search for a feasible LMI-GEVP c∗ =
maxP>0 c, subject to (5) and (6).

The two steps of Loop 1 must be repeated sequentially until c∗ stops to increase, and
the iteration count is reached. Based on this linear search, we can define an optimal
LF and the corresponding stability region domain, which satisfies the definitions
presented in (9).

B. Loop 2 [Search for the largest estimated DA]: Use the sampling search method to
calculate the optimum state solution of the problem defined in (11) consisting of
two steps:

B1. Fix V(x) obtained from Loop 1 and pick randomly x using the Jaya algorithm
xnew

i,j = xi,j + rand1(xbest,j − |xi,j|)− rand2(xworst,j − |xi,j|).
B2. Evaluate V(x) and then magnify the estimated DA, with the optimal solution

being found using (11).

C. Loop 3 [Identification of the optimal solution] Find both optimal solutions of the
problem proposed by the Lyapunov theory, state limits for which the LF is defined
positive and its derivative is defined negative, and then enlarge the estimated DA.
As mentioned, the optimum V(x) can be found using (11). Once the optimal solution
V(x) has been obtained, it can be transmitted to Loop 1, which begins another iteration.
The process is repeated sequentially until the stop condition is met.

Figure 1 illustrates the flowchart describing the developed strategy.

Figure 1. Workflow of the global algorithm.

4.2. Application 1

Unlike a conventional oscillator, a Van der Pol oscillator has nonlinear damping and is
nonconservative. Then, a high amplitude is associated with energy dissipation, whereas
a low amplitude is related to energy generation. Moreover, there is a steady state where
energy generation and dissipation oscillate. We define the limit cycle as the state towards
which the oscillations converge. As one of the pioneers of radio and telecommunications,
Balthasar Van der Pol established the standard for the techniques based on his proposals. It
was while he was working for Philips that these oscillators were discovered. He designed
an electronic circuit for human heart models and originally came up with the concept of
this system. His study has become the cornerstone of systems that oscillate within limit
cycles as a consequence of the unique nature of the discovered oscillator.
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Interestingly, the Van der Pol oscillator has become a standard system for oscillatory
models across various sciences, including biology, economics, physics, and sociology. As
an illustration of its use, this model was applied to simulate the dynamics of electrical
potential across neurons in a lobster’s gastric mill membrane. Fitzhugh and Nagumo
also adapted this model to explain big squid axons’ spike generation phenomena [44,45].
Furthermore, the Van der Pol model was applied to the Burridge–Knopoff system to account
for earthquake faults characterized by viscous friction [46]. In light of this, it would be
interesting to gain a thorough understanding of the benchmark Van der Pol oscillator due
to its broad range of applications.

Consider the state-space representation of the Van der Pol model formulated as{
ẋ1 = −x2;
ẋ2 = x1 − x2 + x2

1x2.
(12)

In this illustration, to analyze the system stability, we consider two different candidate LFs:

LF1. Quadratic function: V1(x) = (θ1(x))>P1θ1(x), with θ1(x) = x = [x1 x2]
>.

LF2. Polynomial function: V2(x) = (θ2(x))>P2θ2(x) having degree four in x, with θ2(x) =
x{2} = [x1 x2 x2

1 x1x2 x2
2]
>, P1 ∈ R2×2 and P2 ∈ R5×5 being symmetric matrices to

be determined.

A. First loop:

The DA using LF1 is given by

P1 =

[
a1 a2
a2 a3

]
, V1(x) = a1x2

1 + 2a2x1x2 + a3x2
2.

To determine a linear matrix decomposition as in (5), note that the quadratic LF’s
degree concerning x was two and the degree of the system dynamic of the Van der Pol
oscillator was three. Then, V̇(x) had a degree dL = 4. Let q(x) be defined as q(x) =
q1x2

1 + 2q2x1x2 + q3x2
2. Thus, the matrices D f (α, P1), Z(Q, P1) and F(Q, P1) stated in (5) are

as follows:

D f (α, P1) =


2a2 −(a1 + a2 − a3) 0 α1 α2

−(a1 + a2 − a3) −2(a2 + a3) −α1 −α2 0
0 −α1 0 a2 α3
α1 −α2 −α1 −2(α3 − a3) 0
α2 0 −α1 0 0

,

Q =

[
q1 q2
q2 q3

]
,

Z(Q, P1) =


q1 q2
q2 q3 zeros(2, 3)

