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Abstract: We present a significant example to show that the class of v-generalized b-metric spaces
properly contains the class of v-generalized metric spaces as well as b-metric spaces. This is
accomplished because the example provided by Došenović et al. (2020) is insufficient to expose the
generality of v-generalized b-metric spaces over the existing related spaces. Therefore, we establish
fixed point theorems by defining generalized almost contractions of rational type and Reich type in
v-generalized b-metric spaces. Moreover, we compare the proven results with the already existing
fixed point theorems in this space by presenting suitable examples. As a consequence of these fixed
point theorems, we further develop some common fixed-point results that ensure the existence and
uniqueness of coincidence points and common fixed points for a pair of self maps. Finally, we use the
outcome to check that the given Fredholm integral equation has a solution and that it is also unique.
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1. Introduction

There are many generalizations of metric spaces in the literature. Among these, one
significant generalization is b-metric spaces, which was introduced by Bakhtin [1] in 1989
(see also Czerwik [2]), who developed the Banach contraction principle in this newly
defined extension of metric spaces. In the notion of b-metric spaces, the authors replaced
the triangle inequality with s-type inequality as stated below.

Definition 1. “Let ∆ be a nonempty set and ρ : ∆× ∆→ [0,+∞) be a mapping. Then the map ρ
is said to be a b-metric on ∆, if for all ζ, ξ, ω ∈ ∆, the following axioms are satisfied

1. ρ(ζ, ξ) = 0 if and only if ζ = ξ,
2. ρ(ζ, ξ) = ρ(ξ, ζ),
3. ρ(ζ, ξ) ≤ s[ρ(ζ, ω) + ρ(ω, ξ)] for some real number s ≥ 1.

The space ∆ endowed with metric ρ is called a b-metric space and it is denoted as (∆, ρ)”.

In 2000, Branciari [3] announced another useful generalization of metric spaces, namely,
v-generalized metric spaces, defined as follows:

Definition 2. “Let ∆ be a nonempty set and ρv : ∆× ∆→ [0,+∞) be a mapping such that for all
ζ, ξ ∈ ∆, the following conditions are satisfied:

1. ρv(ζ, ξ) = 0 if and only if ζ = ξ,
2. ρv(ζ, ξ) = ρv(ξ, ζ),
3. ρv(ζ, ξ) ≤ ρv(ζ, ω1) + ρv(ω1, ω2) + ... + ρv(ωv−1, ωv) + ρ(ωv, ξ), for all distinct points

ζ, ξ, ω1, ω2, ..., ωv−1, ωv in ∆, where v ∈ N (the set of natural numbers).
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Then the map ρv is called a v-generalized metric and the space ∆ equipped with such metric is called
a v-generalized metric space which is denoted by the pair (∆, ρv)”.

The analogue of the Banach fixed point theorem was proved by Branciari [3] in the
context of v-generalized metric spaces. It is interesting to note that both spaces, viz., b-metric
spaces and v-generalized metric spaces, played a key role in the further development of
fixed point theory, as they enlarged the domain of the mapping for which the fixed point
is being investigated. The domain is enlarged in the sense that every metric space is a
b-metric space and a v-generalized metric space, but the converse is not necessarily true
(see [4] and Example 39 in [5]). Further, the metric function defined in the case of b-metric
spaces and v-generalized metric spaces is not continuous in general. For more details
about these spaces, one can refer to [6–18] and the references therein. In 2017, Mitrović
and Radenović [19] introduced a new type of space, namely, the v-generalized b-metric
space, by unifying both aforementioned spaces and establishing fixed point theorems for
Banach and Reich contractions in this newly defined space. Recently, many authors have
studied different properties of this space and proved several fixed point theorems for this
(refer to [19–22]). In the sequel, the aim of this paper is to define the notions of generalized
almost contraction of rational type and generalized almost contraction of Reich type in the
context of v-generalized b-metric spaces. Then, we ensure the existence and uniqueness of
fixed points for these contractions and expose the generality of the proved results over the
existing ones.

2. v-Generalized b-Metric Spaces

The following basic details about the v-generalized b-metric spaces are required in the
sequel.

Definition 3. [19]: “Let ∆ be a nonempty set and let v ∈ N. Assume ρv : ∆× ∆→ [0,+∞), then
the pair (∆, ρv) is called v-generalized b-metric space if for all ζ, ξ ∈ ∆, the following hold:

1. ρv(ζ, ξ) = 0 if and only if ζ = ξ,
2. ρv(ζ, ξ) = ρv(ξ, ζ),
3. ρv(ζ, ξ) ≤ s(ρv(ζ, ω1) + ρv(ω1, ω2) + ... + ρv(ωv−1, ωv) + ρv(ωv, ξ)) for some real

number s ≥ 1 and ∀ ω1, ω2, ..., ωv−1, ωv ∈ ∆ such that ζ, ω1, ω2, ..., ωv−1, ωv, ξ are
all distinct.”

It is clear from the definition that for v = 1, the v-generalized b-metric spaces reduce
to b-metric spaces, and for s = 1, they reduce to v-generalized metric spaces. Therefore, the
class of v-generalized b-metric spaces contains the class of b-metric spaces and v-generalized
metric spaces; in addition, it is pertinent to mention that there are some v-generalized
b-metric spaces that are neither b-metric spaces nor v-generalized metric spaces. This is
shown by the following example.

Example 1. Let ∆ be a subset of Rm(m ∈ N) such that

∆ = {(0, 0, 0, · · · , 0)} ∪Ω1 ∪Ω2 ∪ · · · ∪Ωm,

where Ω1 = {(ζ1, 0, 0, · · · , 0); 0 < ζ1 ≤ 1},
Ω2 = {(ζ1, ζ2, 0, · · · , 0); 0 < ζ1, ζ2 ≤ 1},
Ω3 = {(ζ1, ζ2, ζ3, · · · , 0); 0 < ζ1, ζ2, ζ3 ≤ 1},

...

Ωm = {(ζ1, ζ2, ζ3, · · · , ζm); 0 < ζ1, ζ2, · · · , ζm ≤ 1}.
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In addition, map ρv : ∆× ∆→ [0,+∞) is defined as ρv(ζ, ζ) = 0, ρv(ζ, ξ) = ρv(ξ, ζ) for all
ζ, ξ ∈ ∆ and

ρv((0, 0, 0, · · · , 0), (ζ1, 0, 0, · · · , 0)) = ζ1; 0 < ζ1 < 1, ζ1 6=
1
n

, n ∈ N,

ρv((0, 0, 0, · · · , 0), (ζ1, 0, 0, · · · , 0)) =
1

2n
; ζ1 =

1
n

, n ∈ N,

ρv

((
2
3

, 0, 0, · · · , 0
)

, (ζ1, 0, 0, · · · , 0)
)

=
1

2n
; ζ1 =

1
n

, n ∈ N,

ρv((ζ1, 0, 0, · · · , 0), (ζ1, ζ2, 0, · · · , 0)) = ζ2; 0 < ζ1, ζ2 ≤ 1,

ρv((ζ1, ζ2, 0, · · · , 0), (ζ1, ζ2, ζ3, · · · , 0)) = ζ3; 0 < ζ1, ζ2, ζ3 ≤ 1,
...

ρv((ζ1, ζ2, ζ3, · · · , 0), (ζ1, ζ2, ζ3, · · · , ζm)) = ζm; 0 < ζ1, ζ2, ζ3, · · · , ζm ≤ 1,

ρv

((
2
3

, 0, 0, · · · , 0
)

,
(

3
4

, ζ2, ζ3, · · · , ζm

))
= 1; 0 < ζ2, ζ3, · · · , ζm ≤ 1,

ρv((1, 1, 1, · · · , 1), (ζ1, ζ2, ζ3, · · · , ζm)) = 2; 0 < ζ1, ζ2, ζ3, · · · , ζm < 1,

ρv(ζ, ξ) = 5; otherwise.

Now, we observe that (∆, ρv) is not a v-generalized b-metric space for any v ∈ {1, 2, · · · , m, m+
1, · · · , 2m, 2m + 1} and s ≥ 1. In point of fact, consider the following 2m + 3 points of ∆:

Λ1 = (ζ1, ζ2, ζ3, · · · , ζm), Λ2 = (ζ1, ζ2, ζ3, · · · , 0), · · · ,

Λm = (ζ1, 0, 0, · · · , 0), Λm+1 = (0, 0, 0, · · · , 0),

Λm+2 =

(
1
n1

, 0, 0, · · · , 0
)

, Λm+3 =

(
2
3

, 0, 0, · · · , 0
)

,

Λm+4 =

(
1
n2

, 0, 0, · · · , 0
)

, Λm+5 =

(
1
n2

, ξ2, 0, · · · , 0
)

,

Λm+6 =

(
1
n2

, ξ2, ξ3, · · · , 0
)

, · · · , Λ2m+3 =

(
1
n2

, ξ2, ξ3, · · · , ξm

)
,

where 0 < ζ1, ζ2, · · · , ζm, ξ2, · · · , ξm < 1, ζ1 6= 2
3 , ζ1 6= 1

n ; n ∈ N and n1, n2 ∈ N with n1 6= n2.
Then, we have ρv(Λ1, Λ2m+3) = 5 and ρv(Λ1, Λ2) + ρv(Λ2, Λ3) + · · · + ρv(Λm, Λm+1)
+ρv(Λm+1, Λm+2) + ρv(Λm+2, Λm+3) + ρv(Λm+3, Λm+4) + ρv(Λm+4, Λm+5)+
ρv(Λm+5, Λm+6) + · · · + ρv(Λ2m+2, Λ2m+3) = ζm + ζm−1 + · · · + ζ1 +

1
2n1

+ 1
2n1

+ 1
2n2

+
ξ2 + ξ3 + · · ·+ ξm.

If (∆, ρv) is a (2m + 1)-generalized b-metric space with some coefficient s ≥ 1, then we must
have

5 ≤ s
(

ζm + ζm−1 + · · ·+ ζ1 +
1

2n1
+

1
2n1

+
1

2n2
+ ξ2 + ξ3 + · · ·+ ξm

)
,

which is not possible for sufficiently small values of ζm, ζm−1, · · · , ζ1, 1
2n1

, 1
2n1

, 1
2n2

, ξ2, ξ3, · · · , ξm;
hence, (∆, ρv) is not a (2m + 1)-generalized b-metric space.

