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1. Introduction

The fractional calculus and the fractional differential equations play a significant role
in modeling of complex systems in various disciplines in science and engineering; see,
e.g., [1–5] and references cited therein for more details about the subject. On the other
hand, the theory of impulsive differential equations has experienced a significant growth
in popularity because of its huge potential of applicability in various fields of pure and
applied science. For example, the impulsive differential equations are used for modeling
processes exhibiting changes at certain moments, negligible compared with the duration of
the whole process; these types of processes cannot be described using the classical theory of
integer or fractional differential equations. For further information concerning the theory of
impulsive differential equations, we refer the reader to [6–17] and references cited therein.

As stated in the abstract, the main purpose of this research article is to provide certain
applications of (a, k)-regularized C-resolvent families to the abstract impulsive Volterra
integro-differential inclusions in Banach spaces ((a, k)-regularized C-resolvent families in
sequentially complete locally convex spaces can be also considered but we will skip all
details regarding this topic here). In the currently existing theory for the abstract impulsive
Volterra integro-differential equations, it has been commonly used that the linear operator
A under consideration is single-valued and generates a strongly continuous semigroup,
cosine operator function or fractional resolvent operator family (for some results concerning
applications of the almost sectorial operators, one can refer to [18,19]). This is probably the
first research paper to consider using the C-regularized solution operator families (even
global non-degenerate C-regularized semigroups) or multivalued linear operators in the
theory of abstract impulsive Volterra integro-differential equations (some applications of
once-integrated semigroups on weakly compactly generated Banach spaces have recently
been provided by I. Benedetti, V. Obukhovskii and V. Taddei in [20], where the authors
have investigated the solvability of the impulsive Cauchy problem for integro-differential
inclusions with non-densely defined linear operators). Concerning the abstract impulsive
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degenerate differential equations with Caputo fractional derivatives, we would like to
mention that T. D. Ke and C. T. Kinh have recently analyzed, in [21], the existence and
stability of solutions for a class of degenerate impulsive fractional differential equations
using the subordination principles and degenerate semigroups of operators (cf. also [22]
and Definition 8 below with a(t) ≡ k(t) ≡ 1 and C = I).

The organization of this paper can be briefly described as follows. In Section 2.1, we rec-
ollect the basic definitions and results about the multivalued linear operators and solution
operator families subgenerated by them. Section 3 investigates the C-wellposedness of the
abstract impulsive differential inclusions of integer order (see Theorem 1 and Corollary 1 for
some results obtained in this direction). In Section 3.1, we investigate the C-wellposedness
of the abstract degenerate impulsive higher-order Cauchy problem (ACP)n. In the ex-
isting literature, we have not been able to locate any research article concerning the use
of (ultra-)distribution semigroups ((ultra-)distribution cosine functions) to the abstract
impulsive differential equations of first order (second order) or the C-well-posedness of
the abstract impulsive higher-order Cauchy problem (ACP)n, even if this problem is non-
degenerate, i.e., solvable with the respect to the highest derivative. Motivated by this fact,
we present several illustrative applications in Example 1. In Example 2, we consider the
abstract impulsive differential equations of first order (second order) with the multivalued
linear operators A satisfying the condition (P), introduced by A. Favini and A. Yagi in the
important research monograph [23]; the main importance of Example 3 is to present some
applications of entire (gn, C)-regularized resolvent families in the study of the abstract
impulsive Cauchy problem (ACP)n;1 clarified below as well as to initiate the research of
the abstract Volterra integro-differential equations with impulsive effects in the complex
plane (the angular domains of the complex plane).

Before proceeding further with the organization of paper, we would like to state the
serious fact that a large number of structural results about the existence and uniqueness of
the (abstract) impulsive fractional differential equations have been incorrectly stated in the
existing literature because the authors have used the completely wrong formulae for the
forms of solutions (see e.g., the discussions carried out in the research articles [15,16,24–27]).
In Section 4, we will say just a few words about the abstract impulsive fractional differential
inclusions with Caputo derivatives or Riemann–Liouville derivatives. The main aim
of this section is a very simple result, Theorem 2, which indicates the incorrectness of
many structural results published so far in the currently existing literature. As a simple
consequence of the second result of Section 4, Theorem 3, we have that it is very difficult to
study the existence and uniqueness of the piecewise continuous solutions of the abstract
fractional differential inclusions with the Riemann–Liouville derivatives of order α ∈ (0, 1).

Section 5 investigates the abstract Volterra integro-differential inclusions with impul-
sive effects. The main result of this section is Theorem 4, which particularly shows that it
is much better to analyze the well-posedness of the abstract Volterra integro-differential
inclusions with the kernel a(t) = gα(t) than the well-posedness of the abstract impul-
sive fractional differential inclusions with Caputo derivatives (Riemann–Liouville deriva-
tives). In Theorem 5, we provide certain applications of a special class of the exponen-
tially bounded (a, k)-regularized C-resolvent families to the abstract impulsive degenerate
Volterra Equation (14). In Section 6, we make final comments and remarks on the abstract
impulsive Volterra integro-differential equations considered in this paper. To better demon-
strate the main goals and ideas of this article, we will study here the very simple forms of
impulsive effects.

2. Preliminaries

We use the standard symbols and notation throughout the paper. By (E, ‖ · ‖E) and
(X, ‖ · ‖) we denote two complex Banach spaces (since no confusion seems likely, the norm
‖ · ‖E will be also denoted by ‖ · ‖ in the sequel). The abbreviation C(K : X), where K is a
non-empty compact subset of R, stands for the space of all continuous functions from K into
X; C(K) ≡ C(K : C), Nn := {1, · · ·, n} and N0

n := {0, 1, · · ·, n}, where n ∈ N. Let 0 < τ ≤ ∞
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and a ∈ L1
loc([0, τ)). Then we say that the function a(t) is a kernel on [0, τ) if and only if

for each f ∈ C([0, τ)) the assumption
∫ t

0 a(t− s) f (s) ds = 0, t ∈ [0, τ) implies f (t) = 0,
t ∈ [0, τ). Set gα(t) := tα−1/Γ(α), t > 0, where Γ(·) denotes the Euler gamma function,
and g0(t) := δ(t), the Dirac delta distribution (α > 0). We need the following conditions:

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0, ∞) and there exists

β ∈ R such that k̃(λ) := (Lk)(λ) := limb→∞
∫ b

0 e−λtk(t)dt :=
∫ ∞

0 e−λtk(t)dt exists for
all λ ∈ C with <λ > β. Put abs(k) :=inf{<λ : k̃(λ) exists}.

(P2): k(t) satisfies (P1) and k̃(λ) 6= 0, <λ > β for some β ≥ abs(k).

We say that a function h(·) belongs to the class LT − E if there exist an exponentially
bounded function f ∈ C([0, ∞) : E) and a real number a > 0 such that h(λ) = (L f )(λ),
λ > a.

Let T > 0. Then the space of X-valued piecewise continuous functions on [0, T] is
defined by

PC([0, T] : X) ≡
{

u : [0, T]→ X : u ∈ C
(
(ti, ti+1] : X

)
,

u(ti−) = u(ti) and u(ti+) exist for any i ∈ N0
l
}

,

where 0 ≡ t0 < t1 < t2 < ... < tl < T ≡ tl+1 and the symbols u(ti−) and u(ti+)
denote the left and the right limits of the function u(t) at the point t = ti, i ∈ N0

l−1, re-
spectively. Let us recall that PC([0, T] : X) is a Banach space endowed with the norm
‖u‖ := max{supt∈[0,T) ‖u(t+)‖, supt∈(0,T] ‖u(t−)‖}. The space of X-valued piecewise con-
tinuous functions on [0, ∞), denoted by PC([0, ∞) : X), if defined as the union of those
functions f : [0, ∞)→ X such that the discontinuites of f (·) form a discrete set and that for
each T > 0 we have f|[0,T](·) ∈ PC([0, T] : X).

2.1. Solution Operator Families Subgenerated by MLOs

Recall that a multivalued mapping A : X → P(X) is said to be a multivalued linear
operator (MLO in X, or simply, MLO) if and if the following hold:

(1) D(A) := {u ∈ X : Au 6= ∅} is a linear submanifold of X;
(2) Au +Av ⊆ A(u + v) for u, v ∈ D(A) and λAu ⊆ A(λu) for λ ∈ C and u ∈ D(A).

For more details about multivalued linear operators and (degenerate) (a, k)-regularized
C-resolvent families subgenerated by them, we refer the reader to the research mono-
graphs [23] by A. Favini, A. Yagi and [28] by M. Kostić.