µa1q1 µ(a1q2 + a2q1) 0
zeros(3, 2) µ(a1q2 + a2q1) µ(a1n3 + 4a2q2 + a3q1) µ(a2q3 + a3q2)

0 µ(a2q3 + a3q2) µa3 q3

,

F(Q, P1) =


zeros(2, 5)

a1q1 µa1q1 (a1q2 + a2q1) 0
zeros(3, 2) (a1q2 + a2q1 µ(a1q2 + a2q1) (a1q3 + 4a2q2 + a3q1) (a2q3 + a3q2)

0 0 (a2q3 + a3q2) 0

.

Hence, we have three free parameters α = [α1 α2 α3]
>. By solving (5) with µ = 0.1

and applying Algorithm 1 with a population size of 50 and 150 iterations, we obtain the
Lyapunov matrix given by
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P1 =

[
3 −0.99
−0.99 2.0759

]
.

Consequently, the value of the radius domain is ĉ∗ = 4.8332. The corresponding volume
of the DA is Vol(Ωc(Pnew

1 )) = 2.1084. The set of the domain is described as Ωc = {x ∈
Rn: V1(x) = 3x2

1 − 1.98x1x2 + 2.0759x2
2 = 4.8332}. Figure 2 shows the limit cycle in red

and the level sets of the certifying LFs in green.

Figure 2. DA from the first loop.

B. Second loop:

Next, we consider the LF V1(x) = 3x2
1 − 1.98x1x2 + 2.0759x2

2 and then

V̇1(x) =
∂V̇1(x)

∂t
=

∂V1(x)
∂x

f (x) = −1.98x2
1 − 12.13x1x2 − 2.17x2

2 − 1.98x3
1x2 + 4.15x2

1x2
2.

In this respect, we begin encoding variables whose particle position is specified about
vector θ1(x(k)) = x(k) = [x(k)1 x(k)2 ]>. We state the LF as a fitness function of the Jaya

algorithm given by V1(x(k)) = 3(x(k)1 )2 − 1.98x(k)1 x(k)2 + 2.0759(x(k)2 )2 = copt and then

its derivative is V̇1(x(k)) = −1.98(x(k)1 )2 − 12.13x(k)1 x(k)2 − 2.17(x(k)2 )2 − 1.98(x(k)1 )3x(k)2 +

4.15(x(k)1 )2(x(k)2 )2 < 0. Subsequently, the proposed approach utilizing the Jaya algorithm
ascertains the values of V1(xopt), V̇1(xopt) and xopt = [x1opt x2opt ]

>. Next, the parameter
settings used for the Jaya algorithm are stated. The application of Algorithm 2, based on a
population size of 50 and 150 iterations, provides the optimum solutions. These solutions
belong to the line tangent to the DA obtained after evaluating the optimization outcome.
Hence, we select the following:

xopt =



[
1.091 1.459

]>,[
−1.091 −1.459

]>,[
0.864 −0.832

]>,[
−0.864 0.832

]>,

and the radius value of the DA is copt,best = 4.83654. Figure 3 (top) illustrates the evolution
of the radius value of the DA, and Figure 3 (bottom) depicts the optimum solutions and the
level set of the best DA.
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Figure 3. Iterative variation of c using the method with a quadratic LF for the Van der Pol application
(top) and DA and optimum state solution (bottom).

C. DA using LF2:

We use the polynomial function V2(x) = (θ2(x))>P2θ2(x), with

P2 =


a1 a2 0 0 0
a2 a3 0 0 0
0 0 a4 a5 a6
0 0 a5 a7 a8
0 0 a6 a8 a9

.

Then, we have that

V2(x) = a1x2
1 + 2a2x1x2 + a3x2

2 + a4x4
1 + 2a5x3

1x2 + (2a6 + a7)x2
1x2

2 + 2a8x1x3
2 + a9x4

2.