However, (∆, ρv) is a (2m + 2)-generalized b-metric space for any s ≥ 5. For this , consider
2m + 4 distinct points P1, P2, · · · , Pm, Pm+1, · · · , P2m+3, P2m+4. Clearly, by the definition of
ρv, one of the distances among ρv(P1, P2), ρv(P2, P3), · · · , ρv(Pm, Pm+1), · · · , ρv(P2m+3, P2m+4)
must be greater than or equal to 1; thus, for any s ≥ 5,

ρv(P1, P2m+4) ≤ 5 ≤ s(ρv(P1, P2) + ρv(P2, P3) + · · ·+ ρv(Pm, Pm+1)

+ · · ·+ ρv(P2m+3, P2m+4)).
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Remark 1. In Example 1 in Došenović et al. [20], the authors claim that (∆, d) is a v-generalized
b-metric for v = 5 is not correct. If we take the following seven points in ∆:

Λ1 = (ζ1, ζ2, ζ3), Λ2 = (ζ1, ζ2, 0),

Λ3 = (ζ1, 0, 0), Λ4 = (0, 0, 0),

Λ5 = (ξ1, 0, 0), Λ6 = (ξ1, ξ2, 0),

Λ7 = (ξ1, ξ2, ξ3),

where 0 < ζ1, ζ2, ζ3, ξ1, ξ2, ξ3 ≤ 1, then there is no s ≥ 1 such that the following inequality is true
for sufficiently small values of ζ1, ζ2, ζ3, ξ1, ξ2, ξ3:

d(Λ1, Λ7) = 4 ≤ s(d(Λ1, Λ2) + d(Λ2, Λ3) + d(Λ3, Λ4) + d(Λ4, Λ5) +

d(Λ5, Λ6) + d(Λ6, Λ7))

= s(ζ3,+ζ2 + ζ1 + ξ1 + ξ2 + ξ3).

In fact, this is a v-generalized metric space for v = 6; hence, this is not a suitable example
to show that the class of v-generalized b-metric spaces properly contains the class of v-generalized
metric spaces as well as the class of b-metric spaces.

Definition 4. A sequence {xn} in a v-generalized b-metric space (∆, ρv) is said to be the following:

1. A convergent sequence that converges to a point x in ∆ if for given ε > 0, there exists a
positive integer N such that ρv(xn, x) < ε for all n > N. It can be written as xn → x
whenever n→+∞.

2. A Cauchy sequence if for given ε > 0, there exists a positive integer N such that
ρv(xn, xp) < ε for all n, p > N; it is denoted as ρv(xn, xp)→ 0 whenever n, p→+∞.

Space (∆, ρv) is said to be complete if every Cauchy sequence in ∆ converges to a point
in ∆. It is very interesting to note that in v-generalized b-metric spaces, the convergent
sequence is not necessarily Cauchy, and the sequence may converge to two or more distinct
points. This is seen in the following example.

Example 2. If pair (∆, ρv) is as defined in Example 1, then sequence
〈(

1
n , 0, 0, · · · , 0

)〉
n∈N

in

∆ converges to points (0, 0, 0, · · · , 0) and
( 2

3 , 0, 0, · · · , 0
)

of ∆; thus, the limit of the convergent
sequence is not unique.
Moreover, for n, p ∈ N, ρv

((
1
n , 0, 0, · · · , 0

)
,
(

1
p , 0, 0, · · · , 0

))
converges to 5 as n→+∞. Hence,〈(

1
n , 0, 0, · · · , 0

)〉
n∈N

is not a Cauchy sequence in a (2m + 2)-generalized b-metric space.

Now, to overcome the situation of the non-uniqueness of the limit of a convergent
sequence, we prove the following lemma with some special assumptions that help to obtain
our main results.

Lemma 1. Let (∆, ρv) be a v-generalized b-metric space and {ζn} be a Cauchy sequence in ∆ such
that ζm 6= ζn for all distinct m, n ∈ N. Then, {ζn} can converge to at most one point.

Proof. On the contrary, suppose that limn→+∞ ζn = ζ and limn→+∞ ζn = ξ such that ζ 6= ξ.
As ζm 6= ζn and ζ 6= ξ, then there exists l ∈ N such that all the terms of sequence ζn for
n ≥ l are different from ζ and ξ. If such l does not exist, then ζ = ξ.

In addition, as {ζn} is a Cauchy sequence, for given ε > 0, there exists p1 ∈ N such
that

ρv(ζn, ζp) <
ε

s(v + 1)
∀ n, p ≥ p1.
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Since ζn → ζ and ζn → ξ, there exist p2, p3 ∈ N such that

ρv(ζn, ζ) <
ε

s(v + 1)
∀ n ≥ p2,

and
ρv(ζn, ξ) <

ε

s(v + 1)
∀ n ≥ p3.

Choosing r = max{l, p1, p2, p3}, then for all n ≥ r and v ≥ 2,

ρv(ζ, ξ) ≤ s[ρv(ζ, ζn+v−2) + ρv(ζn+v−2, ζn+v−3) + · · ·
+ρv(ζn+1, ζn) + ρv(ζn, ζr) + ρv(ζr, ξ)]

< s
[

ε

s(v + 1)
+

ε

s(v + 1)
+ · · ·+ ε

s(v + 1)

]
= ε,

and for v = 1,

ρv(ζ, ξ) ≤ s[ρv(ζ, ζm) + ρv(ζm, ξ)]

< s
[ ε

2s
+

ε

2s

]
= ε.

For all the values of v, as ε is arbitrary, we obtain

ρv(ζ, ξ) = 0 =⇒ ζ = ξ,

which is a contradiction.

3. Almost Contractions in v-Generalized b-Metric Spaces

In 2004, the notion of weak contraction was initiated by Berinde [23] in the framework
of metric spaces. Thereafter, to ensure the uniqueness of fixed point, a slightly stronger
contractive condition than a weaker contraction was introduced by Babu et al. [24] in 2008.
Berinde [25] retitled the term weak contraction as almost contraction. Now, we start our
work by defining a version of almost contraction in a v-generalized b-metric space, which
is as follows.

Definition 5. Let (∆, ρv) be a v-generalized b-metric space. A map Γ : ∆ → ∆ is said to be a
generalized almost contraction of rational type if there exists a constant δ ∈ [0, 1) and L ≥ 0
such that

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}, (1)

for all ζ, ξ ∈ ∆.

It is clear from the definition that the Banach contraction in a v-generalized b-metric
space is a generalized almost contraction of rational type, but the converse assertion is not
true in general. This is shown by the following example.

Example 3. In Example 1, if we take m = 2, then the set ∆ ⊆ R2

is given as ∆ = {(0, 0)} ∪Ω1 ∪Ω2, where Ω1 = {(ζ1, 0); 0 < ζ1 ≤ 1} and
Ω2 = {(ζ1, ζ2); 0 < ζ1, ζ2 ≤ 1}. In addition, we define ρv : ∆ × ∆ → [0,+∞) in such a
way that ρv(ζ, ζ) = 0, ρv(ζ, ξ) = ρv(ξ, ζ) for all ζ, ξ ∈ ∆ and

ρv((0, 0), (ζ1, 0)) = ζ1; 0 < ζ1 < 1, ζ1 6=
1
n

, n ∈ N,
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ρv((0, 0), (ζ1, 0)) =
1

2n
; ζ1 =

1
n

, n ∈ N,

ρv

((
2
3

, 0
)

, (ζ1, 0)
)

=
1

2n
; ζ1 =

1
n

, n ∈ N,

ρv((ζ1, 0), (ζ1, ζ2)) = ζ2; 0 < ζ1, ζ2 ≤ 1,

ρv

((
2
3

, 0
)

,
(

3
4

, ζ2

))
= 1; 0 < ζ2 ≤ 1,

ρv((1, 1), (ζ1, ζ2)) = 2; 0 < ζ1, ζ2 < 1,

ρv(ζ, ξ) = 5, otherwise.

Then, it is clear from Example 1 that (∆, ρv) is a 6-generalized b-metric space for s ≥ 5.
Now, we define a map Γ : ∆→ ∆ as

Γζ =

{
(1, 1), ζ = (0, 0)(

3
4 , 1

2

)
, ζ ∈ Ω1 ∪Ω2.

Then, we discuss the following possibilities:

Case 1. If ζ = (0, 0) and ξ ∈ Ω1, then

ρv(Γζ, Γξ) = 2

and

ρv(ζ, ξ) ∈ (0, 1)

ρv(ζ, Γζ) = 5

ρv(ξ, Γξ) ∈
{

1
2

, 1, 5
}

ρv(ζ, Γξ) = 5

ρv(ξ, Γζ) ∈ {1, 5}.

Therefore,

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for δ ≥ 4
5 ∈ [0, 1) and L ≥ 1.

Case 2. If ζ ∈ Ω1 and ξ = (0, 0), then as in Case 1, by symmetry, we have

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for δ ≥ 4
5 ∈ [0, 1) and L ≥ 1.

Case 3. If ζ = (0, 0) and ξ ∈ Ω2, then

ρv(Γζ, Γξ) = 2

and

ρv(ζ, ξ) = 5
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ρv(ζ, Γζ) = 5

ρv(ξ, Γξ) ∈ {0, 5}
ρv(ζ, Γξ) = 5

ρv(ξ, Γζ) ∈ {0, 2}.

Therefore,

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for δ ≥ 2
5 and L ≥ 0.

Case 4. If ζ ∈ Ω2 and ξ = (0, 0), then as in Case 3, by symmetry, we have

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for δ ≥ 2
5 and L ≥ 0.

Case 5. If ζ, ξ ∈ Ω1 ∪Ω2, then we have

ρv(Γζ, Γξ) = 0.

Therefore,

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for δ ∈ [0, 1) and L ≥ 0.

From Cases 1–5, we obtain

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for δ ≥ 4
5 ∈ [0, 1) and L ≥ 1.

However, Γ does not satisfy the ordinary Banach contraction—for instance, take ζ = (0, 0),
ξ =

(
1
2 , 0
)

, and ρv(Γζ, Γξ) = 2 > 1
4 = ρv(ζ, ξ).

Theorem 1. Let (∆, ρv) be a complete v-generalized b-metric space and Γ : ∆→ ∆ be a generalized
almost contraction of rational type. Then, Γ has a unique fixed point.