It is well known that, for every u, v ∈ D(A) and for every λ, η ∈ C with |λ|+ |η| 6= 0,
we have λAu + ηAv = A(λu + ηv). Furthermore, A0 is a linear manifold in X and
Au = f +A0 for any u ∈ D(A) and f ∈ Au. Put R(A) := {Au : u ∈ D(A)}. The inverse
A−1 is defined by D(A−1) := R(A) and A−1v := {u ∈ D(A) : v ∈ Au}. We know that
A−1 is an MLO in X, as well as that N(A−1) = A0 and (A−1)−1 = A. Suppose now that
A, B are two MLOs in X. Thus its sumA+B is defined by D(A+B) := D(A)∩D(B) and
(A+B)u := Au +Bu for u ∈ D(A+B). Clearly,A+B is an MLO in X. The product ofA
and B is defined by D(BA) := {x ∈ D(A) : D(B)∩Ax 6= ∅} and BAx := B(D(B)∩Ax).
We have that BA is an MLO in X and (BA)−1 = A−1B−1. The inclusion A ⊆ B means
that D(A) ⊆ D(B) and Ax ⊆ Bx for all x ∈ D(A). The integer powers An are defined
inductively in the usual way; we set D∞(A) :=

⋂
n∈N D(An).

We say that a multivalued linear operatorA is closed if and only if for any nets (uτ) in
D(A) and (vτ) in X such that vτ ∈ Auτ for all τ ∈ I the assumptions limτ→∞ uτ = u and
limτ→∞ vτ = v imply u ∈ D(A) and v ∈ Au.

The following lemma (see [28]) is important for our proofs.

Lemma 1. Assume that A is a closed MLO in X, Ω is a locally compact and separable metric
space, as well as that µ is a locally finite Borel measure defined on Ω. If g : Ω→ X and h : Ω→ X
are µ-integrable, and h(u) ∈ Ag(u) for u ∈ Ω, then

∫
Ω h dµ ∈ A

∫
Ω g dµ and

∫
Ω g dµ ∈ D(A).
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Let A be an MLO in X, C ∈ L(X) be injective and CA ⊆ AC. Then the C-resolvent set
of A, ρC(A) for short, is defined as the union of those complex numbers γ ∈ C for which

(i) R(C) ⊆ R(γ−A);
(ii) (γ−A)−1C is a single-valued linear continuous operator on X.

For γ ∈ ρC(A), the operator γ 7→ (γ − A)−1C is called the C-resolvent of A; the
resolvent set of A is defined by ρ(A) := ρI (A), where I denotes the identity operator on
X, and R(γ : A) ≡ (γ−A)−1 for γ ∈ ρ(A).

Consider now the following abstract degenerate Volterra inclusion:

Bu(t) ⊆ A
∫ t

0
a(t− s)u(s)ds +F (t), t ∈ [0, T], (1)

where A : X → P(E) and B : X → P(E) are two given mappings (possibly non-linear),
T ∈ (0, ∞], a ∈ L1

loc([0, T]), a 6= 0 and F : [0, T] → P(E). The notion of a pre-solution
of (1) and the notion of a (strong) solution of (1) have recently been introduced in ([28],
Definition 3.1.1(i)):

Definition 1. (i) A function u ∈ C([0, T] : X) is said to be a pre-solution of (1) if and only if
(a ∗ u)(t) ∈ D(A) and u(t) ∈ D(B) for t ∈ [0, T], as well as (1) holds.

(ii) A solution of (1) is any pre-solution u(·) of (1) satisfying additionally that there exist functions
uB ∈ C([0, T] : E) and ua,A ∈ C([0, T] : E) such that uB(t) ∈ Bu(t) and ua,A(t) ∈
A
∫ t

0 a(t− s)u(s)ds for t ∈ [0, T], as well as

uB(t) ∈ ua,A(t) +F (t), t ∈ [0, T].

(iii) A strong solution of (1) is any function u ∈ C([0, T] : X) satisfying that there exist two
continuous functions uB ∈ C([0, T] : E) and uA ∈ C([0, T] : E) such that uB(t) ∈ Bu(t),
uA(t) ∈ Au(t) for all t ∈ [0, T], and

uB(t) ∈ (a ∗ uA)(t) +F (t), t ∈ [0, T].

In the following, unless otherwise specified, we always assume that τ ∈ (0, ∞], k ∈
C([0, τ)), k 6= 0, a ∈ L1

loc([0, τ)), a 6= 0, A : E→ P(E) is an MLO, C1 ∈ L(X, E), C2 ∈ L(E)
is injective, C ∈ L(E) is injective and CA ⊆ AC. We will now analyze multivalued linear
operators as subgenerators of (a, k)-regularized (C1, C2)-existence and uniqueness families
and (a, k)-regularized C-resolvent families.

Definition 2. (see ([28], Definition 3.2.1, Definition 3.2.2))

(i) A is said to be a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized (C1, C2)-existence
and uniqueness family (R1(t), R2(t))t∈[0,τ) ⊆ L(X, E)× L(E) if the mappings t 7→ R1(t)y,
t ≥ 0 and t 7→ R2(t)x, t ∈ [0, τ) are continuous for every fixed x ∈ E and y ∈ X, as well as
the following conditions hold:( t∫

0

a(t− s)R1(s)y ds, R1(t)y− k(t)C1y

)
∈ A, t ∈ [0, τ), y ∈ X and (2)

t∫
0

a(t− s)R2(s)y ds = R2(t)x− k(t)C2x, whenever t ∈ [0, τ) and (x, y) ∈ A. (3)

(ii) Let (R1(t))t∈[0,τ) ⊆ L(X, E) be strongly continuous. We say that A is a subgenerator of
a (local, if τ < ∞) mild (a, k)-regularized C1-existence family (R1(t))t∈[0,τ) if and only if
(2) holds.
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(iii) Let (R2(t))t∈[0,τ) ⊆ L(E) be strongly continuous. A is said a subgenerator of a (local, if
τ < ∞) mild (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ) if and only if (3) holds.

Definition 3. (i) Assume that τ ∈ (0, ∞], a ∈ L1
loc([0, τ)), a 6= 0, k ∈ C([0, τ)), k 6= 0,

A : E → P(E) is an MLO, C ∈ L(E) is injective and CA ⊆ AC. We say that a strongly
continuous operator family (R(t))t∈[0,τ) ⊆ L(E) is an (a, k)-regularized C-resolvent family
with a subgenerator A if and only if (R(t))t∈[0,τ) is a mild (a, k)-regularized C-uniqueness
family having A as subgenerator, R(t)A ⊆ AR(t) and R(t)C = CR(t) for all t ∈ [0, τ).

(ii) If τ = ∞, then we say that (R(t))t≥0 is exponentially bounded (bounded) if and only if there
exists ω ∈ R (ω = 0) such that the family {e−ωtR(t) : t ≥ 0} is bounded.

The integral generator of a mild (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ)
(mild (a, k)-regularized (C1, C2)-existence and uniqueness family (R1(t), R2(t))t∈[0,τ)) is
defined by

Aint :=

{
(x, y) ∈ X× X : R2(t)x− k(t)C2x =

∫ t

0
a(t− s)R2(s)y ds, t ∈ [0, τ)

}
.

In this work, we will primarily consider (a, k)-regularized C-resolvent families; for sim-
plicity, we will assume that any (a, k)-regularized C-resolvent family considered below
is likewise a mild (a, k)-regularized C-existence family (subgenerated by A). We define
the integral generator of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ) in the same
way as above. The notion of a C-regularized semigroup (C-regularized cosine function)
with subgenerator (integral generator) A is obtained by substituting k(t) ≡ 1 and a(t) ≡ 1
(a(t) ≡ t).

Unless stated otherwise, we will always assume henceforth that the operator C ∈ L(X)
is injective.

3. Abstract Impulsive Differential Inclusions of Integer Order

In this section, we will focus on analyze the abstract impulsive differential inclusions
of integer order. The application of C-regularized solution operator families is crucial in
the case that the order of equation is greater or equal than three.