Fractal Fract. 2023, 7, 78 14 of 25

To determine a linear matrix decomposition as in the LMI given by (5), observe that
the polynomial LF degree is four and the degree of the Van der Pol model is three. Thus,
we obtain V̇2(x) with a degree dL that is equal to six. For instance, let q(x) be defined as
q(x) = q1x2

1 + 2q2x1x2 + q3x2
2. Then, the matrices D f (α, P2), Z(Q, P2) and F(Q, P2) in (5)

are given by

D f (P2) =



2a2 (a3−a1−a2) 0 0 0 0 0 0 0
∗ −2(a2+a3) 0 0 0 0 0 0 0
∗ ∗ 2a5 (2a6+a7+a2−2a4−a5) 0 0 0 0 0
∗ ∗ ∗ (−4a6−2a7+2a3−6a5) (−2a6−a7+2a9−3a8) 0 0 0 0
∗ ∗ ∗ ∗ (−2a8−4a9) 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 2a5 0 0
∗ ∗ ∗ ∗ ∗ ∗ (4a6+2a7) 3a8 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 4a9 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0


,

D f (α) =



0 0 0 α1 α2 α3 α4+α17 α5+α20 α6+α18
∗ 0 −α1 −α2 0 −α4 −α5 −α6 α19
∗ ∗ −2α3 −α17 α7 0 α8 α9+α13 α10+α12
∗ ∗ ∗ −2(α7+α20) −α8 −α8 −α9 −α10 α11
∗ ∗ ∗ ∗ −2α19 −α13 −α12 −α11 0
∗ ∗ ∗ ∗ ∗ 0 2a5 α14 α15
∗ ∗ ∗ ∗ ∗ ∗ 0 0 α16
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

,

D f (α, P2) = D f (P2) + D f (α),

Q =

[
q1 q2
q2 q3

]
,

Z(Q, P2) =



q1 q2 0 0 0 0 0 0 0
∗ q3 0 0 0 0 0 0 0
∗ ∗ β1 β2 0 0 0 0 0
∗ ∗ 0 β3 β4 0 0 0 0
∗ ∗ 0 0 β5 0 0 0 0
∗ ∗ 0 0 0 β6 β7 0 0
∗ ∗ 0 0 0 0 β8 β9 0
∗ ∗ 0 0 0 0 0 β10 β11
∗ ∗ 0 0 0 0 0 0 β12


,

F(Q, P2) =



0 0 0 0 0 0 0 0 0
∗ 0 0 0 0 0 0 0 0
∗ ∗ β1 β2 0 0 0 0 0
∗ ∗ 0 β3 β4 0 0 0 0
∗ ∗ 0 0 β5 0 0 0 0
∗ ∗ 0 0 0 β6 β7 0 0
∗ ∗ 0 0 0 0 β8 β9 0
∗ ∗ 0 0 0 0 0 β10 β11
∗ ∗ 0 0 0 0 0 0 β12


,

with 

β1 = µq1 a1
β2 = µq1a2 + µq2 a1
β3 = µq1a3 + µq3a1 + 4µq2 a2
β4 = µq2a3 + µq3 a2
β5 = µq3 a3
β6 = µq1 a4
β7 = µq1a5 + µq2 a4
β8 = µq3a4 + µq1a7 + 2µq1a6 + 4µq2 a5
β9 = µq1a8 + 2µq2a6 + µq2a7 + µq3 a5
β10 = µq1a9 + 2µq3a6 + µq3a7 + 4µq2 a5
β11 = µq2a9 + µq3 a9
β12 = µq3a9.

.
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For µ = 0.1, the optimization problem stated in (4) to maximize the DA volume is
solved by considering the evaluation of inequalities (5) and (6) and the iterative procedure
of different steps, leading to

ĉ∗ = 13.1333,

P2 =


3.9317 −2.3438 0 0 0
−2.3438 5 0 0 0

0 0 2.9422 −0.7491 0.6947
0 0 −0.7491 0.9190 −0.5425
0 0 0.6947 −0.5425 0.2048

,

and

Ωc = {x ∈ R2: V2(x) = 3.9317x2
1 − 4.6876x1x2 + 5x2

2 + 2.9422x4
1

−1.4982x3
1x2 + 2.3084x2

1x2
2 − 1.0850x1x3

2 + 0.2048x4
2 = 13.1333}

Figure 4 shows the limit cycle and the level sets of the certifying LFs.

Figure 4. DA and optimum state solution.

Then, we consider the LF given by

V2(x) = 3.9317x2
1 − 4.6876x1x2 + 5x2

2 + 2.9422x4
1 − 1.4982x3

1x2 + 2.3084x2
1x2

2 − 1.0850x1x3
2 + 0.2048x4

2.