Proof. Let ζ0 ∈ ∆ be arbitrary. Define sequence {ζn} with ζn+1 = Γζn for all n ≥ 0. Then,
by (1),

ρv(ζn+1, ζn) ≤ δ max
{

ρv(ζn, ζn−1),
ρv(ζn, ζn+1) · ρv(ζn−1, ζn)

1 + ρv(ζn, ζn−1)

}
+L min{ρv(ζn, ζn+1) + ρv(ζn−1, ζn), ρv(ζn, ζn), ρv(ζn−1, ζn+1)}

≤ δ max{ρv(ζn, ζn−1), ρv(ζn, ζn+1)}. (2)
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If max{ρv(ζn, ζn−1), ρv(ζn+1, ζn)} = ρv(ζn+1, ζn), then (2) becomes

ρv(ζn+1, ζn) ≤ δρv(ζn+1, ζn),

which is a contradiction, as δ ∈ [0, 1); thus,

ρv(ζn+1, ζn) ≤ δρv(ζn, ζn−1).

Therefore, we have
ρv(ζn+1, ζn) ≤ δnρv(ζ1, ζ0). (3)

Suppose un = um for some n 6= m. Without loss of generality, we assume that
n > m. Then, there exists k ≥ 1 such that n = m + k and so ζm = ζm+k. Thus, we have
Γζm = Γζm+k, which implies ζm+1 = ζm+k+1. It follows that

ρv(ζm+1, ζm) = ρv(ζm+k+1, ζm+k) ≤ δkρv(ζm+1, ζm) < ρv(ζm+1, ζm),

which is a contradiction. Thus, we obtain ζn 6= ζm for all distinct n, m ∈ N.
Now, using conditions (1) and (3), we have

ρv(ζm, ζn) ≤ δ max
{

ρv(ζm−1, ζn−1),
ρv(ζm−1, ζm) · ρv(ζn−1, ζn)

1 + ρv(ζm−1, ζn−1)

}
+L min{ρv(ζm−1, ζm) + ρv(ζn−1, ζn), ρv(ζm, ζn+1), ρv(ζn, ζm+1)}

≤ δρv(ζm−1, ζn−1) + δ
ρv(ζm−1, ζm) · ρv(ζn−1, ζn)

1 + ρv(ζm−1, ζn−1)

+L{ρv(ζm−1, ζm) + ρv(ζn−1, ζn)}
≤ δρv(ζm−1, ζn−1) + δρv(ζm−1, ζm) · ρv(ζn−1, ζn)

+L{δm−1ρv(ζ1, ζ0) + δn−1ρv(ζ1, ζ0)}
≤ δρv(ζm−1, ζn−1) + δ · δm−1ρv(ζ1, ζ0) · δn−1ρv(ζ1, ζ0)

+L{δm−1ρv(ζ1, ζ0) + δn−1ρv(ζ1, ζ0)}
= δρv(ζm−1, ζn−1) + δm+n−1(ρv(ζ1, ζ0))

2 + L(δm−1 + δn−1)ρv(ζ1, ζ0)

and

ρv(ζm+1, ζn+1) ≤ δρv(ζm, ζn) + 1 · δm+n+1(ρv(ζ1, ζ0))
2 + 1 · δ1−1L(δm + δn)ρv(ζ1, ζ0)

ρv(ζm+2, ζn+2) ≤ δρv(ζm+1, ζn+1) + δm+n+3(ρv(ζ1, ζ0))
2 + L(δm+1 + δn+1)ρv(ζ1, ζ0)

≤ δ[δρv(ζm, ζn) + δm+n+1(ρv(ζ1, ζ0))
2 + L(δm + δn)ρv(ζ1, ζ0)]

+δm+n+3(ρv(ζ1, ζ0))
2 + L(δm+1 + δn+1)ρv(ζ1, ζ0)

≤ δ2ρv(ζm, ζn) + 2 · δm+n+2(ρv(ζ1, ζ0))
2 + 2 · δ2−1L(δm + δn)ρv(ζ1, ζ0)

...

ρv(ζm+k, ζn+k) ≤ δkρv(ζm, ζn) + kδm+n+k(ρv(ζ1, ζ0))
2 + kδk−1L(δm + δn)ρv(ζ1, ζ0). (4)

Since ρv(ζ0, Γζ0) = ρv(ζ0, ζ1) <+∞, then, by applying n→+∞ in (3), we obtain

lim
n→+∞

ρv(ζn, ζn+1) = 0.

Now, we prove that {ζn} is a Cauchy sequence in ∆. Meanwhile, if {ζn} is a non-
Cauchy sequence on the contrary, a positive ε and subsequences {ζmλ

} and {ζnλ
} of {ζn}

can be obtained, such that mλ is the smallest cardinal, with mλ > nλ > λ,

ρv(ζmλ
, ζnλ

) ≥ ε
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and
ρv(ζmλ−1, ζnλ

) < ε.

Then, it follows that

ε ≤ ρv(ζmλ
, ζnλ

) ≤ s[ρv(ζmλ
, ζnλ+v) + ρv(ζnλ+v, ζnλ+v−1) + · · ·

+ρv(ζnλ+2, ζnλ+1) + ρv(ζnλ+1, ζnλ
)],

which gives
ε

s
≤ lim sup

λ→+∞
ρv(ζmλ

, ζnλ+v).

If δ = 0, the proof is trivial. So, let δ ∈ (0, 1). Since limn→+∞ δn = 0, there exists
n0 ∈ N such that

0 < δn0 · µ < 1, µ = s3. (5)

Now, consider the following two cases:

Case 1. When v ≥ 2, by condition (3), we obtain

ρv(ζmλ , ζnλ+v) ≤ δρv(ζmλ−1, ζnλ+v−1) + δmλ+nλ+v−1(ρv(ζ1, ζ0))
2

+L{δmλ−1 + δnλ+v−1}ρv(ζ1, ζ0)

≤ δs[ρv(ζmλ−1, ζmλ+n0−1) + ρv(ζmλ+n0−1, ζnλ+n0 )

+ρv(ζnλ+n0 , ζnλ+2v−3) + ρv(ζnλ+2v−3, ζnλ+2v−4) + · · ·

+ρv(ζnλ+v+1, ζnλ+v) + ρv(ζnλ+v, ζnλ+v−1)] + δmλ+nλ+v−1(ρv(ζ1, ζ0))
2

+L{δmλ−1 + δnλ+v−1}ρv(ζ1, ζ0)

≤ δs[{δmλ−1ρv(ζn0 , ζ0) + (mλ − 1)δmλ+n0−1(ρv(ζ1, ζ0))
2

+(mλ − 1)δmλ−2L{δn0 + 1}ρv(ζ1, ζ0)}+ {δn0 ρv(ζmλ−1, ζnλ )

+n0δmλ+nλ+n0−1(ρv(ζ1, ζ0))
2 + n0δn0−1L{δmλ−1 + δnλ}ρv(ζ1, ζ0)}

+{δnλ ρv(ζn0 , ζ2v−3) + nλδnλ+n0+2v−3(ρv(ζ1, ζ0))
2

+nλδnλ−1L{δn0 + δ2v−3}ρv(ζ1, ζ0)}+ δnλ+2v−4ρv(ζ1, ζ0) + · · ·
+δnλ+vρv(ζ1, ζ0) + δnλ+v−1ρv(ζ1, ζ0)] + δmλ+nλ+v−1(ρv(ζ1, ζ0))

2

+L{δmλ−1 + δnλ+v−1}ρv(ζ1, ζ0)

< δs[{δmλ−1ρv(ζn0 , ζ0) + (mλ − 1)δmλ+n0−1(ρv(ζ1, ζ0))
2

+(mλ − 1)δmλ−2L{δn0 + 1}ρv(ζ1, ζ0)}+ {δn0 ε + n0δmλ+nλ+n0−1(ρv(ζ1, ζ0))
2

+n0δn0−1L{δmλ−1 + δnλ}ρv(ζ1, ζ0)}
+{δnλ ρv(ζn0 , ζ2v−3) + nλδnλ+n0+2v−3(ρv(ζ1, ζ0))

2

+nλδnλ−1L{δn0 + δ2v−3}ρv(ζ1, ζ0)}+ δnλ+2v−4ρv(ζ1, ζ0) + · · ·
+δnλ+vρv(ζ1, ζ0) + δnλ+v−1ρv(ζ1, ζ0)] + δmλ+nλ+v−1(ρv(ζ1, ζ0))

2

+L{δmλ−1 + δnλ+v−1}ρv(ζ1, ζ0).

By taking the upper limit as λ→ +∞ on both sides of the above inequality, we obtain

lim sup
λ→+∞

ρv(ζmλ
, ζnλ+v) ≤ sδn0+1ε <

ε

s
.
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Case 2. When v = 1,

ρv(ζmλ , ζnλ+1) ≤ s[ρv(ζmλ , ζmλ+n0−1) + ρv(ζmλ+n0−1, ζnλ+1)]

≤ s[ρv(ζmλ , ζmλ+n0−1) + s{ρv(ζmλ+n0−1, ζnλ+n0 )

+ρv(ζnλ+n0 , ζnλ+1)}]
= sρv(ζmλ , ζmλ+n0−1) + s2ρv(ζmλ+n0−1, ζnλ+n0 )

+s2ρv(ζnλ+n0 , ζnλ+1)

≤ s{δmλ ρv(ζn0−1, ζ0) + mλδmλ+n0−1(ρv(ζ1, ζ0))
2

+mλδmλ−1L{δn0−1 + 1}ρv(ζ1, ζ0)}+ s2{δn0 ρv(ζmλ−1, ζnλ )

+n0δmλ+nλ+n0−1(ρv(ζ1, ζ0))
2 + n0δn0−1L{δmλ−1 + δn}ρv(ζ1, ζ0)}

+s2{δnλ ρv(ζn0 , ζ1) + nλδnλ+n0+1(ρv(ζ1, ζ0))
2

+nλδnλ−1L{δn0 + δ}ρv(ζ1, ζ0)}
< s{δmλ ρv(ζn0−1, ζ0) + mλδmλ+n0−1(ρv(ζ1, ζ0))

2

+mλδmλ−1L{δn0−1 + 1}ρv(ζ1, ζ0)}+ s2{δn0 ε + n0δmλ+nλ+n0−1(ρv(ζ1, ζ0))
2

+n0δn0−1L{δmλ−1 + δn}ρv(ζ1, ζ0)}
+s2{δnλ ρv(ζn0 , ζ1) + nλδnλ+n0+1(ρv(ζ1, ζ0))

2

+nλδnλ−1L{δn0 + δ}ρv(ζ1, ζ0)}.