For the beginning, let us consider the following abstract impulsive higher-order
Cauchy inclusion

(ACP)n;1 :


u(n)(t) ∈ Au(t) + f (t), t ∈ [0, T] \ {t1, ..., tl},(
∆u(j))(tk

)
= u(j)(tk+

)
− u(j)(tk−

)
= Cyk

j , k ∈ Nl , j ∈ N0
n−1,

u(j)(0) = Cuj, j ∈ N0
n−1,

where A is an MLO in X. We will use the following concepts of solutions:

Definition 4. (i) By a pre-solution of (ACP)n;1 on [0, T] we mean any function u(·) which
is n-times continuously differentiable on the intervals [0, t1), (t1, t2), (t2, t3), ..., (tl , T], the
right derivatives limt→ti+ u(j)(t) exist for 0 ≤ j ≤ n and 1 ≤ i ≤ l, the left derivatives
limt→ti− u(j)(t) exist for 0 ≤ j ≤ n and 1 ≤ i ≤ l + 1, and the requirements of (ACP)n;1
hold.
A solution of (ACP)n;1 on [0, T] is any pre-solution u(t) of (ACP)n;1 on [0, T] which addi-
tionally satisfies that there exists a function uA : [0, T] → X such that uA(t) ∈ Au(t) for
t ∈ [0, T] \ {t1, t2, ..., tl}, u(n)(t) = uA(t) + f (t) for t ∈ [0, T] \ {t1, t2, ..., tl}, the right
limits limt→ti+ uA(t) exist for 1 ≤ i ≤ l and the left limits limt→ti− uA(t) exist for
1 ≤ i ≤ l + 1.

(ii) Suppose that 0 ≡ t0 < t1 < ... < tl < tl+1 < ... < +∞ and the sequence (tl)l has
no accumulation point. By a (pre-)solution of (ACP)n;1 on [0, ∞) we mean any function
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u(·) which satisfies that, for every l ∈ N and T ∈ (tl , tl+1), the function u|[0,T](·) is a
(pre-)solution of (ACP)n;1 on [0, T].

The main result about the well-posedness of the problem (ACP)n;1 reads as follows:

Theorem 1. Suppose that A is a closed subgenerator of a local (gn, C)-regularized resolvent
family (R(t))t∈[0,τ), where τ > T and n ∈ N. Suppose that the functions C−1 f (·) and fA(·) are
continuous on the set [0, T] \ {t1, ..., tl}, fA(t) ∈ AC−1 f (t) for all t ∈ [0, T] \ {t1, ..., tl}, as well
as the right limits and the left limits of the functions C−1 f (·) and fA(·) exist at any point of the set
{t1, ..., tl}. Define

u(t) := R(t)u0 +
n−1

∑
j=1

∫ t

0
gj(t− s)R(s)uj ds

+
∫ t

0

∫ t−s

0
gn−1(t− s− r)R(r)

(
C−1 f

)
(s) dr ds + ω(t), t ∈ [0, T], (4)

where

ω(t) :=


0, t ∈ [0, t1],

∑k
p=1 R

(
t− tp

)
yp

0 + ∑k
p=1 ∑n−1

j=1

∫ t−tp
0 gj(t− tp − s)R

(
s
)
yp

j ds,
if t ∈

(
tk, tk+1

]
for some k ∈ N0

l−1.
(5)

Then the function u(t) is a unique solution of the problem (ACP)n;1, provided that u0, ..., ul ∈
D(A) and yj

k ∈ D(A) for all k ∈ Nl and j ∈ N0
n−1.

Proof. The uniqueness of solutions can be simply proved with the help of ([28], Proposition
3.2.8(ii)). Next, we will show that the function

uh(t) := R(t)u0 +
n−1

∑
j=1

∫ t

0
gj(t− s)R(s)uj ds +

∫ t

0

∫ t−s

0
gn−1(t− s− r)R(r)

(
C−1 f

)
(s) dr ds

is n-times continuously differentiable on [0, T], u(n)
h (t) ∈ Auh(t) + f (t), t ∈ [0, T] and

u(j)
h (0) = Cuj, j ∈ N0

n−1. If (x, y) ∈ A, then we have R(t)x − Cx =
∫ t

0 gn(t− s)R(s)y ds,
t ∈ [0, T] and therefore

R(n)(t)x = R(t)y, t ∈ [0, T]; R(j)(t)x =
∫ t

0
gn−j(t− s)R(s)y ds, t ∈ [0, T], j ∈ Nn−1

0 . (6)

Let (uj, vj) ∈ A, j ∈ N0
n−1. Since(

dj

dtj

∫ t

0

∫ t−s

0
gn−1(t− s− r)R(r)

(
C−1 f

)
(s) dr ds

)
t=0

= 0, j ∈ N0
n−1,

the above equalities simply imply u(j)
h (0) = Cuj, j ∈ N0

n−1 and

u(n)(t) = R(t)
(
v0
)
+

n−1

∑
j=1

∫ t

0
gn−j(t− s)R(s)vj ds

+ lim
h→0

∫ t

0

R(t + h− s)− R(t− s)
h

(
C−1 f

)
(s) ds

+ lim
h→0

1
h

∫ t+h

t
R(t + h− s)

(
C−1 f

)
(s) ds
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= R(t)
(
v0
)
+

n−1

∑
j=1

∫ t

0
gn−j(t− s)R(s)vj ds

+ lim
h→0

∫ t

0

R(t + h− s)− R(t− s)
h

(
C−1 f

)
(s) ds

+ f (t), t ∈ [0, T] \ {t1, ..., tl}. (7)

Since

R(t− s)
(
C−1 f

)
(s)− f (s) =

∫ t−s

0
gn(t− s− r)R(r) fA(s) dr, 0 ≤ s ≤ t,

the dominated convergence theorem shows that

lim
h→0

∫ t

0

R(t + h− s)− R(t− s)
h

(
C−1 f

)
(s) ds

=
∫ t

0
R(t− s) fA(s) ds, t ∈ [0, T] \ {t1, ..., tl}.

Keeping in mind that R(t)A ⊆ AR(t) for t ∈ [0, T], Lemma 1, the last equality and (7)
together imply that the function uh(·) is n-times continuously differentiable on [0, T] and
u(n)

h (t) ∈ Auh(t) + f (t), t ∈ [0, T]. Therefore, it suffices to show that the function ω(·) is a
solution of the problem

ω(n)(t) ∈ Aω(t), t ∈ [0, T] \ {t1, ..., tl},(
∆ω(j))(tk

)
= Cyk

j , k ∈ Nl , j ∈ N0
n−1,

ω(j)(0) = 0, j ∈ N0
n−1.

The third equality is obvious since ω(t) = 0 for t ∈ [0, t1]. Let (yk, zk) ∈ A for all k ∈ Nl as
well as (yk

j , zk
j ) ∈ A for all k ∈ Nl and j ∈ N0

n−1; the second equality simply follows from (6).
To verify the first equality, we observe that

ω(n)(t) =
k

∑
p=1

R
(
t− tp

)
zp

0 +
k

∑
p=1

n−1

∑
j=1

∫ t−tp

0
gj(t− tp − s)R(s)zk

j ds

for all t ∈ (tk, tk+1] (k ∈ N0
l−1). Since R(t)A ⊆ AR(t) for t ∈ [0, T], Lemma 1 yields that

ω(n)(t) ∈ Aω(t) for all t ∈ [0, T] \ {t1, ..., tl}. This completes the proof of the theorem.

Corollary 1. Suppose that A is a closed subgenerator of a global (gn, C)-regularized resolvent
family (R(t))t≥0, where n ∈ N. Suppose, further, that 0 < t1 < ... < tl < ... < +∞, the sequence
(tl)l has no accumulation point, the functions C−1 f (·) and fA(·) are continuous on the set
[0, T] \ {t1, ..., tl , ...}, fA(t) ∈ AC−1 f (t) for all t ∈ [0, T] \ {t1, ..., tl , ...}, as well as the right
limits and the left limits of the functions C−1 f (·) and fA(·) exist at any point of the set {t1, ..., tl , ...}.
Define the functions u(t) and ω(t) for t ∈ [0, T] by (4) and (5), respectively. Then the function
u(t) is a unique solution of the problem (ACP)n;1 for t ∈ [0, T] \ {t1, ..., tl , ...}, provided that
u0, ..., ul , ... ∈ D(A) and yk

j ∈ D(A) for all k ∈ N and j ∈ N0
n−1.

Now we will provide the following illustrative applications of Theorem 1 and Corol-
lary 1:

Example 1. (i) Let A = A be a closed single-valued linear operator and λ ∈ ρ(A). Then it is
well known that A is the integral generator of a distribution semigroup (distribution cosine
function) if and only if for each τ > 0 there exists n ∈ N such that A is the integral generator
of a local (λ − A)−n-regularized semigroup ((λ − A)−n-regularized cosine function) on
[0, τ); furthermore, there exists an injective operator C ∈ L(X) such that A is the integral
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generator of a global C-regularized semigroup (C-regularized cosine function); cf. [29] for the
notion and more details. Therefore, Theorem 1 and Corollary 1 can be successfully applied in
the case that n = 1 (n = 2).