We calculate the derivative of V2(x), with V̇2(x) = ∂V2(x)/∂t = ∂V2(x)/∂x f (x).
Hence, we begin encoding variables whose particle position is specified regarding the
vector θ2(x(k)) = [x(k)1 x(k)2 (x(k)1 )2 x(k)1 x(k)2 (x(k)2 )2]>. We consider the LF as a fitness function
of the Jaya algorithm stated as

V2(x(k)) = 3.9317(x(k)1 )2 − 4.6876x(k)1 x(k)2 + 5(x(k)2 )2 + 2.9422(x(k)1 )4 − 1.4982(x(k)1 )3x(k)2

+2.3084(x(k)1 )2(x(k)2 )2 − 1.0850(x(k)1 )(x(k)2 )3 + 0.2048(x(k)2 )4

= copt,

and its derivative given by V̇2(x(k)) = ∂V2(x(k))/∂t = ∂V2(x(k))/∂x f (x(k)). Subsequently,
the proposed approach uses the Jaya algorithm to ascertain the value of V2(xopt), V̇2(xopt),
and xopt = [x1opt x2opt ]

>. The parameter settings employed for the Jaya algorithm are the
following. In the application of Algorithm 2, we utilize a population size of 50 and 150
iterations, giving the optimum solutions that belong to the line tangent to the DA.
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Figure 5 (top) depicts the optimum solutions obtained after evaluating the optimization
outcome. The following results are selected:

xopt =


[
−0.92 0.68

]>,[
0.92 −0.68

]> .

Figure 5. Iterative variation of c using the method with a quadratic LF for the Van der Pol application
(top) and DA and optimum state solution (bottom).
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4.3. Application 2

A significant feature of the compartmental modeling methods is that they are very
commonly utilized. In particular, infectious diseases are often modeled mathematically
using such methods. Therefore, in the compartmentalized analysis, the population is
categorized according to the resulting labels: R, I, S, or recovered, infectious, or susceptible.
As a rule of thumb, there is usually a flow pattern evident in the labels’ order, such as IESI,
which indicates infectious, exposed, susceptible, and then infectious once again. These
models date back to the early 20th century. Among the most important works are those of
Kendall in 1956, Kermack and McKendrick in 1927, and Ross and Hudson in 1917. Most
models are run based on deterministic ordinary differential equations. However, they can
also be established using a stochastic mechanism. In turn, this seems more realistic but
much more challenging to analyze. A model predicts how a disease will spread, how many
people will be infected, or how long an epidemic will last.

In addition to these predictions, the model attempts to estimate various epidemi-
ological factors, such as the reproductive rate. Using epidemic models, one can better
understand how several public health actions impact the epidemic’s outcome. For example,
how to issue a limited number of vaccines efficiently for an assumed population. For
disease modeling, specifically for COVID-19’s investigation, the SIR model is typically
used [47]. For decades, the dynamics of SIR models have been explored, examining chaos,
bifurcation, and the stability problem analysis [48]. It is generally assumed that the recovery
rate is constant in almost all research studies. However, the fact remains that the recov-
ery rate depends on several considerations, including health system strategies, logistics,
and medication availability. There has been a great deal of research in the past few years on
models of systems described by differential equations with fractional operators [49]. It has
also been noted that several works have investigated epidemic models with a fractional
operator. This is so since they provide a comprehensive description of diseases from both
physical and biological standpoints [48]. In this application, we use the advanced design
technique of this current work. This enables us to evaluate the maximal DA in the context
of an extended SIR epidemic model.

Many researchers have addressed the epidemic SIR model in the literature [50–52].
In mathematical epidemiology, the SIR model describes how an infectious disease spreads.
In [53], the SIR model was used with

dS
dt

= A− βSI − dS + cI + δR

dI
dt

= βSI − I − dI − αI − cI

dR
dt

= rI − dR− δR,

(13)

where S, I, and R are the numbers of susceptible, infectious, and recovered individuals
from an infection, respectively. The total population is N = S + I + R. The constants A, c,
d, r, α, β, δ are all positive constants. With A = 4, c = d = r = α = β = γ = 0.5 and the
shift of the rest position [4 1.6 0.8]>. Then, the state space representation of the SIR model
is formulated as 

ẋ1 = −1.3x1 − 1.5x2 + 0.5x3 − 0.5x1 x2

ẋ2 = 0.8x1 + 0.5x1 x2

ẋ3 = 0.5x2 − x3.