Again, by taking the upper limit as λ→+∞ on both sides of the above inequality, we have

lim sup
λ→+∞

ρv(ζmλ
, ζnλ+v) ≤ s2δn0 ε

<
ε

s
.

Thus, in both cases, we obtain

ε

s
≤ lim sup

λ→+∞
ρv(ζmλ

, ζnλ+v) <
ε

s
,

and thus the presumption of {ζn} being a non-Cauchy sequence is imprecise; so, {ζn} is
Cauchy in ∆. Then, the completeness of ∆ provides us with an element ζ∗ ∈ ∆ such that
limn→+∞ ρv(ζn, ζ∗) = 0.

Now, we verify that Γζ∗ = ζ∗. On the contrary, we assume that Γζ∗ 6= ζ∗. Then, owing
to Lemma 1, we can say that the terms of sequence {ζn} are different from ζ∗ and Γζ∗ for
sufficiently large values of n. Thus, it is obtained that

ρv(ζ
∗, Γζ∗) ≤ s[ρv(ζ

∗, ζn+1) + ρv(ζn+1, ζn+2) + ρv(ζn+2, ζn+3) + · · ·
+ρv(ζn+v−2, ζn+v−1) + ρv(ζn+v−1, ζn+v) + ρv(ζn+v, Γζ∗)]

= s[ρv(ζ
∗, ζn+1) + ρv(ζn+1, ζn+2) + ρv(ζn+2, ζn+3) + · · ·

+ρv(ζn+v−2, ζn+v−1) + ρv(ζn+v−1, ζn+v) + ρv(Γζn+v−1, Γζ∗)]

≤ s[ρv(ζ
∗, ζn+1) + ρv(ζn+1, ζn+2) + ρv(ζn+2, ζn+3) + · · ·

+ρv(ζn+v−2, ζn+v−1) + ρv(ζn+v−1, ζn+v)

+δ max
{

ρv(ζn+v−1, ζ∗),
ρv(ζn+v−1, ζn+v) · ρv(ζ∗, Γζ∗)

1 + ρv(ζn+v−1, ζ∗)

}
+L min{ρv(ζn+v−1, ζn+v) + ρv(ζ

∗, Γζ∗), ρv(ζn+v−1, Γζ∗), ρv(ζ
∗, ζn+v)}].

Since limn→+∞ ρv(ζ∗, ζn) = 0 and limn→+∞ ρv(ζn, ζn+1) = 0, we have

ρv(ζ
∗, Γζ∗) = 0 =⇒ Γζ∗ = ζ∗.
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Aliter: Consider
ζn = Γζn−1 = Γ2ζn−2 = · · · = Γnζ0,

then
lim

n→+∞
ρv(ζn, ζ∗) = 0 =⇒ lim

n→+∞
ρv(Γnζ0, ζ∗) = 0.

Now, take

ρv(Γn+1ζ0, Γζ∗) ≤ δ max

{
ρv(Γnζ0, ζ∗),

ρv(Γnζ0, Γn+1ζ0) · ρv(ζ∗, Γζ∗)
1 + ρv(Γnζ0, ζ∗)

}
+L min{ρv(Γnζ0, Γn+1ζ0) + ρv(ζ

∗, Γζ∗), ρv(Γnζ0, Γζ∗), ρv(ζ
∗, Γn+1ζ0)}.

By taking the limit as n→+∞, we obtain

lim
n→+∞

ρv(Γn+1ζ0, Γζ∗) = 0.

Thus, sequence un → Γζ∗, but due to Lemma 1, sequence {un} has a unique limit;
hence,

ρv(ζ
∗, Γζ∗) = 0 =⇒ Γζ∗ = ζ∗.

Finally, we prove that the fixed point thus obtained is unique. For this, let q be another
fixed point of Γ. Then,

ρv(ζ
∗, q) = ρv(Γζ∗, Γq)

≤ δ max
{

ρv(ζ
∗, q),

ρv(ζ∗, Γζ∗) · ρv(q, Γq)
1 + ρv(ζ∗, q)

}
+L min{ρv(ζ

∗, Γζ∗) + ρv(q, Γq), ρv(ζ
∗, Γq), ρv(q, Γζ∗)}

= δρv(ζ
∗, q) < ρv(ζ

∗, q),

which is a contradiction. Therefore, ρv(ζ∗, q) = 0, that is, ζ∗ = q.

Now, we present the following example in support of the proved result.

Example 4. Let ∆ = Ω ∪ Υ ∪Θ, where

Ω =

{
1
n

; n ∈ {7, 8, 9, 10}
}

,

Υ =

[
1
2

, 1
]

and Θ =

{
4
3

}
.

Define ρv : ∆× ∆→ [0,+∞) such that ρv(ζ, ξ) = ρv(ξ, ζ) for all ζ, ξ ∈ ∆ and

ρv

(
1
7

,
1
9

)
= ρv

(
1

10
,

1
8

)
= 0.38,

ρv

(
1
7

,
1

10

)
= ρv

(
1
8

,
1
9

)
= 0.01,

ρv

(
1
7

,
1
8

)
= ρv

(
1
9

,
1
10

)
= 0.015,

ρv

(
1
10

,
4
3

)
= 0.42

with ρv(ζ, ξ) = (ζ − ξ)2 + |ζ − ξ|, otherwise.
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Then (∆, ρv) is a 2-generalized b-metric space with coefficient s = 2 > 1. However, (∆, ρv) is
not a 2-generalized metric space, as

ρv

(
1
9

,
1
2

)
=

(
1
9
− 1

2

)2
+

∣∣∣∣19 − 1
2

∣∣∣∣ = 175
324

= 0.5401,

ρv

(
1
7

,
1
2

)
=

(
1
7
− 1

2

)2
+

∣∣∣∣17 − 1
2

∣∣∣∣ = 95
196

= 0.4847.

⇒ ρv

(
1
9

,
1
2

)
= 0.5401 > 0.01 + 0.015 + 0.4847

= ρv

(
1
9

,
1
8

)
+ ρv

(
1
8

,
1
7

)
+ ρv

(
1
7

,
1
2

)
.

If map Γ : ∆→ ∆ is defined as:

Γζ =


1
8 , ζ ∈ Ω
4
3 , ζ ∈ Υ
1

10 , ζ ∈ Θ.

Then, we have the following cases:

Case 1. If both ζ, ξ belong to any one of Ω, Θ, or Υ, then

ρv(Γζ, Γξ) = 0

and so, ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

holds for any δ ∈ [0, 1) and L ≥ 0.

Case 2. If ζ ∈ Ω and ξ ∈ Υ, then

ρv(Γζ, Γξ) =

(
1
8
− 4

3

)2
+

∣∣∣∣18 − 4
3

∣∣∣∣ = 2.6684

and

ρv(ζ, ξ) = (ζ − ξ)2 + |ζ − ξ| ∈ [0.4847, 1.71],

ρv(ζ, Γζ) =

(
ζ,

1
8

)
∈ {0, 0.01, 0.015, 0.38},

ρv(ξ, Γξ) =

(
ξ − 4

3

)2
+

∣∣∣∣ξ − 4
3

∣∣∣∣ ∈ [0.444, 1.5278],

ρv(ζ, Γξ) =

(
ζ − 4

3

)2
+

∣∣∣∣ζ − 4
3

∣∣∣∣ ∈ {0.42, 2.6077, 2.668, 2.716},

ρv(ξ, Γζ) =

(
ξ − 1

8

)2
+

∣∣∣∣ξ − 1
8

∣∣∣∣ ∈ [0.5156, 1.6406].

Therefore,

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for any δ ∈ [0, 1) and L ≥ 7.
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Case 3. If ζ ∈ Ω and ξ ∈ Θ, then

ρv(Γζ, Γξ) =

(
1
8

,
1
10

)
= 0.38

and

ρv(ζ, ξ) =

(
ζ − 4

3

)2
+

∣∣∣∣ζ − 4
3

∣∣∣∣ ∈ {0.42, 2.6077, 2.668, 2.716},

ρv(ζ, Γζ) =

(
ζ,

1
8

)
∈ {0, 0.01, 0.015, 0.38},

ρv(ξ, Γξ) =

(
4
3

,
1

10

)
= 0.42,

ρv(ζ, Γξ) =

(
ζ,

1
10

)
∈ {0, 0.01, 0.015, 0.38},

ρv(ξ, Γζ) =

(
4
3
− 1

8

)2
+

∣∣∣∣43 − 1
8

∣∣∣∣ = 2.6684.

Therefore,

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ > 19
21 ∈ [0, 1) and L ≥ 0.

Case 4. If ζ ∈ Υ and ξ ∈ Θ, then

ρv(Γζ, Γξ) =

(
4
3

,
1
10

)
= 0.42

and

ρv(ζ, ξ) =

(
ζ − 4

3

)2
+

∣∣∣∣ζ − 4
3

∣∣∣∣ ∈ [0.444, 1.528],

ρv(ζ, Γζ) =

(
ζ − 4

3

)2
+

∣∣∣∣ζ − 4
3

∣∣∣∣ ∈ [0.444, 1.528],

ρv(ξ, Γξ) =

(
4
3

,
1

10

)
= 0.42,

ρv(ζ, Γξ) =

(
ζ − 1

10

)2
+

∣∣∣∣ζ − 1
10

∣∣∣∣ ∈ [0.56, 1.71],

ρv(ξ, Γζ) =

(
4
3

,
4
3

)
= 0.

Therefore,

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ ≥ 21
22 ∈ [0, 1) and L ≥ 0.
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Case 5. If ζ ∈ Υ and ξ ∈ Ω, then as in Case 2, by symmetry, we have

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for any δ ∈ [0, 1) and L ≥ 7.

Case 6. If ζ ∈ Θ and ξ ∈ Ω, then as in Case 3, by symmetry, we have

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ > 19
21 ∈ [0, 1) and L ≥ 0.

Case 7. If ζ ∈ Θ and ξ ∈ Υ, then as in Case 4, by symmetry, we have

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ ≥ 21
22 ∈ [0, 1) and L ≥ 0.

From Cases 1–7, we obtain

ρv(Γζ, Γξ) ≤ δ max
{

ρv(ζ, ξ),
ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ ≥ 21
22 ∈ [0, 1), L ≥ 7, and all ζ, ξ ∈ ∆.

Hence, Γ satisfies all the conditions of Theorem 1; therefore, it has a unique fixed point at
ζ = 1

8 .

The following remarks reveal the importance of Theorem 1 in comparison with the
existing fixed point theorems in v-generalized b-metric spaces.