(ii) Suppose that the sequence (Mp) of positive real numbers satisfies M0 = 1, (M.1), (M.2)
and (M.3) as well as that a closed linear operator A generates a regular ultradistribution
semigroup (regular ultradistribution cosine function) of (Mp)-class; then there exists an
injective operator C ∈ L(X) such that A is the integral generator of a global C-regularized
semigroup (C-regularized cosine function); cf. ([29], Sections 3.5 and 3.6) for the notion and
more details. Consequently, Theorem 1 and Corollary 1 can be successfully applied in the
case that n = 1 (n = 2). For some important examples of (differential) operators generating
ultradistribution semigroups (ultradistribution cosine functions), we refer the reader to ([29],
Example 3.5.18, Example 3.5.23, Example 3.5.30(ii), Example 3.5.39).

(iii) Suppose that k ∈ N, aα ∈ C, 0 ≤ |α| ≤ k, aα 6= 0 for some α with |α| = k, P(x) =

∑|α|≤k aαi|α|xα, x ∈ Rn, ω := supx∈Rn <(P(x)) < +∞ (condition ([4], (W), p. 68) holds),
and X is one of the spaces Lp(Rn) (1 ≤ p ≤ ∞), C0(Rn), Cb(Rn), BUC(Rn). Define

P(D) := ∑
|α|≤k

aα f (α) and D(P(D)) :=
{

f ∈ E : P(D) f ∈ E distributionally
}

.

Then it is well known that the operator P(D) generates an exponentially bounded C-regularized
semigroup (C-regularized cosine function) with an appropriately chosen regularizing operator
C ∈ L(X), so that Corollary 1 can be successfully applied in the case that n = 1 (n = 2).

Example 2. (i) We can analyze the well-posedness of the abstract impulsive inclusion (ACP)1;1
for the multivalued linear operators A satisfying the following condition:

(P) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ := Ψc :=
{

λ ∈ C : <λ ≥ −c
(
|=λ|+ 1

)}
⊆ ρ(A)

and
‖R(λ : A)‖ ≤ M

(
1 + |λ|

)−β, λ ∈ Ψ.

Then the degenerate semigroup (T(t))t>0 generated by A has an integrable singularity at zero
but we can still apply the method obeyed in the proof of Theorem 1 if the function f (t) satisfies
the requirements of ([23], Theorem 3.7) and there exist vectors z1, ..., zk, ... from the continuity
set of the semigroup (T(t))t>0 such that zk ∈ Ayk, k = 1, ..., l, .... The established conclusion
can be simply applied in the analysis of the following abstract impulsive Poisson heat equation
in the space X = Lp(Ω) :

d
dt [m(x)v(t, x)] = (∆− b)v(t, x) + f (t, x), t ≥ 0, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0, ∞)× ∂Ω,
m(x)v(tk+, x)−m(x)v(tk−, x) = fk(x), k ∈ N,
m(x)v(0, x) = u0(x), x ∈ Ω,

under certain logical assumptions; keeping in mind the consideration carried out in ([30],
Example 3.10.4), we can also provide certain applications of the almost sectorial operators to
the abstract impulsive differential equations of first order in Hölder spaces.

(ii) Suppose that A, B and C are closed linear operators in X, D(B) ⊆ D(A) ∩ D(C), B−1 ∈
L(X) and the conditions ([23], (6.4)-(6.5)) are satisfied with some numbers c > 0 and
0 < β ≤ α = 1; cf. also ([30], Example 3.10.10). In ([23], Chapter VI), the following second
order differential equation without impulsive conditions

d
dt
(
Cu′(t)

)
+ Bu′(t) + Au(t) = f (t), t > 0; u(0) = u0, Cu′(0) = Cu1
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has been analyzed by the usual converting into the first order matricial system

d
dt

Mz(t) = Lz(t) + F(t), t > 0; Mz(0) = Mz0,

where

M =

[
I O

O C

]
, L =

[
O I
−A −B

]
, z0 =

[
u0
u1

]
and F(t) =

[
0

f (t)

]
(t > 0).

The argumentation contained in the proof of ([23], Theorem 6.1) shows that the multivalued
linear operator (L[D(B)]×X − ωM[D(B)]×X)(M[D(B)]×X)

−1 satisfies the condition (P) for a
sufficiently large number ω > 0, in the pivot space [D(B)]× X. Hence, this MLO generates
a degenerate semigroup (T(t))t>0 in [D(B)]× X, having an integrable singularity at zero
and exponentially decaying growth rate at infinity. Then we can apply ([23], Theorem 3.8,
Theorem 3.9) in the analysis of existence and uniqueness of solutions of the abstract degenerate
Cauchy problem without impulsive conditions:

d
dt

Mz(t) = (L−ωM)z(t) + F(t), t > 0; Mz(0) = Mz0,

Furthermore, we can apply Corollary 1 with n = 1, u(t) = Mz(t), t ≥ 0 and A =
(L−ωM)M−1 in the analysis of the existence and uniqueness of the piecewise continuously
differentiable solutions of the following second-order impulsive differential equation:

d
dt
(
Cu′(t)

)
+ (2ωC + B)u′(t) +

(
A + ωB + ω2C

)
u(t) = f (t), t > 0;

u
(
tk+

)
− u

(
tk−

)
= yk, C

[
u′
(
tk+

)
+ ωu

(
tk+

)]
− C

[
u′
(
tk−

)
+ ωu

(
tk−

)]
= zk, k ∈ N,

u(0) = u0, C
[
u′(0) + ωu0

]
= Cu1.

As is well known, we can simply incorporate this result in the analysis of existence and
uniqueness of piecewise continuously differentiable solutions of the following damped Poisson-
wave type equation in the spaces X := H−1(Ω) or X := Lp(Ω) :

∂
∂t
(
m(x) ∂u

∂t
)
+
(
2ωm(x)− ∆

)
∂u
∂t +

(
A(x; D)−ω∆ + ω2m(x)

)
u(x, t) = f (x, t),

t ≥ 0, x ∈ Ω ; u = ∂u/∂t = 0, (x, t) ∈ ∂Ω× [0, ∞),
u
(

x, tk+
)
− u

(
x, tk−

)
= yk(x), k ∈ N,

C
[
(∂u/∂t)

(
x, tk+

)
+ ωu

(
x, tk+

)]
− C

[
(∂u/∂t)

(
x, tk−

)
+ ωu

(
x, tk−

)]
= zk(x), k ∈ N,

u(0, x) = u0(x), m(x)
[
(∂u/∂t)(x, 0) + ωu0

]
= m(x)u1(x), x ∈ Ω,

where Ω ⊆ Rn is a bounded open domain with smooth boundary, 1 < p < ∞ and some extra
assumptions are satisfied; see ([23], Example 6.1) for further information.

We continue this section by providing an illustrative application of Corollary 1 with
n ≥ 3 :

Example 3. Let (E, ‖ · ‖) be a complex Banach space, s ∈ N and let iAj, 1 ≤ j ≤ n be commuting
generators of bounded C0-groups on E. Further on, let P(x) = ∑|η|≤d Pη xη (Pη ∈ Mm, x ∈ Rs)
be a polynomial matrix; cf. [4] for the notion and the notation. Then, due to ([4], Theorem 2.3.3), we
know that there exists an injective operator C ∈ L(E) with dense range such that the operator P(A),
defined in the usual way, is the integral generator of a global (gn, Cm)-regularized resolvent family
(Wn(t))t≥0 on Em, where Cm = CIm,m and Im,m denotes the identity matrix of format m× m.
Furthermore, the mapping t 7→Wn(t), t ≥ 0 can be extended to the whole complex plane and the
following holds:
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(i) R(Wn(z)) ⊆ D∞(P(A)), z ∈ C and

P(A)

z∫
0

gn(z− s)Wn(s)~x ds = Wn(z)~x− Cm~x, z ∈ C, ~x ∈ Em.

(iii) The mapping z 7→Wn(z), z ∈ C is entire.

Suppose now that m = 1, p11(x) = ∑|α|≤d aαxα, x ∈ Rs (aα ∈ C) and E is a function
space on which translations are uniformly bounded and strongly continuous. In this case, P(A)
is just the operator ∑|α|≤d aαi|α|(∂/∂x)α with its maximal distributional domain; for example, let
E = Lp(Rs), where 1 ≤ p < +∞. Let us also assume that 0 < t1 < ... < tl < ... < +∞ and the
sequence (tl)l has no accumulation point.