(14)

Using the system presented in (13), we could generate a fractional derivative epidemic
model that may provide helpful insight into the COVID-19 pandemic [54].
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As a second illustration of how our results may be applied, we assume the quadratic LF
of second degree given by V1(x) = a1x2

1 + 2a2x1x2 + 2a3x1x3 + a4x2
2 + 2a5x2x3

+ a6x2
3, with

P1 =

a1 a2 a3
a2 a4 a5

a5 a6

.

To determine a linear matrix decomposition as in (5), we calculate the derivative of
LF. Note that the degree dL of V̇1(x) is equal to three. For instance, the degree of q(x) is
2dq, and dq verifies the inequality defined in (2). Then, q(x) = q1x2

1 + 2q2x1x2 + 2q3x1x3 +

q4x2
2 + 2q5x2x3 + q6x2

3, which implies dm = 2. Vectors x{dv}, x{dn} and x{dm} are selected
as x{dv} = x{dn} = [x1 x2 x3]

>x{dm} = [x1 x2 x3 x2
1 x1x2 x1x3 x2

2 x2x3 x2
3]
>, and D f (x) =

(xdm)>D f (α, P)(xdm), D f (α, P) = D f (α) + D f (P), with α being a vector of free parame-
ters composed of 14 elements stated as α = [α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14]

>.
In addition, we have that D f (α) is a linear parametrization of the set Φ = {D f =

D>f : x{dm}>D f (α)x{dm} = 0, ∀x ∈ Rn}, with

D f (α) =



0 0 0 0 α1 α2 α3 α4+α14 α5
∗ 0 0 −α1 −α3 −α4 0 α6 α8
∗ ∗ 0 −α2 −α14 −α5 −α6 −α8 0
∗ ∗ ∗ 0 0 0 α7 α10 α9
∗ ∗ ∗ ∗ −2α7 −α10 0 α12 α11
∗ ∗ ∗ ∗ ∗ −2α9 −α12 −α11 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 α13
∗ ∗ ∗ ∗ ∗ ∗ ∗ −2α13 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

.

The SMR of the polynomial d f (x) = ∂V(x)/∂x f (x) is expressed as

D f (P2) =


−2.6a1+1.6a2 (−3a1−2.6a2+1.6a4+a3) (a1−2.6a3+1.6a5−2a3) 0 (a2−a1) 0 0 (a5−a3) 0

∗ (a5−3a2) (a2−3a3−2a5+a6) 0 (a4−a2) 0 0 0 0
∗ ∗ (a3−2a6) 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

.

To compute Z(x, Q, P1), we calculate the polynomial and represent it in the form of
matrix Z(x, Q, P1) = (1 + µV1(x, P1))q(x). Hence, we have that

Q =

q1 q2 q3
q2 q4 q5
q3 q5 q6

 = Q>,

Z(Q, P1) = [Z1(Q, P1), Z2(Q, P1)],

Z1(Q, P1) =


q1 q2 q3 0 0 0
∗ q4 q5 0 0 0
∗ ∗ q6 0 0 0
∗ ∗ ∗ a1q1 (a2q1+a1q2) (a3q1+a1q3)
∗ ∗ ∗ ∗ (a4q1+a2q4+4a1q4) 0
∗ ∗ ∗ ∗ ∗ (a6q1+a1q6+4a3q3)
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

,

Z2(Q, P1) =



0 0 0
0 0 0
0 0 0
0 (a5q1+a1q5+2a3q2+2a2q3) 0

a4q2+a2q4 (2a5q2+2a2q5+a4q3+a3q4) (2a5q3+2a3q5+a6q2+a2q6)
0 0 (a6q3+a3q6)

a4q4 (2a5q4+2a4q5) 0
∗ (a6q4+a4q6) (a6q5+a5q6)
∗ ∗ a6 q6

.

Therefore, F(Q, P1) = [F1(Q, P1) F2(Q, P1)], where
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F1(Q, P1) =



0 0 0 0 0 0
∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ a1q1 (a2q1 + a1q2) (a3q1 + a1q3)
∗ ∗ ∗ ∗ (a4q1 + a2q4 + 4a1q4) 0
∗ ∗ ∗ ∗ ∗ (a6q1 + a1q6 + 4a3q3)
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗


,

F2(Q, P1) =



0 0 0
0 0 0
0 0 0
0 (a5q1 + a1q5 + 2a3q2 + 2a2q3) 0

a4q2 + a2q4 (2a5q2 + 2a2q5 + a4q3 + a3q4) (2a5q3 + 2a3q5 + a6q2 + a2q6)
0 0 (a6q3 + a3q6)

a4q4 (2a5q4 + 2a4q5) 0
∗ (a6q4 + a4q6) (a6q5 + a5q6)
∗ ∗ a6 q6


.