Remark 2. Let set ∆, metric ρv, and map Γ be as defined in Example 4:

1. If ζ = 1
7 and ξ = 1

2 then, we have

ρv(ζ, ξ) =

(
1
7
− 1

2

)2
+

∣∣∣∣17 − 1
2

∣∣∣∣ = 0.4846

and

ρv(Γζ, Γξ) =

(
1
8
− 4

3

)2
+

∣∣∣∣18 − 4
3

∣∣∣∣ = 2.6684 > ρv(ζ, ξ).

This proves that the ordinary Banach contraction is not satisfied; hence, Theorem 2.1 in [19] is
not applicable to Example 4.

2. If ζ = 1
10 and ξ = 1

2 , then we have

ρv(ζ, ξ) =

(
1
10
− 1

2

)2
+

∣∣∣∣ 1
10
− 1

2

∣∣∣∣ = 0.56,

ρv(ζ, Γζ) = 0.38,

ρv(ξ, Γξ) =

(
1
2
− 4

3

)2
+

∣∣∣∣12 − 4
3

∣∣∣∣ = 1.5278,
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and

ρv(Γζ, Γξ) =

(
1
8
− 4

3

)2
+

∣∣∣∣18 − 4
3

∣∣∣∣ = 2.6684

> δ max
{

0.56,
0.38× 1.5278

1 + 0.56

}
= δ max

{
ρv(ζ, ξ),

ρv(ζ, Γζ) · ρv(ξ, Γξ)

1 + ρv(ζ, ξ)

}
for any δ ∈ [0, 1). Thus, Theorem 2.7 in [20] does not ensure the existence of a fixed point for
Γ.

3. If ζ = 1
8 and ξ = 1, then we have

ρv(ζ, ξ) =

(
1
8
− 1
)2

+

∣∣∣∣18 − 1
∣∣∣∣ = 1.6406,

ρv(ζ, Γζ) = 0,

ρv(ξ, Γξ) =

(
1− 4

3

)2
+

∣∣∣∣1− 4
3

∣∣∣∣ = 0.444,

ρv(ζ, Γξ) =

(
1
8
− 4

3

)2
+

∣∣∣∣18 − 4
3

∣∣∣∣ = 2.6684,

ρv(ξ, Γζ) =

(
1− 1

8

)2
+

∣∣∣∣1− 1
8

∣∣∣∣ = 1.6406

and

ρv(Γζ, Γξ) =

(
1
8
− 4

3

)2
+

∣∣∣∣18 − 4
3

∣∣∣∣ = 2.6684

> δ max{1.6406, 0, 0.444, 2.6684, 1.6406}
= δ max{ρv(ζ, ξ), ρv(ζ, Γζ), ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}.

for any δ ∈ [0, 1). Thus, Theorem 3 in [21] does not ensure the existence of a fixed point of
map Γ.

4. If ζ = 1
7 and ξ = 1, then we have

ρv(ζ, Γζ) = 0.015,

ρv(ξ, Γξ) =

(
1− 4

3

)2
+

∣∣∣∣1− 4
3

∣∣∣∣ = 0.444

and

ρv(Γζ, Γξ) =

(
1
8
− 4

3

)2
+

∣∣∣∣18 − 4
3

∣∣∣∣ = 2.6684

> 0.015β + 0.444γ

= βρv(ζ, Γζ) + γρv(ξ, Γξ).

for any β + γ < 1; thus, Theorem 2.5 in [19] is not applicable to Example 4.

Remark 3. In Example 4, map Γ does not satisfy contractive condition 4.1 in [22] at ζ = 1
8 and

ξ = 1, as the inequality
ρv(Γζ, Γξ) ≤ δ max

{
ρv(ζ, ξ), ρv(ξ,Γξ)[1+ρv(ζ,Γζ)]

1+ρv(ζ,ξ) , ρv(ζ,Γζ)[1+ρv(ξ,Γξ)]
1+ρv(Γζ,Γξ)

}
+ L min{ρv(ζ, Γζ), ρv(ξ, Γζ)}

gives 2.6684 ≤ δ(1.6406), which is not possible for any δ ∈ [0, 1). Thus, Theorems 4.2 and 4.3
in [22] are not applicable to Example 4.
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Now, we state another version of almost contraction in v-generalized b-metric spaces.

Definition 6. Let (∆, ρv) be a v-generalized b-metric space. A map Γ : ∆ → ∆ is said to be a
generalized almost contraction of Reich type if there exist constants α, β, γ ∈ [0, 1) and L ≥ 0
such that

ρv(Γζ, Γξ) ≤ αρv(ζ, ξ) + βρv(ζ, Γζ) + γρv(ξ, Γξ)

+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)} (6)

for all ζ, ξ ∈ ∆, where α + β + γ < 1.

By setting m = 1 in Example 1, we present an example of generalized almost
contraction of Reich type.

Example 5. Take ∆ ⊆ R as ∆ = {0} ∪Ω1, where Ω1 = {ζ1; 0 < ζ1 ≤ 1} and the function
ρv : ∆× ∆→ [0,+∞) is defined as ρv(ζ, ζ) = 0, ρv(ζ, ξ) = ρv(ξ, ζ) for all ζ, ξ ∈ ∆ and

ρv(0, ζ1) = ζ1; 0 < ζ1 < 1, ζ1 6=
1
n

, n ∈ N,

ρv(0, ζ1) =
1

2n
; ζ1 =

1
n

, n ∈ N,

ρv

(
2
3

, ζ1

)
=

1
2n

; ζ1 =
1
n

, n ∈ N,

ρv

(
2
3

,
3
4

)
= 1,

ρv(1, ζ1) = 2; 0 < ζ1 < 1, ζ1 6=
2
3

,

ρv(ζ, ξ) = 5, otherwise.

Then, clearly, (∆, ρv) is a 4-generalized b-metric space for s ≥ 5 as shown in Example 1. Now,
define Γ : ∆→ ∆ as

Γζ =

{
3
4 , ζ = ∆−

{ 2
5
}

1, ζ = 2
5 .

Then, we consider the following cases:

Case 1. If ζ ∈
[
0, 2

5
)

and ξ = 2
5 , then

ρv(Γζ, Γξ) = 2

and

ρv(ζ, ξ) ∈
{

2
5

, 5
}

ρv(ζ, Γζ) ∈
{

3
4

, 5
}

ρv(ξ, Γξ) = 2

ρv(ζ, Γξ) ∈
{

1
2

, 2
}

ρv(ξ, Γζ) = 5.

Therefore,

ρv(Γζ, Γξ) ≤ αρv(ζ, ξ) + βρv(ζ, Γζ) + γρv(ξ, Γξ)

+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}
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for α = 2
5 , β = 1

5 , γ = 1
5 , and L ≥ 3.

Case 2. If ζ = 2
5 and ξ ∈

[
0, 2

5
)
, then as in Case 1, by symmetry, we have

ρv(Γζ, Γξ) ≤ αρv(ζ, ξ) + βρv(ζ, Γζ) + γρv(ξ, Γξ)

+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for α = 2
5 , β = 1

5 , γ = 1
5 , and L ≥ 3.

Case 3. If ζ = 2
5 and ξ ∈

( 2
5 , 1
]
, then

ρv(Γζ, Γξ) = 2

and

ρv(ζ, ξ) = 5

ρv(ζ, Γζ) = 2

ρv(ξ, Γξ) ∈ {0, 1, 2, 5}
ρv(ζ, Γξ) = 5

ρv(ξ, Γζ) ∈
{

0,
1
2

, 2
}

.

Therefore,

ρv(Γζ, Γξ) ≤ αρv(ζ, ξ) + βρv(ζ, Γζ) + γρv(ξ, Γξ)

+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for α = 2
5 , β = 0, γ = 0, and L ≥ 0.

Case 4. If ζ ∈
( 2

5 , 1
]

and ξ = 2
5 , then as in Case 3, by symmetry, we have

ρv(Γζ, Γξ) ≤ αρv(ζ, ξ) + βρv(ζ, Γζ) + γρv(ξ, Γξ)

+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for α = 2
5 , β = 0, γ = 0, and L ≥ 0.

Case 5. If ζ, ξ ∈ ∆− 2
5 , then we have

ρv(Γζ, Γξ) = 0.

Therefore,

ρv(Γζ, Γξ) ≤ αρv(ζ, ξ) + βρv(ζ, Γζ) + γρv(ξ, Γξ)

+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for any α + β + γ ∈ [0, 1) and L ≥ 0.

From Cases 1–5, we obtain

ρv(Γζ, Γξ) ≤ αρv(ζ, ξ) + βρv(ζ, Γζ) + γρv(ξ, Γξ)

+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρ(ξ, Γζ)}

for α = 2
5 , β = 1

5 , γ = 1
5 , and L ≥ 3.
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So, map Γ is a generalized almost contraction of rational type. However, Γ does not satisfy the
Reich contraction. For this, we take points ζ = 0, ξ = 2

5 , which implies that Γζ = 3
4 , Γξ = 1; hence,

we obtain that ρv(ζ, ξ) = 2
5 , ρv(Γζ, Γξ) = 2, and ρv(ζ, Γζ) = 3

4 , ρv(ξ, Γξ) = 2. Thus,

ρv(Γζ, Γξ) > αρ(ζ, ξ) + βρv(ζ, Γζ) + γρv(ξ, Γξ)

for any α + β + γ ∈ [0, 1).

Theorem 2. Let (∆, ρv) be a complete v-generalized b-metric space with coefficient s ≥ 1 and
Γ : ∆→ ∆ be a generalized almost contraction of Reich type with the condition that min{β, γ} < 1

s .
Then, Γ has a unique fixed point.

Proof. Let ζ0 ∈ ∆ be arbitrary. Define sequence {ζn} with ζn+1 = Γζn for all n ≥ 0. Then,
by (6),

ρv(ζn+1, ζn) ≤ αρv(ζn, ζn−1) + βρv(ζn, ζn+1) + γρv(ζn−1, ζn)

+L min{ρv(ζn, ζn+1) + ρv(ζn−1, ζn), ρv(ζn, ζn), ρv(ζn−1, ζn+1)}
= (α + γ)ρv(ζn, ζn−1) + βρv(ζn, ζn+1)

and so for each n ∈ N, we obtain that

ρv(ζn+1, ζn) ≤
α + γ

1− β
ρv(ζn, ζn+1).