1. Using Corollary 1 and the above result, we obtain that there exists a dense subset E0,n of
Lp(Rs) such that the following abstract impulsive Cauchy problem:

dn

dtn u(t, x) = ∑|α|≤d aαi|α|(∂/∂x)αu(t, x), t ≥ 0, x ∈ Rs,
dj

dtj u
(
tk+, x

)
− dj

dtj u
(
tk−, x

)
= f k

j (x), j ∈ N0
n−1, k ∈ N, x ∈ Rs,

∂l

∂tl u(t, x)|t=0 = fl(x), x ∈ Rs, l = 0, 1, · · ·, n− 1,

has a unique solution provided fl(·) ∈ E0,n, l ∈ N0
n−1 and f k

j (·) ∈ E0,n, j ∈ N0
n−1, k ∈ N.

2. Let zk = tk + isk, where sk ∈ R (k ∈ N). Define

uh(z) := Wn(z) f0 +
n−1

∑
j=1

∫ z

0
gj(z− s)Wn(s) f j ds + ω(z), z ∈ C,

where

ω(z) :=


0, if <z ≤ t1,
∑l

k=1 Wn
(
z− tk

)
f k
j + ∑n−1

j=1

∫ z
0 gj(z− s)Wn

(
s− tk

)
f k
j ds,

if <z ∈
(
tk, tk+1

]
for some k ∈ N0

l−1.

Then the function u(t) := uh(z) + ω(z), z ∈ C is a unique solution of the following abstract
impulsive Cauchy problem in the complex plane:

dn

dzn u(z, x) = ∑|α|≤d aαi|α|(∂/∂x)αu(z, x), z ∈ C, x ∈ Rs,

limz→zk , <z>tk
dj

dzj u
(
z, x
)
− limz→zk , <z<tk

dj

dzj u
(
z, x
)
= f k

j (x),
for any j ∈ N0

n−1, k ∈ N, x ∈ Rs,
∂l

∂zl u(z, x)|z=0 = fl(x), x ∈ Rs, l = 0, 1, · · ·, n− 1,

provided fl(·) ∈ E0,n, l ∈ N0
n−1 and f k

j (·) ∈ E0,n, j ∈ N0
n−1, k ∈ N.

Without going into further details, we will only emphasize here that we can similarly consider
the C-wel-lposedness of the following abstract degenerate impulsive Cauchy problem:

dn

dtn ∑|α|≤d′ a′αi|α|(∂/∂x)αu(t, x) = ∑|α|≤d aαi|α|(∂/∂x)αu(t, x), t ≥ 0, x ∈ Rs,
dj

dtj u
(
tk+, x

)
− dj

dtj u
(
tk−, x

)
= f k

j (x), j ∈ N0
n−1, k ∈ N, x ∈ Rs,

∂l

∂tl u(t, x)|t=0 = fl(x), x ∈ Rs, l = 0, 1, · · ·, n− 1;

see ([28], Theorem 2.3.20, Remark 2.3.21) for more details about the subject.
3. It is obvious that we can similarly study the well-posedness of the abstract impulsive

Cauchy problems in the angular domains of the complex plane, provided that the corresponding
C-regularized solution operator family is analytic in a sector around the non-negative real axis.



Fractal Fract. 2023, 7, 73 11 of 20

3.1. The Abstract Impulsive Higher-Order Cauchy Problems

Let us consider now the following abstract impulsive higher-order Cauchy problem

(ACP)n :


Bu(n)(t) + An−1u(n−1)(t) + ... + A1u′(t) + A0u(t) = f (t),
t ∈ [0, ∞) \ {t1, ..., tl , ...},(
∆u(j))(tk

)
= u(j)(tk+

)
− u(j)(tk−

)
= Cyk

j , k ∈ N, j ∈ N0
n−1,

u(j)(0) = Cuj, j ∈ N0
n−1,

where 0 < t1 < ... < tl < ... < +∞, the sequence (tl)l has no accumulation point and
B, An−1, ..., A0 are closed linear operators on X.

1. We will first assume that B = I and the corresponding abstract Cauchy problem
(ACP)n without impulsive effects is strongly C-well-posed in the sense of ([31], Defini-
tion 5.1), which means that there exists a strong C-propagation family

[(S0(t))t≥0, ..., Sn−1(t))t≥0]

for this problem. Under certain logical assumptions (see e.g., ([31], p. 50) for the case in
which C = I), the function

uh =
n−1

∑
j=0

Sj(t)uk +
∫ t

0
Sn−1(t− s)C−1 f (s) ds, t ≥ 0

is a unique strong solution of the problem (ACP)n without impulsive effects. On the other
hand, it is very simple to show that the function ω : [0, ∞) → X, defined by ω(t) := 0, if
t ∈ [0, t1], and ω(t) := ∑n−1

j=0 [Sj(t− t1)y1
j + ... + Sj(t− tk)yk

j ] if t ∈ (tk, tk+1] for some k ∈ N,
is a unique solution of the following problem:

(ACP)i
n :


ω(n)(t) + An−1ω(n−1)(t) + ... + A1ω′(t) + A0ω(t) = 0,
t ∈ [0, ∞) \ {t1, ..., tl , ...};(
∆ω(j))(tk

)
= Cyk

j , k ∈ N, j ∈ N0
n−1,

ω(j)(0) = 0, j ∈ N0
n−1.

Summa summarum, the function u(t) := uh(t) + ω(t), t ≥ 0 is a unique solution of the
abstract impulsive higher-order Cauchy problem (ACP)n with B = I. Keeping in mind
the results established in ([31], Theorem 5.6, Corollary 5.7, Example 5.8) and the above
conclusion, one can simply consider the C-well-posedness of the abstract impulsive higher-
order Cauchy problems in Lp-spaces; in particular, one can study the C-well-posedness of
the damped Klein–Gordon equation with impulsive effects. In the same way as above, we
can consider the C-well-posedness of the abstract impulsive higher-order Cauchy problem
(ACP)n;1, where the single-valued linear operatorA = A satisfies the requirements of ([31],
Theorem 6.2).

2. Let us consider now the general abstract Cauchy problem (ACP)n with B 6= I.
We assume that there exists a global C1-propagation family (E(t))t≥0 ⊆ L(E, X) for this
problem, where C1 ∈ L(E, X), as well as that C1ui ∈ Di for 0 ≤ i ≤ n− 1 and C1 Aj ⊆ AjC1
for 0 ≤ i, j ≤ n− 1; concerning the inhomogeneity f (·), we will assume here that there
is a function g ∈ C1([0, ∞) : E) satisfying C1g(t) = f (t), t ≥ 0 (cf. ([28], Definition 2.3.29,
Definition 2.3.31) for the notion). Then we know that the function

uh(t) =
n−1

∑
i=0

gi+1(t)Cui −
n−1

∑
i=0

∑
j∈N0

n−1\Di

(
gn−j ∗ E(n−1−i)

)
(t)Ajui

+

t∫
0

E(t− s)G(s) ds, t ≥ 0,
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is a strong solution of problem (ACP)n. Fix now an index i ∈ N0
n−1 and define

Si(t)y := gi+1(t)Cy− ∑
j∈N0

n−1\Di

(
gn−j ∗ E(n−1−i)

)
(t)Ajy, t ≥ 0,

for any y ∈ E such that C1y ∈ Di. Suppose now that yk
j ∈ E and C1yk

j ∈ Di for 0 ≤
i, j ≤ n − 1. Define a function ω : [0, ∞) → X by ω(t) := 0, if t ∈ [0, t1], and ω(t) :=
∑n−1

j=0 [Sj(t − t1)y1
j + ... + Sj(t − tk)yk

j ] if t ∈ (tk, tk+1] for some k ∈ N. Then the function
u(t) := uh(t) + ω(t), t ≥ 0 is a strong solution of the abstract impulsive Cauchy problem
(ACP)n, as easily inspected. An application to the abstract differential impulsive Cauchy
problems in Lp-spaces can be given following our consideration from ([28], Example 2.3.44).

3. In ([23], Section 5.7, Section 5.8), the abstract Cauchy problem (ACP)n without
impulsive effects has been considered by using the operator matrices and the equivalent
abstract degenerate first-order differential equation on the product space. Considering the
solutions Si(t) of the abstract Cauchy problem ([23], (5.34), p. 163) with uj = 0 for j 6= i
(0 ≤ i ≤ n− 1), we can similarly construct the function ω(t) solving the problem (ACP)i

n
with the term ω(n)(t) replaced therein with the term Bω(n)(t). Following this approach,
we can also analyze the well-posedness of the abstract Cauchy problem (ACP)n with
impulsive effects.

4. On Abstract Impulsive Fractional Differential Inclusions

The main purpose of this section is to explain that the methods proposed in many
published research articles cannot be adequately used in the analysis of the well-posedness
of the abstract impulsive fractional differential inclusions with Caputo derivatives, unfortu-
nately.