A. First loop:

The following vector is initially used for variable encoding pertaining to a
particle position:

P(k)
1 =

a(k)1 a(k)2 a(k)3

∗ a(k)4 a(k)5

∗ ∗ a(k)6

.

Note that the pseudocode illustrates how we could determine the fitness value. This
happens when we use Theorem 2 to calculate the maximum c for which the GEVP optimiza-
tion method is feasible. The population size is 50, and the stopping condition is the highest
number of iterations Imax = 150. To finish the five steps of the Jaya algorithm described in
Section 3, by solving the LMI objective in (5) and (6) with µ = 0.1, we obtain

P(k)
1 =

1.5111 0.9799 0.4883
0.9799 5.0000 0.0241
0.4883 0.0241 0.9353

.

Then, the DA is described as Ωc = {x ∈ R3: V1(x) = 1.5111x2
1 + 1.9598x1x2 + 0.9766x1x3 +

5x2
2 + 0.0482x2x3 + 0.9353x2

3 = 9.2810}.
B. Second loop:

We consider the LF stated as V1(x) = 1.5111x2
1 + 1.9598x1x2 + 0.9766x1x3 + 5x2

2 +
0.0482x2x3 + 0.9353x2

3. We calculate the derivative of V(x), with V̇1(x) = ∂V1(x)/∂t =
∂V1(x)/∂x f (x), obtaining

V̇1(x) =− 2.361x2
1 + 1.4073x1x2 − 0.6965x1x3 − 2.9156x2

2 + 0.4021x1x3 − 1.3823x2
3

− 0.5312x2
1x2 + 4.0201x1x2

2 − 0.4642x1x2x3

Hence, we begin encoding variables whose particle position is specified concerning the
vector θ1(x(k)) = x(k) = [x(k)1 x(k)2 x(k)3 ]>. Using Algorithm 2, with a population size of
50 and a maximum number of iterations of 150, the optimal solution is xopt = [1.5981 −
1.4426 − 0.4256]>. Figure 6 illustrates the evolution of c.
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Figure 6. Iterative variation of ĉ∗ for the SIR application.

4.4. Discussion

Next, we analyze the performance of the presented methods using the Van der Pol and
SIR models. Several criteria were used to assess the efficiency of the developed method:
the DA volume, computation time, and method’s ability to identify the tangency point
(defined here as the DA problem’s optimal solution). Table 1 compares the DA features of
our method with benchmark methods presented in [21,38,53]. Note that the DA volume
was considered the primary criterion to establish the comparison. The two second-order
methods introduced in [21,38] used the LF stated in (12) for the Van der Pol model. The
third-order method presented in [53] utilized the LF defined in (14) for the SIR model.
Observe that the obtained results confirmed the superiority of our method as it offered
vastly greater DA volumes. Also, our method provided an algorithm that maximized the
DA while allowing the computation of a specific LF. Moreover, our algorithm established
an explicit LF. Using our method, a primary DA was identified and then enlarged until the
tangency point between the LF and its derivative, which was accurately determined. This
numerical analysis proved that the proposed algorithm led to the optimal solution and
accurately specified the searched tangency point. Note that the implementation remained
straight and significantly reduced the computation time. No random analysis, initialization,
or searching were needed. By running the step-by-step algorithm definitively led to
the same results independently from the initialization step. Observe that running our
algorithm avoided dummy solutions, which is not all the time the case for the second-
order models presented in [21,38]. The third-order model was studied to generalize the
satisfactory performance of the proposed method to estimate the DA. The same highlighted
performance as the previous discussion is confirmed for the example studied in Figure 5
(bottom). The DA volume was significantly greater, and the tangency point was accurately
fixed. In contrast, the method stated in [53] did not guarantee this latter outcome. Figure 7
displays a 3D view of the original plot (a) of the DA estimated by the proposed method for
the SIR model, a 3D view that was rotated to visualize the tangency point better (b), and
its corresponding 2D plot (c). Figure 8 shows a 3D view of the original plot (a) of the DA
estimated by the method given in [53] for the SIR model, a 3D view that was rotated to
visualize the tangency point better (b), and its corresponding 2D plot (c).