Thus, we obtain
ρv(ζn+1, ζn) ≤ σnρv(ζ1, ζ0), (7)

where σ = α+γ
1−β ∈ [0, 1). By following steps similar to those we followed in Theorem 1, it

can be obtained that ζn 6= ζm for all distinct n, m ∈ N.
Now, using conditions (6) and (7), we have

ρv(ζm, ζn) ≤ αρv(ζm−1, ζn−1) + βρv(ζm−1, ζm) + γρv(ζn−1, ζn)

+L min{ρv(ζm−1, ζm) + ρv(ζn−1, ζn), ρv(ζm−1, ζn), ρv(ζn−1, ζm)}
≤ αρv(ζm−1, ζn−1) + βσm−1ρv(ζ1, ζ0) + γσn−1ρv(ζ1, ζ0)

+L{σm−1ρv(ζ1, ζ0) + σn−1ρv(ζ1, ζ0)}
= αρv(ζm−1, ζn−1) + (σm−1(β + L) + σn−1(γ + L))ρv(ζ1, ζ0).

This implies that

ρv(ζm, ζn) ≤ δρv(ζm−1, ζn−1) + (δm−1(β + L) + δn−1(γ + L))ρv(ζ1, ζ0),

where δ = max{α, σ}. Similarly, we can have

ρv(ζm+1, ζn+1) ≤ δρv(ζm, ζn) + 1 · δ1−1(δm(β + L) + δn(γ + L))ρv(ζ1, ζ0).

Then, by repeating the same argument, we obtain that

ρv(ζm+2, ζn+2) ≤ δρv(ζm+1, ζn+1) + (δm+1(β + L) + δn+1(γ + L))ρv(ζ1, ζ0)

≤ δ[δρv(ζm, ζn) + (δm(β + L) + δn(γ + L))ρv(ζ1, ζ0)]

+(δm+1(β + L) + δn+1(γ + L))ρv(ζ1, ζ0)

= δ2ρv(ζm, ζn) + 2 · δ2−1(δm(β + L) + δn(γ + L))ρv(ζ1, ζ0)

...

ρv(ζm+k, ζn+k) ≤ δkρv(ζm, ζn) + kδk−1(δm(β + L) + δn(γ + L))ρv(ζ1, ζ0). (8)
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Since ρv(ζ0, Γζ0) = ρv(ζ0, ζ1) <+∞, then by applying n→+∞ in (7), we obtain

lim
n→+∞

ρv(ζn, ζn+1) = 0.

Now, we prove that {ζn} is a Cauchy sequence in ∆. Meanwhile, if {ζn} is a non-
Cauchy sequence, on the contrary, a positive ε and subsequences {ζmλ

} and {ζnλ
} of {ζn}

can be obtained, such that mλ is the smallest cardinal, with mλ > nλ > λ,

ρv(ζmλ
, ζnλ

) ≥ ε

and
ρv(ζmλ−1, ζnλ

) < ε. (9)

Then, it follows that

ε ≤ ρv(ζmλ
, ζnλ

) ≤ s[ρv(ζmλ
, ζnλ+v) + ρv(ζnλ+v, ζnλ+v−1) + · · ·

+ρv(ζnλ+2, ζnλ+1) + ρv(ζnλ+1, ζnλ
)],

which gives
ε

s
≤ lim sup

λ→+∞
ρv(ζmλ

, ζnλ+v).

If δ = 0, the proof is trivial. So, let δ ∈ (0, 1). Since limn→+∞ δn = 0, there exists
n0 ∈ N such that

0 < δn0 · µ < 1, µ = s3. (10)

Now, consider the following two cases:

Case 1. When v ≥ 2, by condition (3), we obtain

ρv(ζmλ , ζnλ+v) ≤ δρv(ζmλ−1, ζnλ+v−1) + {δmλ−1(β + L) + δnλ+v−1(γ + L)}ρv(ζ1, ζ0)

≤ δs[ρv(ζmλ−1, ζmλ+n0−1) + ρv(ζmλ+n0−1, ζnλ+n0 )

+ρv(ζnλ+n0 , ζnλ+2v−3) + ρv(ζnλ+2v−3, ζnλ+2v−4) + · · ·
+ρv(ζnλ+v+1, ζnλ+v) + ρv(ζnλ+v, ζnλ+v−1)]

+{δmλ−1(β + L) + δnλ+v−1(γ + L)}ρv(ζ1, ζ0)

≤ δs[{δmλ−1ρv(ζn0 , ζ0) + (mλ − 1)δmλ−2{δn0 (β + L) + (γ + L)}ρv(ζ1, ζ0)}
+{δn0 ρv(ζmλ−1, ζnλ ) + n0δn0−1{δmλ−1(β + L) + δnλ (γ + L)}ρv(ζ1, ζ0)}
+{δnλ ρv(ζn0 , ζ2v−3) + nλδnλ−1{δn0 (β + L) + δ2v−3(γ + L)}ρv(ζ1, ζ0)}
+δnλ+2v−4ρv(ζ1, ζ0) + · · ·+ δnλ+vρv(ζ1, ζ0)

+δnλ+v−1ρv(ζ1, ζ0)] + {δmλ−1(β + L) + δnλ+v−1(γ + L)}ρv(ζ1, ζ0).

Now, firstly using relations (9) and (10), then taking the upper limit λ→+∞, we obtain

lim sup
λ→+∞

ρv(ζmλ
, ζnλ+v) < sδn0+1ε

<
δε

s2 <
δε

s
<

ε

s
.

Case 2. When v = 1,

ρv(ζmλ , ζnλ+1) ≤ s[ρv(ζmλ , ζmλ+n0−1) + ρv(ζmλ+n0−1, ζnλ+1)]

≤ s[ρv(ζmλ , ζmλ+n0−1) + s{ρv(ζmλ+n0−1, ζnλ+n0 )

+ρv(ζnλ+n0 , ζnλ+1)}]
= sρv(ζmλ , ζmλ+n0−1) + s2ρv(ζmλ+n0−1, ζnλ+n0 )

+s2ρv(ζnλ+n0 , ζnλ+1)

≤ s{δmλ ρv(ζn0−1, ζ0) + mλδmλ−1{δn0−1(β + L) + (γ + L)}ρv(ζ1, ζ0)}
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+s2{δn0 ρv(ζmλ−1, ζnλ ) + n0δn0−1{δmλ−1(β + L) + δn(γ + L)}ρv(ζ1, ζ0)}
+s2{δnλ ρv(ζn0 , ζ1) + nλδnλ−1{δn0 (β + L) + δ(γ + L)}ρv(ζ1, ζ0)}.

Again, using relations (9) and (10) and then taking the upper limit λ→+∞, we have

lim sup
λ→+∞

ρv(ζmλ
, ζnλ+v) < s2δn0 ε

<
ε

s
.

Therefore, in both the cases, we obtain that

ε

s
≤ lim sup

λ→+∞
ρv(ζmλ

, ζnλ+v) <
ε

s
,

and thus the presumption of {ζn} being a non-Cauchy sequence is imprecise; so, {ζn}
is Cauchy in ∆. Then, the completeness of ∆ provides us with an element ζ∗ ∈ ∆ such
that limn→+∞ ρv(ζn, ζ∗) = 0. Now, we verify that Γζ∗ = ζ∗. If we take Γζ∗ 6= ζ∗, then on
account of Lemma 1, it follows that ζn 6= Γζ∗ and ζn 6= ζ∗ for sufficiently large n. Thus,
we have

ρv(ζ
∗, Γζ∗) ≤ s[ρv(ζ

∗, ζn+1) + ρv(ζn+1, ζn+2) + ρv(ζn+2, ζn+3) + · · ·
+ρv(ζn+v−2, ζn+v−1) + ρv(ζn+v−1, ζn+v) + ρv(ζn+v, Γζ∗)]

= s[ρv(ζ
∗, ζn+1) + ρv(ζn+1, ζn+2) + ρv(ζn+2, ζn+3) + · · ·

+ρv(ζn+v−2, ζn+v−1) + ρv(ζn+v−1, ζn+v) + ρv(Γζn+v−1, Γζ∗)]

≤ s[ρv(ζ
∗, ζn+1) + ρv(ζn+1, ζn+2) + ρv(ζn+2, ζn+3) + · · ·

+ρv(ζn+v−2, ζn+v−1) + ρv(ζn+v−1, ζn+v)

+αρv(ζn+v−1, ζ∗) + βρv(ζn+v−1, ζn+v) + γρv(ζ
∗, Γζ∗)

+L min{ρv(ζn+v−1, ζn+v) + ρv(ζ
∗, Γζ∗), ρv(ζn+v−1, Γζ∗), ρv(ζ

∗, ζn+v)}].

Since limn→+∞ ρv(ζ∗, ζn) = 0 and limn→+∞ ρv(ζn, ζn+1) = 0, we have

1
s

ρv(ζ
∗, Γζ∗) ≤ γρv(ζ

∗, Γζ∗). (11)

Again, if we consider the following:

ρv(Γζ∗, ζ∗) ≤ s[ρv(Γζ∗, ζn+1) + ρv(ζn+1, ζn+2) + ρv(ζn+2, ζn+3) + · · ·
+ρv(ζn+v−2, ζn+v−1) + ρv(ζn+v−1, ζn+v) + ρv(ζn+v, ζ∗)]

= s[ρv(Γζ∗, Γζn) + ρv(ζn+1, ζn+2) + ρv(ζn+2, ζn+3) + · · ·
+ρv(ζn+v−2, ζn+v−1) + ρv(ζn+v−1, ζn+v) + ρv(ζn+v, ζ∗)]

≤ s[αρv(ζ
∗, ζn) + βρv(ζ

∗, Γζ∗) + γρv(ζn, ζn+1)

L min{ρv(ζ
∗, Γζ∗) + ρv(ζn, ζn+1), ρv(ζ

∗, ζn+1), ρv(ζn, Γζ∗)}
+ρv(ζn+1, ζn+2) + ρv(ζn+2, ζn+3) + · · ·
+ρv(ζn+v−2, ζn+v−1) + ρv(ζn+v−1, ζn+v)

+αρv(ζn+v−1, ζ∗) + βρv(ζn+v−1, ζn+v) + γρv(ζ
∗, Γζ∗)].