Suppose first that I = (0, T) for some T ∈ (0, ∞],α > 0 and m = dαe. The Caputo
fractional derivative Dα

t u(t) is traditionally defined for those functions u ∈ Cm−1([0, ∞) : E)
for which gm−α ∗ (u−∑m−1

k=0 ukgk+1) ∈ Cm([0, ∞) : E), by

Dα
t u(t) :=

dm

dtm

[
gm−α ∗

(
u−

m−1

∑
k=0

ukgk+1

)]
; (8)

here and hereafter, uk = u(k)(0) for 0 ≤ k ≤ m− 1. In our striving to investigate the abstract
impulsive integro-differential equations with Caputo fractional derivatives, we need to
slightly weaken the assumption u ∈ Cm−1([0, ∞) : E) in the above definition. We propose
the following notion:

Definition 5. A function u : [0, T] → X belongs to the space Aα([0, T] : X) if and only if
there exist l ∈ N and points t0 ≡ 0 < t1 < t2 < ... < tl < T ≡ tl+1 such that the following
conditions hold:

(i) The function u(·) is (m− 1)-times continuously differentiable on the intervals [0, t1), (t1, t2),
(t2, t3), ..., (tl , T];

(ii) The right derivatives limt→ti+ u(j)(t) exist for 0 ≤ j ≤ m − 1 and 1 ≤ i ≤ l; the left
derivatives limt→ti− u(j)(t) exist for 0 ≤ j ≤ m− 1 and 1 ≤ i ≤ l + 1.

It is clear that the assumption u ∈ Aα([0, T] : X) implies that the function u(j)(·) is
essentially bounded on the segment [0, T] for 0 ≤ j ≤ m− 1. In the following definition,
we will introduce the following generalization of the Caputo fractional derivative Dα

t u(t);
the notion of Sobolev space Wm,1((0, T) : X) is taken in the sense of [1]:

Definition 6. (i) Suppose that u ∈ Aα([0, T] : X). Then the Caputo fractional derivative
Dα

t u(t) is defined if and only if gm−α ∗ (u−∑m−1
k=0 ukgk+1) ∈Wm,1((0, T) : X), by (8).
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(ii) Suppose that u ∈ L1
loc([0, ∞) : X). Then the Caputo fractional derivative Dα

t u(t) is defined
for t ≥ 0 if and only if for each T > 0 we have u|[0,T] ∈ Aα([0, T] : X) and the Caputo
fractional derivative Dα

t u(t) is defined on the segment [0, T].

The assumption gm−α ∗ (u−∑m−1
k=0 ukgk+1) ∈Wm,1((0, T) : X) is almost mandatory in

any reasonable definition of the Caputo fractional derivative Dα
t u(t). Unfortunately, this as-

sumption has several very unpleasant consequences if we want to study the well-posedness
of the abstract impulsive fractional differential inclusions with Caputo derivatives follow-
ing certain methods proposed in the existing literature. More precisely, we have the
following result:

Theorem 2. Suppose that A is the integral generator of a local (gα, k)-uniqueness C2-resolvent
family, where τ > T, α ∈ (0, ∞) \N and k(t) is a kernel. Suppose that ω ∈ Aα([0, T] : X) and{

Dα
t ω(t) ∈ Aω(t), t ∈ [0, T] \ {t1, t2, ..., tl};

ω(j)(0) = 0, 0 ≤ j ≤ m− 1.
(9)

Then ω(t) = 0 for all t ∈ [0, T].

Proof. Since ω(j)(0) = 0, 0 ≤ j ≤ m − 1 and ω(·) is (m − 1)-times continuously dif-
ferentiable on [0, t1], we have that the function (gm−α ∗ ω)(·) is likewise (m − 1)-times
continuously differentiable on [0, t1] and (gm−α ∗ ω)(j)(0) = 0, 0 ≤ j ≤ m− 1. Applying
the partial integration and the above equalities, we obtain:

(
gα ∗Dα

t ω
)
(t) =

(
gα ∗

dm

dtm

[
gm−α ∗ω

])
(t)

=
(

gα+1−m ∗
d
dt
[
gm−α ∗ω

])
(t), t ∈ [0, T].

Since the function (gm−α−m ∗ ω)(·) is absolutely continuous on [0, T], the last equality
implies (

g1 ∗ω
)
(t) =

(
gα+1 ∗Dα

t ω
)
(t), t ∈ [0, T].

Hence, (
g1 ∗ω

)
(t) ∈

(
gα ∗ A

[
g1 ∗ω

])
(t), t ∈ [0, T].

Then an application of ([28], Theorem 3.2.8(ii)) gives (g1 ∗ ω)(t) = 0, t ∈ [0, T]. Since
ω ∈ Aα([0, T] : X), the above yields ω(t) = 0 for all t ∈ [0, T].

Remark 1. Suppose that a piecewise-continuous function u : [0, T] → X is (m − 1)-times
continuously differentiable on the interval [0, t1). Then we can define the Caputo fractional derivative
Dα

t u(t) in the same way as in Definition 6. Then we have Dα
t u(t) = Dα

t u(t) provided that
u(j)(0) = 0, 0 ≤ j ≤ m− 1; here, Dα

t u(t) denotes the Riemann–Liouville fractional derivative of
function u(t) defined by the equations [1, (1.11)-(1.12), p. 10]. Even in this situation, the proof of
Theorem 2 shows that ω(t) = 0 for all t ∈ [0, T].

Before going any further, we would like to observe that Prof. M. Fečkan, Y. Zhou and
J. R. Wang have noticed, in the concluding remark of research article [25], that we must
use certain generalizations of the Caputo fractional derivatives (the Riemann–Liouville
fractional derivative or some other types of fractional derivatives) in order to study the
well-posedness of the abstract impulsive fractional Cauchy problems. It is our strong belief
that this is the only correct way for the investigations of the abstract impulsive fractional
Cauchy problems and that anything else is completely misleading and wrong.

In a recent series of studies, many authors have established important results concern-
ing the existence and uniqueness of the almost periodic type solutions for various classes
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of the abstract fractional differential inclusions with the Riemann–Liouville derivatives
of order α ∈ (0, 1); see e.g., the references quoted in [30]. We define here the Riemann–
Liouville fractional derivative Dα

t,+u(t) in a very general manner: Dα
t,+u(t) is defined for

those locally integrable functions u : R→ X such that, for almost every t ∈ R, there exists
δt > 0 such that the function s 7→ g1−α(t− s)u(s), s ∈ (t− δt, t + δt) belongs to the space
W1,1((t− δt, t + δt) : X), by

Dα
t,+u(t) :=

d
dt

∫ t

−∞
g1−α(t− s)u(s) ds.

If u ∈ L1(R : X), then the Fourier transform of the functions u(t) and Dα
t,+u(t) can be

defined and we have: (
FDα

t,+u
)
(λ) = (iλ)α(Fu)(λ), λ ∈ R; (10)

see e.g., ([3], Property 2.15, p. 90). Now we are ready to state and prove the following
simple result:

Theorem 3. Suppose that A is a closed MLO which satisfies that, for almost every λ ∈ R, the
multivalued linear operator Aλ = (iλ)α −A is injective. Suppose that ω ∈ L1(R : X), (tl)l∈Z is
a sequence without accumulation points and

Dα
t,+ω(t) ∈ Aω(t), t ∈ R \ {..., t−l , ..., t0, ..., tl , ...}. (11)

Then ω(t) = 0 for a.e. t ∈ R.

Proof. Since A is closed and ω ∈ L1(R : X), the use of (10) implies

[(iλ)α −A](Fω)(λ) = 0

for all λ ∈ R. Our assumption and the Riemann–Lebesgue lemma together imply that
(Fω)(λ) = 0, λ ∈ R, and therefore, ω(t) = 0 for a.e. t ∈ R.

It is clear that Theorem 3 indicates that it is very difficult to study the existence and
uniqueness of piecewise continuous solutions of the abstract fractional differential inclusion

Dα
t,+u(t) ∈ Au(t) + f (t), t ∈ R \ {..., t−l , ..., t0, ..., tl , ...}.

Almost nothing can be said if A is a subgenerator of an exponentially bounded (gβ, gζ)-
regularized C-resovent family for some β ∈ (α, 1] and ζ ≥ 1 since, in this case, the multival-
ued linear operator Aλ = (iλ)α −A is injective for every λ ∈ R.