Table 1. Comparative analysis of the proposed method and methods presented in [21,38,53].

Application Studied System Method LF Features of the DA

Van der Pol ẋ1 = −x2 Proposed V(x) = 3x2
1 − 1.98x1x2 + 2.0759x2

2 copt = 4.8365, Vol = 2.113
ẋ2 = x1 − x2 + x2

1x2 Given in [21] V(x) = 1.5x2
1 − x1x2 + x2

2 copt = 2.09, Vol = 1.8694
Given in [38] V(x) = 1.5x2

1 − x1x2 + x2
2 copt = 2.318, Vol = 2.0733

SIR model ẋ1 = −1.3x1 − 1.5x2 + 0.5x3 − 0.5x1x2 Proposed V(x) = 1.5111x2
1 + 1.9598x1x2 + 0.9766x1x3 copt = 9.2812, Vol = 12.6469

ẋ2 = 0.8x1 + 0.5x1x2 +5x2
2 + 0.0482x2x3 + 0.9353x2

3
ẋ3 = 0.5x2 − x3 Given in [53] V(x) = 0.6295x2

1 + 0.7958x1x2 + 0.4084x1x3 copt = 2.6094, Vol = 6.0483
+1.6992x2

2 + 0.3874x2x3 + 0.6021x2
3
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(a)

(b)

(c)
Figure 7. Plots of a 3D view of the original structure (a), a 3D view that was rotated to visualize the
tangency point better (b), and its corresponding 2D plot (c) of the DA estimated by the proposed
method for the SIR model, with V(P, c) displayed in gray and dV(P, c)/dt in blue.
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(a)

(b)

(c)
Figure 8. Plots of a 3D view of the original structure (a), a 3D view that was rotated to visualize the
tangency point better (b), and its corresponding 2D plot (c) of the DA estimated by the method given
in [53] for the SIR model, with V(P, c) displayed in gray and dV(P, c)/dt in blue.
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5. Conclusions

In this article, we provided a metaheuristic-based solution for stability analysis of
nonlinear systems. of these systems by combining two optimization phases. This set was in
a definite negative region of the time derivative for a polynomial LF. Then, we considered
a global optimization problem stated in two phases, where the first phase was an external
optimization to search for a definite positive LF, and the second phase was an internal
optimization to ensure an accurate estimate of the attraction region for each candidate
LF that was optimized externally. We used a Jaya optimization to provide an efficient
way to characterize accurately the volume and shape of the maximal DAs. We conducted
numerical experiments to validate the proposed approach and provided two potential
real-world applications related to the Van der Pol oscillator and a SIR epidemic model.

Specifically, this article discussed benchmarking results of referential techniques,
which aim to recommend numerical methods for estimating the DA of nonlinear dynamical
autonomous systems. In this respect, the method examined in this work was applied to
calculate optimal quadratic LFs in the neighborhood of asymptotically stable equilibrium
points. The principal addressed concept in this article consisted in estimating the largest
DA belonging to the best level set of an LF, which was assumed to be entirely included in
the domain of negative definiteness of the LF and its corresponding time derivative. We
combined n analytical technique with a random searching method. Then, a metaheuristic
optimization method was employed to enhance the performance of the current design.
This allowed an accurate computed estimation of the DA size and an explicit analytical ex-
pression representing its geometrical form. As part of the optimization strategy, a tangency
constraint was examined in relation to the constraints on the sign of the LF and its level
sets. Such constraints ensured a maximal DA around the asymptotic stable equilibrium.

The developed method in the present investigation was applied to both polynomial
nonlinear autonomous systems with second and third degrees. One distinctive feature of
the designed technique in this article is that it can estimate the DA more efficiently than the
other presented techniques in the literature. The numerical simulation analysis proved that
the DAs obtained by the proposed method allowed us to estimate the stability domains
with satisfactory results in shape and volume. The reached results can be beneficial for
real-time control designs. In addition, the synthesized algorithms can help control problems
using the online sequential composition hypothesis. Future work should be to explore
applying the studied techniques to real plants. In particular, the design of enlarged DAs
will be economically beneficial for most physical processes.
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