Then, by letting n→+∞ on both sides of the above inequality, it follows that

1
s

ρv(Γζ∗, ζ∗) ≤ βρv(ζ
∗, Γζ∗). (12)
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Due to inequalities (11) and (12), we have 1
s ρv(Γζ∗, ζ∗) ≤ min{β, γ}ρv(ζ∗, Γζ∗) <

1
s ρv(Γζ∗, ζ∗), which is a contradiction; hence, Γζ∗ = ζ∗. Finally, we prove that the fixed
point thus obtained is unique. For this, let q be another fixed point of Γ. Then,

ρv(ζ
∗, q) = ρv(Γζ∗, Γq)

≤ αρv(ζ
∗, q) + βρv(ζ

∗, Γζ∗) + γρv(q, Γq)

+L min{ρv(ζ
∗, Γζ∗) + ρv(q, Γq), ρv(ζ

∗, Γq), ρv(q, Γζ∗)}
= αρv(ζ

∗, q) < ρv(ζ
∗, q),

which is a contradiction. Therefore, ρv(ζ∗, q) = 0, that is, ζ∗ = q.
Hence, the proof.

Corollary 1. Let (∆, ρv) be a complete v-generalized b-metric space with coefficient s ≥ 1 and
Γ : ∆→ ∆ be a mapping such that

ρv(Γζ, Γξ) ≤ αρv(ζ, ξ) + L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}, (13)

for all ζ, ξ ∈ χ, where 0 ≤ α < 1 and L ≥ 0. Then, Γ has a unique fixed point.

We present the following example in favor of Corollary 1; hence, it supports
Theorem 2.

Example 6. Let ∆ = Ω ∪Θ ∪ Υ, where

Ω =

{
1
n

; n ∈ {2, 3, 4, 5}
}

,

Θ =

{
5

12

}
and Υ =

[
2
3

, 1
]

.

Define ρv : ∆× ∆→ [0,+∞) such that ρv(ζ, ξ) = ρv(ξ, ζ) for all ζ, ξ ∈ ∆ and

ρv

(
1
2

,
1
3

)
= ρv

(
1
4

,
1
5

)
= 0.02,

ρv

(
1
2

,
1
5

)
= ρv

(
1
3

,
1
4

)
= 0.03,

ρv

(
1
2

,
1
4

)
= ρv

(
1
5

,
1
3

)
= 0.56,

ρv

(
2
3

,
3
4

)
= 0.005, ρv

(
5

12
,

3
4

)
= 0.007,

with ρv(ζ, ξ) = |ζ − ξ|3 + (ζ, ξ)2, otherwise.

Then, (∆, ρv) is a 2-generalized b-metric space with coefficient s = 5 > 1. However, it is not a
2-generalized metric space, as

ρv

(
1
4

,
2
3

)
=

∣∣∣∣14 − 2
3

∣∣∣∣3 +(1
4
− 2

3

)2
=

425
1728

= 0.246, and

ρv

(
1
2

,
2
3

)
=

∣∣∣∣12 − 2
3

∣∣∣∣3 +(1
2
− 2

3

)2
=

7
216

= 0.032

=⇒ ρv

(
1
4

,
2
3

)
= 0.246 > 0.03 + 0.02 + 0.032
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= ρv

(
1
4

,
1
3

)
+ ρv

(
1
3

,
1
2

)
+ ρv

(
1
2

,
2
3

)
. (14)

We define map Γ : ∆→ ∆ as

Γζ =


5

12 , ζ ∈ Ω
3
4 , ζ ∈ Θ
2
3 , ζ ∈ Υ.

Now, we discuss the following possible cases:

Case 1. If both ζ, ξ ∈ Ω or Θ or Υ, then

ρv(Γζ, Γξ) = 0

so, ρv(Γζ, Γξ) ≤ δρv(ζ, ξ) + L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

holds for any δ ∈ [0, 1) and L ≥ 0.

Case 2. If ζ ∈ Ω and ξ ∈ Θ, then

ρv(Γζ, Γξ) =

(
5
12

,
3
4

)
= 0.007

and

ρv(ζ, ξ) =

∣∣∣∣ζ − 5
12

∣∣∣∣3 +(ζ − 5
12

)2
∈ {0.0075, 0.0324, 0.057},

ρv(ζ, Γζ) =

∣∣∣∣ζ − 5
12

∣∣∣∣3 +(ζ − 5
12

)2
∈ {0.0075, 0.0324, 0.057},

ρv(ξ, Γξ) =

(
5

12
,

3
4

)
= 0.007,

ρv(ζ, Γξ) =

∣∣∣∣ζ − 3
4

∣∣∣∣3 +(ζ − 3
4

)2
∈ {0.0781, 0.2459, 0.375, 0.4688},

ρv(ξ, Γζ) =

(
5

12
,

5
12

)
= 0.

Therefore,

ρv(Γζ, Γξ) ≤ δρv(ζ, ξ) + L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ > 14
15 ∈ [0, 1) and L ≥ 0.

Case 3. If ζ ∈ Θ and ξ ∈ Ω, then as in Case 2, by symmetry, we have

ρv(Γζ, Γξ) ≤ δρv(ζ, ξ) + L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ > 14
15 ∈ [0, 1) and L ≥ 0.

Case 4. If ζ ∈ Ω and ξ ∈ Υ, then

ρv(Γζ, Γξ) =

∣∣∣∣ 5
12
− 2

3

∣∣∣∣3 +( 5
12
− 2

3

)2
= 0.078

and

ρv(ζ, ξ) = |ζ − ξ|3 + (ζ − ξ)2 ∈ [0.032, 1.152],
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ρv(ζ, Γζ) =

∣∣∣∣ζ − 5
12

∣∣∣∣3 +(ζ − 5
12

)2
∈ {0.0075, 0.0324, 0.057},

ρv(ξ, Γξ) =

∣∣∣∣ξ − 2
3

∣∣∣∣3 +(ξ − 2
3

)2
∈ [0, 0.148],

ρv(ζ, Γξ) =

∣∣∣∣ζ − 2
3

∣∣∣∣3 +(ζ − 2
3

)2
∈ {0.0324, 0.1481, 0.2459, 0.3194},

ρv(ξ, Γζ) =

∣∣∣∣ξ − 5
12

∣∣∣∣3 +(ξ − 5
12

)2
∈ {0.007} ∪ [0.078, 0.539].

Therefore,

ρv(Γζ, Γξ) ≤ δρv(ζ, ξ) + L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for any δ ∈ [0, 1) and L ≥ 12.

Case 5. If ζ ∈ Υ and ξ ∈ Ω, then as in Case 4, by symmetry, we have

ρv(Γζ, Γξ) ≤ δρv(ζ, ξ) + L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ ∈ [0, 1) and L ≥ 12.

Case 6. If ζ ∈ Θ and ξ ∈ Υ, then

ρv(Γζ, Γξ) =

(
3
4

,
2
3

)
= 0.005

and

ρv(ζ, ξ) =

∣∣∣∣ 5
12
− ξ

∣∣∣∣3 +( 5
12
− ξ

)2
∈ {0.007} ∪ [0.078, 0.539],

ρv(ζ, Γζ) =

(
5
12

,
3
4

)
= 0.007,

ρv(ξ, Γξ) =

∣∣∣∣ξ − 2
3

∣∣∣∣3 +(ξ − 2
3

)2
∈ [0, 0.148],

ρv(ζ, Γξ) =

∣∣∣∣ 5
12
− 2

3

∣∣∣∣3 +( 5
12
− 2

3

)2
= 0.078,

ρv(ξ, Γζ) =

∣∣∣∣ξ − 3
4

∣∣∣∣3 +(ξ − 3
4

)2
∈ [0, 0.078].

Therefore,

ρv(Γζ, Γξ) ≤ δρv(ζ, ξ) + L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ > 5
7 ∈ [0, 1) and L ≥ 0.

Case 7. If ζ ∈ Υ and ξ ∈ Θ, then as in Case 6, by symmetry, we have

ρv(Γζ, Γξ) ≤ δρv(ζ, ξ) + L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}

for δ > 5
7 ∈ [0, 1) and L ≥ 0.

From Cases 1–7, we obtain

ρv(Γζ, Γξ) ≤ δρv(ζ, ξ) + L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}
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for δ > 14
15 ∈ [0, 1) and L ≥ 12 and all ζ, ξ ∈ ∆.

Hence, Γ satisfies all the conditions of Corollary 1; therefore, Γ has a unique fixed point at
ζ = 2

3 .

Remark 4. In Example 6, we examine that at points ζ = 1
2 and ξ = 2

3 ,

ρv(ζ, ξ) =

∣∣∣∣12 − 2
3

∣∣∣∣3 +(1
2
− 2

3

)2
= 0.032,

ρv(ζ, Γζ) =

∣∣∣∣12 − 5
12

∣∣∣∣3 +(1
2
− 5

12

)2
= 0.0075,

ρv(ξ, Γξ) =

∣∣∣∣23 − 2
3

∣∣∣∣3 +(2
3
− 2

3

)2
= 0,

ρv(ζ, Γξ) =

∣∣∣∣12 − 2
3

∣∣∣∣3 +(1
2
− 2

3

)2
= 0.032,

ρv(ξ, Γζ) =

∣∣∣∣23 − 5
12

∣∣∣∣3 +(2
3
− 5

12

)2
= 0.078.

Then, we can draw conclusions on the following inequalities:

1. ρv(Γζ, Γξ) ≤ αρv(ζ, ξ) + βρv(ζ, Γζ) + γρv(ξ, Γξ) =⇒ 0.078 ≤ 0.032α + 0.0075β is
absurd; thus, the Reich contraction is not satisfied. Therefore, Theorem 2.4 in [19] does not
guarantee the existence of a fixed point for map Γ.

2. ρv(Γζ, Γξ) ≤ δ max{ρv(ζ, ξ), ρv(ζ, Γζ), ρv(ξ, Γξ)} + L min{ρv(ζ, Γζ), ρv(ξ, Γξ),
ρv(ξ, Γζ)} =⇒ 0.078 ≤ δ max{0.032, 0.0075, 0} + L min{00075, 0, 0.078} = 0.032δ,
which is not true for any δ ∈ [0, 1) and L ≥ 0. So, Corollary 2.6.2 in [20] does not work to
ensure the existence of a fixed point for the given map Γ.

4. Consequences

Suppose that ∆ is a nonempty set and Γ, I : ∆ → ∆ are self maps. A point ζ ∈ ∆ is
called a coincidence point (common fixed point) for maps Γ and I if Γζ = Iζ (ζ = Γζ = Iζ).
Moreover, maps Γ and I are called weakly compatible if they commute at every coincidence
point. In 2011, Haghi et al. [26] proved that some common fixed point theorems are the
consequences of existing fixed point theorems. This was ensured by proving the following
lemma.