5. Abstract Volterra Integro-Differential Inclusions with Impulsive Effects

In this section, we consider the well-posedness of the following abstract impulsive
Volterra integro-differential inclusion:

Bu(t) ⊆A
∫ t

0
a(t− s)u(s)ds +F (t), t ∈ [0, T] \ {t1, ..., tl};

(∆u)(tm) = Cym, m = 1, ..., l, (12)

where 0 ≡ t0 < t1 < ... < tl < T ≡ tl+1, where 0 < T < ∞, a ∈ L1
loc([0, T]), a 6= 0,

F : [0, T]→ P(E), andA : X → P(E), B : X → P(E) are two given mappings, as well as the
well-posedness of the following abstract impulsive Volterra integro-differential inclusion:

Bu(t) ⊆A
∫ t

0
a(t− s)u(s)ds +F (t), t ∈ [0, ∞) \ {t1, ..., tl , ...};

(∆u)(tl) = Cyl , l ≥ 1, (13)
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where 0 ≡ t0 < t1 < ... < tl < tl+1 < ... < +∞, the sequence (tl)l has no accumulation
point, a ∈ L1

loc([0, ∞)), a 6= 0, F : [0, ∞)→ P(E), and A : X → P(E), B : X → P(E) are two
given mappings.

We will use the following notion:

Definition 7. (i) A function u ∈ PC([0, T] : X) is said to be a pre-solution of (12) on [0, T]
if and only if u(·) is continuous on the set [0, T] \ {t1, ..., tl}, (a ∗ u)(t) ∈ D(A) and
u(t) ∈ D(B) for t ∈ [0, T] \ {t1, ..., tl}, as well as (12) holds.

(ii) A solution of (12) on [0, T] is any pre-solution u(·) of (12) on [0, T] satisfying additionally
that there exist functions uB ∈ PC([0, T] : E) and ua,A ∈ PC([0, T] : E), continuous on
the set [0, T] \ {t1, ..., tl}, such that uB(t) ∈ Bu(t) and ua,A(t) ∈ A

∫ t
0 a(t− s)u(s)ds for

t ∈ [0, T] \ {t1, ..., tl}, as well as

uB(t) ∈ ua,A(t) +F (t), t ∈ [0, T] \ {t1, ..., tl}.

(iii) A strong solution of (12) on [0, T] is any function u ∈ PC([0, T] : X), continuous on the
set [0, T] \ {t1, ..., tl}, satisfying that there exist two functions uB ∈ PC([0, T] : E) and
uA ∈ PC([0, T] : E), continuous on the set [0, T] \ {t1, ..., tl}, such that uB(t) ∈ Bu(t),
uA(t) ∈ Au(t) for all t ∈ [0, T] \ {t1, ..., tl}, and

uB(t) ∈ (a ∗ uA)(t) +F (t), t ∈ [0, T] \ {t1, ..., tl}.

(iv) Suppose that 0 ≡ t0 < t1 < ... < tl < tl+1 < ... < +∞ and the sequence (tl)l has no
accumulation point. By a (pre-)solution [solution, strong solution] of (13) we mean any
function u(·) which satisfies that, for every l ∈ N and T ∈ (tl , tl+1), the function u|[0,T](·) is
a (pre-)solution [solution, strong solution] of (12) on [0, T].

The following important results can be simply deduced:

(i) If A and B are two MLOs and A is closed, then any strong solution of (12) on [0, T]
[(13)] is already a solution of (12) on [0, T] [(13)].

(ii) If B = I, a(t) and k(t) are kernels and A is a closed subgenerator of a mild (a, k)-
regularized C2-uniqueness family, then any pre-solution of (12) on [0, T] [(13)] is
unique (see [28], Proposition 3.2.8(ii)).

The following essential result can be simply reformulated in the global setting:

Theorem 4. (i) Suppose a(t) and k(t) are kernels, k(0) = 1, C2 ∈ L(X) and A is a closed
subgenerator of a mild (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ) ⊆ L(X), where
τ > T. Define F (t) := 0 for t ∈ [0, t1] and F (t) := ∑m

s=1 k(t− ts)C2ys if t ∈ (tm, tm+1]
for some integer m ∈ Nl . Define also u(t) := 0 for t ∈ [0, t1] and u(t) := ∑l

s=1 R2(t− ts)ys
if t ∈ (tm, tm+1] for some integer m ∈ Nl . If y1, ..., yl ∈ D(A), then u(t) is a unique strong
solution of problem (12) on [0, T], with the operator C replaced therein with the operator C2.

(ii) Suppose that a(t) and k(t) are kernels, k(0) = 1, C1 ∈ L(X, E) andA is a closed subgenerator
of a mild (a, k)-regularized C1-existence family (R1(t))t∈[0,τ) ⊆ L(X, E) such that R1(0) =
C1, where τ > T. Define F (t) and u(t) in the same way as above, with the operator C2
replaced therein with the operator C1 and the elements y1, ..., yl ∈ X. Then u(t) is a solution
of problem (12) on [0, T], with the operator C replaced therein with the operator C1.

Proof. We will prove only (i). The uniqueness of a strong solution of problem (12) on
[0, T] follows from the above observations. Let zm ∈ Aym, m = 1, ..., l; then we have
R2(t)ym − k(t)C2ym =

∫ t
0 a(t− s)R2(s)zm ds for all t ∈ [0, τ) and m = 1, ..., l so that R2(t−

tm)ym − k(t − tm)Cym =
∫ t−tm

0 a(t − s − tm)R2(s)zm ds for all t ∈ [0, τ) and m = 1, ..., l.
Adding these equalities for s = 1, ..., m, we simply obtain that u(t) = (a ∗ uA)(t) + F (t)
on (tm, tm+1], where m ∈ Nl is fixed and uA(t) is defined in the same way as u(t) with
the elements y1, ..., yl replaced therein with the elements z1, ..., zl (we only want to notice
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that it is necessary to divide the segment of the integration [0, t] into the segments [0, t1],
[t1, t2], ..., [tm−1, tm] and [tm, t]). Since k(0) = 1, we have R2(0)x = C2x for all x ∈ D(A),
which simply completes the proof of theorem.

It is clear that Theorem 4 can be applied to a wide class of the abstract impulsive
Volterra integro-differential inclusions; see the research monograph [28,29,32] and refer-
ences cited therein for fairly complete information about the subject. Concerning the use
of C-regularized solution operator families (integrated solution operator families and con-
voluted solution operator families with k(0) = 0 cannot be used for providing certain
applications of Theorem 4), we may refer e.g., to ([29], Example 2.1.9, Example 2.1.10(ii);
Section 2.5) and ([28], Theorem 3.2.21; see also pp. 323–324); for the sake of completeness,
we will present the following illustrative applications of Theorem 4, only:

Example 4. (i) Suppose that Ω is a bounded domain in Rn, b > 0, m(x) ≥ 0 a.e. x ∈ Ω,
m ∈ L∞(Ω) and 1 < p < ∞. Let B be the multiplication in Lp(Ω) with m(x), and
let A = ∆ − b act with the Dirichlet boundary conditions. Then our analysis from ([28],
Example 3.2.23) shows that that there exists an operator C1 ∈ L(Lp(Ω)) such that the MLO
A = −AB−1 is a subgenerator of an entire (g1, g1)-regularized C1-existence family. Consider
now the following degenerate Volterra integral equation associated to the abstract backward
Poisson heat equation in the space X = Lp(Ω):

(PR) :


m(x)v(t, x) = u0(x) +

∫ t
0 (−∆ + b)v(s, x) ds,

t ∈ [0, ∞) \ {t1, ..., tl , ...}, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0, ∞)× ∂Ω,
m(x)v

(
tl+, x

)
−m(x)v

(
tl−, x

)
= C1

[
f1(x) + .... + fl(x)

]
,

x ∈ Ω, t ∈
(
tl , tl+1

]
(l ∈ N),

where t1 < t2 < ... < tl < ..., the sequence (tl) has no accumulation point and fl ∈ X for all
l ≥ 1. Then Theorem 4 and its proof yield that there exists a global solution of the problem (PR)
which can be extended to an analytic function defined on the set C \ {t1, ..., tl , ...}; note that we
can also apply Theorem 1 here by assuming that {t1, ..., tl , ...} is a complex sequence obeying
certain properties, as well as that it is still not clear how we can consider the well-posedness
of the fractional analogue of problem (PR) obtained by replacing the first equation of (PR)
with the equation m(x)v(t, x) = u0(x) +

∫ t
0 gα(t− s)(−∆ + b)v(s, x) ds for some number

α ∈ (0, 1).
(ii) Our analysis from ([28], Example 3.10.7) and the second equality in ([1], (1.21)) shows that

we can similarly analyze the following degenerate Volterra integral equation closely connected
with the inverse generator problem and the abstract backward Poisson heat equation in the
space X = Lp(Ω):

(∆− b)v(t, x) = (∆− b)v(0, x) + t
(

d
ds [(∆− b)v(s, x)]

)
s=0

+
∫ t

0 gα(t− s)m(s)v(s, x) ds,
t ∈ [0, ∞) \ {t1, ..., tl , ...}, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0, ∞)× ∂Ω,
(∆− b)v

(
tl+, x

)
− (∆− b)v

(
tl−, x

)
= C1

[
f1(x) + .... + fl(x)

]
,

x ∈ Ω, t ∈
(
tl , tl+1

]
(l ∈ N),

where t1 < t2 < ... < tl < ..., the sequence (tl) has no accumulation point fl ∈ X for all
l ≥ 1 and a number α ∈ (1, 2) satisfies an extra assumption.