Lemma 2. Let Γ be a self map defined on a nonempty set ∆. Then, there exists a subset Π of ∆ such
that Γ(Π) = Γ(∆) and the map Γ : Π→ ∆ is one-to-one.

As a consequence of the main results proved in the previous section, we obtain some
common fixed point theorems.

Theorem 3. Let (∆, ρv) be a v-generalized b-metric space and Γ, I be self maps defined on ∆ such
that

ρv(Γζ, Γξ) ≤ αρv(Iζ, Iξ) + βρv(Iζ, Γζ) + γρv(Iξ, Γξ)

+L min{ρv(Iζ, Γζ) + ρv(Iξ, Γξ), ρv(Iζ, Γξ), ρv(Iξ, Γζ)} (15)

for all ζ, ξ ∈ ∆, where α + β + γ < 1, L ≥ 0 with min{β, γ} < 1
s . If Γ(∆) ⊆ I(∆) and I(∆) is

complete, then Γ and I have a unique coincidence point. Moreover, Γ and I have a unique common
fixed point if they are weakly compatible maps.
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Proof. By Lemma 2, there exists a subset Π of ∆ such that I : Π → ∆ is one-to-one and
I(Π) = I(∆). Consider a map p : I(Π) → I(Π) defined as p(Iζ) = Γζ. Then, clearly, p is
well defined, as I is one-to-one. Further, we obtain that

ρv(p(Iζ), p(Iξ)) = ρv(Γζ, Γξ)

≤ αρv(Iζ, Iξ) + βρv(Iζ, Γζ) + γρv(Iξ, Γξ)

+L min{ρv(Iζ, Γζ) + ρv(Iξ, Γξ), ρv(Iζ, Γξ), ρv(Iξ, Γζ)}
= αρv(Iζ, Iξ) + βρv(Iζ, p(Iζ)) + γρv(Iξ, p(Iξ))

+L min{ρv(Iζ, p(Iζ)) + ρv(Iξ, p(Iξ)), ρv(Iζ, p(Iξ)), ρv(Iξ, p(Iζ))}

for all Iζ, Iξ ∈ I(Π) = I(∆). As α + β + γ < 1, L ≥ 0 with min{β, γ} < 1
s , then p

is a generalized almost contraction of Reich type on I(∆). Furthermore, since I(∆) is
complete, then on account of Theorem 2, there exists a unique point x∗ ∈ Π ⊆ ∆ such
that p(Ix∗) = Ix∗ that gives Ix∗ = Γx∗. Thus, x∗ is a unique coincidence point of Γ
and I. Denote w = Ix∗ = Γx∗, then as Γ and I are weakly compatible, it follows that
Γw = ΓIx∗ = IΓx∗ = Iw. Therefore,

ρv(Γw, w) = ρv(Γw, Γx∗)

≤ αρv(Iw, Ix∗) + βρv(Iw, Γw) + γρv(Ix∗, Γx∗)

+L min{ρv(Iw, Γw) + ρv(Ix∗, Γx∗), ρv(Iw, Γx∗), ρv(Ix∗, Γw)}
≤ αρv(Γw, w), (16)

which is true for α ∈ [0, 1) if w = Γw = Iw; hence, w is a common fixed point of Γ and I,
and it is also unique.

If we take L = 0 in Theorem 3, then we obtain the following corollary which is an
extension of Theorem 2.4 in [19].

Corollary 2. Let (∆, ρv) be a v-generalized b-metric space and Γ, I be self maps defined on ∆ such
that

ρv(Γζ, Γξ) ≤ αρv(Iζ, Iξ) + βρv(Iζ, Γζ) + γρv(Iξ, Γξ) (17)

for all ζ, ξ ∈ ∆, where α + β + γ < 1 with min{β, γ} < 1
s . If Γ(∆) ⊆ I(∆) and I(∆) is complete,

then Γ and I have a unique coincidence point. Moreover, maps Γ and I have unique common fixed
points provided that they are weakly compatible.

Remark 5. If (∆, ρv) is a v-generalized b-metric space and Γ, I are self maps on X satisfying
ρv(Γζ, Γξ) ≤ k max{ρv(Iζ, Iξ), ρv(Iζ, Γζ), ρv(Iξ, Γξ)}, for all ζ, ξ ∈ ∆, where k ∈ [0, 1), then
it is obvious that ρv(Γζ, Γξ) ≤ αρv(Iζ, Iξ) + βρv(Iζ, Γζ) + γρv(Iξ, Γξ) for some non-negative
α, β, γ such that α + β + γ < 1. Thus, it is concluded that Corollary 2.6.1 in [20] is a particular
case of the above corollary.

Theorem 4. Let (∆, ρv) be a v-generalized b-metric space and Γ, I be self maps defined on ∆ such
that

ρv(Γζ, Γξ) ≤ δ max
{

ρv(Iζ, Iξ),
ρv(Iζ, Γζ) · ρv(Iξ, Γξ)

1 + ρv(Iζ, Iξ)

}
+L min{ρv(Iζ, Γζ) + ρv(Iξ, Γξ), ρv(Iζ, Γξ), ρv(Iξ, Γζ)} (18)

for all ζ, ξ ∈ ∆, where δ ∈ [0, 1) and L ≥ 0. If Γ(∆) ⊆ I(∆) and I(∆) is complete. Then, Γ and I
have a unique coincidence point. Moreover, Γ and I have a unique common fixed point if they are
weakly compatible maps.
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Proof. By following the argument as we mention in Theorem 3, it is easy to verify that map
p : I(Π)→ I(Π) defined as p(Iζ) = Γζ is a generalized almost contraction of rational type
on I(∆). Then, on account of Theorem 1, there exists a unique coincidence point, e.g., x∗,
of Γ and I. As maps Γ and I are weakly compatible, it is easy to examine that they have a
unique common fixed point.

5. Application to Fredholm Integral Equation

Now, we shall discuss the existence and uniqueness of the solution of the Fredholm
type of integral equation.

Let us consider space ∆ = C[a, b] = {ζ| ζ : [a, b] → R is continuous on [a, b]} and
integral equation

ζ(t) = τ(t) +
∫ b

a
k(t, s, ζ(s)) ds f or t, s ∈ [a, b] (19)

where τ ∈ ∆ and k : [a, b]× [a, b]×R→ R. Define ρv : ∆× ∆→ [0,+∞) with

ρv(ζ, ξ) = sup
t∈[a,b]

|ζ(t)− ξ(t)|3, ∀ ζ, ξ ∈ ∆.

Then, (∆, ρv) is a complete v-generalized b-metric space for v = 1 and s ≥ 4. In
addition, consider a self map Γ : ∆→ ∆ defined as

Γζ(t) = τ(t) +
∫ b

a
k(t, s, ζ(s)) ds f or t, s ∈ [a, b].

Then, it is clear that the solution of integral Equation (19) is nothing but the fixed point
of map Γ.

Theorem 5. Suppose that

|k(t, s, ζ(s))− k(t, s, ξ(s))| ≤
(

κ1N(ζ, ξ) + κ2|ζ − ξ|3
) 1

3 (20)

for some κ1 ≥ 1
(b−a)3 , κ2 < 1

(b−a)3 and for all t, s ∈ [a, b]; ζ, ξ ∈ ∆, where N(ζ, ξ) =

min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}.Then, there exists a unique solution for integral
Equation (19).

Proof. We consider

|Γζ(t)− Γξ(t)|3 ≤
(∫ b

a
|k(t, s, ζ(s))− k(t, s, ξ(s))| ds

)3

≤
(∫ b

a

(
κ1N(ζ, ξ) + κ2|ζ − ξ|3

) 1
3 ds

)3

≤
(

κ1N(ζ, ξ) + κ2|ζ − ξ|3
)(∫ b

a
ds
)3

≤ (b− a)3[κ1N(ζ, ξ) + κ2ρv(ζ, ξ)].

Therefore, map Γ satisfies inequality (13) for any κ1 ≥ 1
(b−a)3 , κ2 < 1

(b−a)3 ; hence, all
the hypotheses of Corollary 1 are satisfied. Thus, Fredholm Equation (19) has a unique
solution.

6. Conclusions and Open Problem

In the present work, we deal with v-generalized b-metric spaces of [19]. Firstly, by
providing a relevant example, it is made clear that v-generalized b-metric spaces are proper
extensions of standard metric spaces, b-metric spaces, rectangular b-metric spaces [27],
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and v-generalized metric spaces. Thereafter, we discuss the existence and uniqueness of
fixed points for generalized almost contractions of rational type and Reich type defined
in v-generalized b-metric spaces. Consequently, the coincidence point and common fixed
point are guaranteed to exist and to be unique for any pair of mappings fulfilling certain
hypotheses in these spaces. Additionally, it is made obvious by providing a number of
significant examples that the contractions addressed in this paper are crucial in extending
the fixed point theorems of the aforementioned spaces. Furthermore, we deduce that the
proven results ensure the existence and uniqueness of the solution of the Fredholm integral
equation. Moreover, this work leads to the following open problems for the possible scope
of research on v-generalized b-metric spaces:

1. Is it feasible to relax the hypothesis min{β, γ} < 1
s in Theorem 2?

2. Is the existence and uniqueness of fixed point for a generalized almost contraction of
Cirić type in v-generalized b-metric spaces, i.e., a map Γ : ∆→ ∆ satisfying

ρv(Γζ, Γξ) ≤ λ max{ρv(ζ, ξ), ρv(ζ, Γζ), ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)}
+L min{ρv(ζ, Γζ) + ρv(ξ, Γξ), ρv(ζ, Γξ), ρv(ξ, Γζ)},

for some λ ∈ [0, 1), L ≥ 0 and all ζ, ξ ∈ ∆, guaranteed or not?
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27. George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contractive principles. J. Nonlinear Sci. Appl.

2015, 8, 1005–1013. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2014/458098
http://dx.doi.org/10.1186/1687-1812-2013-129
http://dx.doi.org/10.15388/namc.2022.27.25193
http://dx.doi.org/10.5644/SJM.10.2.07
http://dx.doi.org/10.1007/s11784-017-0469-2
http://dx.doi.org/10.1515/ms-2017-0362
http://dx.doi.org/10.1016/j.na.2010.10.052
http://dx.doi.org/10.22436/jnsa.008.06.11

	Introduction
	v-Generalized b-Metric Spaces
	Almost Contractions in v-Generalized b-Metric Spaces
	Consequences
	Application to Fredholm Integral Equation
	Conclusions and Open Problem
	References