We continue this section with the observation that the theory of abstract degenerate
Volterra integro-differential equations is rather non-trivial as well as that the use of multi-
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valued linear operators is not sufficiently adequate to cover all related problems within this
theory. Consider now the following problem:

Bu(t) = f (t) +
∫ t

0
a(t− s)Au(s)ds, t ∈ [0, T] \ {t1, ..., tl};

B(∆u)(tm) = CBym, m = 1, ..., l, (14)

where T ∈ (0, ∞) and t 7→ f (t) for t ∈ [0, T] is a Lebesgue measurable mapping with values
in X, a ∈ L1

loc([0, T]) and A, B are closed linear operators with domain and range contained
in X. We refer the reader to ([28], Definition 2.2.1) for the notion of a mild (strong) solution
of (14) without impulsive effects; we similarly define the notion of a mild (strong) solution
of (14) with impulsive effects.

The notion of an exponentially bounded (a, k)-regularized C-resolvent family for (14)
has recently been introduced in ([28], Definition 2.2.2):

Definition 8. Assume that the functions a(t) and k(t) satisfy (P1), as well as that R(t) : D(B)→
E is a linear mapping for t ≥ 0. Suppose that C ∈ L(E) is injective and CA ⊆ AC. Then the
operator family (R(t))t≥0 is said to be an exponentially bounded (a, k)-regularized C-resolvent
family for (14) if and only if there exists

ω ≥ max(0, abs(a), abs(k))

such that the following holds:

(i) The mapping t 7→ R(t)x, t ≥ 0 is continuous for every fixed element x ∈ D(B).
(ii) There exist M ≥ 1 and ω ≥ 0 such that ‖R(t)‖ ≤ Meωt, t ≥ 0.
(iii) For every λ ∈ C with <λ > ω and k̃(λ) 6= 0, the operator B − ã(λ)A is injective,

C(R(B)) ⊆ R(B− ã(λ)A) and

k̃(λ)(B− ã(λ)A)−1CBx =
∫ ∞

0
e−λtR(t)x dt, x ∈ D(B).

We will use the following lemma (cf. [28], Theorem 2.2.8):

Lemma 2. Assume that the functions |a|(t) and k(t) satisfy (P1), and let (R(t))t≥0 is an expo-
nentially bounded (a, k)-regularized C-resolvent family for (14), satisfying (ii) of Definition 8 with
ω ≥ max(0, abs(|a|), abs(k)).

(i) Suppose that v0 ∈ D(B) and the following condition holds:

(i.1) for every x ∈ D(B), there exista function h(λ; x) ∈ LT− E and a number ω0 > ω such
that h(λ; x) = k̃(λ)B(B− ã(λ)A)−1CBx provided k̃(λ) 6= 0 and <λ > ω0.

Then the function u(t) = R(t)v0, t ≥ 0 is a mild solution of (14) with f (t) = k(t)CBv0,
t ≥ 0 and without impulsive effects. The uniqueness of mild solutions holds if we suppose
additionally that CB ⊆ BC and the function k(t) satisfies (P2).

(ii) Suppose that CB ⊆ BC, v0 ∈ D(A) ∩ D(B) and the following condition holds:

(ii.1) for every x ∈ E, there exist a function h(λ; x) ∈ LT − E and a number ω1 > ω such
that h(λ; x) = k̃(λ)B(B− ã(λ)A)−1Cx provided k̃(λ) 6= 0 and <λ > ω1.

Then the function u(t) = R(t)v0, t ≥ 0 is a strong solution of (14) with f (t) = k(t)CBv0,
t ≥ 0 and without impulsive effects. The uniqueness of strong solutions holds if we suppose
additionally that the function k(t) satisfies (P2).

Let us note that the requirements of Lemma 2(i) imply that

A(a ∗ R)(t)v0 = BR(t)v0 − k(t)CBv0, t ≥ 0, v0 ∈ D(B). (15)
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By applying (15), Lemma 2 and the argumentation contained in the proof of Theorem 4,
one may simply obtain the following result:

Theorem 5. (i) Suppose that the requirements of Lemma 2(i) hold and k(0) = 1. Define
F (t) := 0 for t ∈ [0, t1] and F (t) := ∑m

s=1 k(t− ts)CBys if t ∈ (tm, tm+1] for some integer
m ∈ Nl . Define also u(t) := 0 for t ∈ [0, t1] and u(t) := ∑l

s=1 R(t− ts)ys if t ∈ (tm, tm+1]
for some integer m ∈ Nl . If y1, ..., yl ∈ D(B), then u(t) is a mild solution of problem (14) on
[0, T]. The uniqueness of mild solutions of problem (14) holds if we suppose additionally that
CB ⊆ BC and the function k(t) satisfies (P2).

(ii) Suppose that the requirements of Lemma 2(ii) hold and k(0) = 1. Define F (t) and u(t) as
above. If y1, ..., yl ∈ D(A) ∩ D(B), then u(t) is a strong solution of problem (14) on [0, T].
The uniqueness of strong solutions of problem (14) holds if we suppose additionally that the
function k(t) satisfies (P2).

An application of Theorem 5 can be given to the impulsive degenerate Volterra integral
equations associated with the following degenerate fractional Cauchy problem in X =
Lp(R2), for example:

(P) :

{
Dα

t [uxx + uxy + uyy − u] = e−iα π
2
[
(−1)l+1 ∂2l

∂x2α u + uyy
]
, t ≥ 0,

u(0, x) = φ(x); ut(0, x) = 0 if α ≥ 1;

see ([28], Example 2.2.27(i)) for more details. We can similarly provide certain applications
of exponentially bounded (a, k)-regularized C-resolvent families generated by a pair of
closed linear operators A, B to the abstract impulsive degenerate Volterra integral equations;
see ([28], Subsection 2.3.3) for more details.

We will not consider here the abstract degenerate multi-term Volterra integro-differential
equations with impulsive effects; the interested reader may try to reconsider the problems
from ([28], Example 2.3.43, Example 2.3.48) by adding certain impulsive effects therein.
For the theory of the abstract degenerate Cauchy problems, we also refer the reader
to the research monograph [33] by M. V. Plekhanova, V. E. Fedorov and the references
quoted therein.

6. Conclusions and Final Remarks

In this paper, we have provided certain applications of (degenerate) (a, k)-regularized
C-resolvent families subgenerated by the multivalued linear operators to the abstract
impulsive Volterra integro-differential inclusions. This is probably the first research article
which considers the possible applications of C-regularized solution operator families,
(ultra-)distribution semigroups and (ultra-)distribution cosine functions in the theory of
the abstract impulsive Volterra integro-differential inclusions. More to the point, this seems
to be the first research article which concerns the well-posedness of the abstract impulsive
higher-order Cauchy problems with integer order derivatives.

The almost periodic type solutions of the abstract impulsive Volterra integro-differential
inclusions will be investigated in our forthcoming research article [34].

We close the paper by quoting a few important topics not considered in our previous
work:

(1). It seems very plausible that we can similarly analyze the well-posedness of the
abstract incomplete Cauchy inclusions with impulsive effects; for more details about
the subject, we refer the reader to ([28], Section 2.7, Section 3.9).

(2). We have not considered here the abstract (degenerate) impulsive Volterra integro-
differential equations of non-scalar type; cf. ([29], pp. 54–56) and ([28], Section 2.9) for
further information in this direction.

(3). Let us finally mention that we have not considered here the abstract impulsive Volterra
integro-differential inclusions on the line as well as the existence and uniqueness of
discontinuous almost periodic (automorphic) type solutions for certain classes of
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the abstract impulsive Cauchy problems on the line; see e.g., ([29], pp. 51–53) for
more details about this subject in non-degenerate case. Our work almost completely
belongs to the realm of pure mathematics, and numerical simulations and illustrations
will appear somewhere else.
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29. Kostić, M. Generalized Semigroups and Cosine Functions; Mathematical Institute SANU: Belgrade, Serbia, 2011.
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