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Abstract: In this paper, the shape of the stability domain Sq for a class of difference systems defined
by the Caputo forward difference operator ∆q of order q ∈ (0, 1) is numerically analyzed. It is shown
numerically that due to of power of the negative base in the expression of the stability domain,
in addition to the known cardioid-like shapes, Sq could present supplementary regions where the
stability is not verified. The Mandelbrot map of fractional order is considered as an illustrative
example. In addition, it is conjectured that for q < 0.5, the shape of Sq does not cover the main body
of the underlying Mandelbrot set of fractional order as in the case of integer order.
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1. Introduction

In the last decade, fractional calculus has been considered as an important tool in
many scientific and engineering fields. The basic theory of fractional calculus modeling
and control systems can be found in, e.g., [1–7]. Studies of their applications are presented
in [8–10]. Systems with fractional variable orders are analyzed in [11,12]. In terms of
the stability analysis of fractional differential equations, one of the important properties
that is analysed in order to study the behavior of the considered systems is presented in,
e.g., [13–16], while applications and stability studies of discrete fractional difference equa-
tions can be found in [17–19].

For commensurate fractional-order systems, several powerful criteria are established.
The most well-known Matignon’s stability theorem [20] (see also [21]) determines the
system stability by searching for the location of the eigenvalues in the complex plane, which
represents a starting point for most research into the stability of fractional-order systems.

In [22], a stability criterion for a fractional difference linear system is presented:

∆qy(n + 1− q) = Ay(n), n = 0, 1, ..., (1)

where A ∈ Rd×d and ∆q is the Caputo forward difference operator (see, e.g., [23,24]).
As shown in [22], the stability criterion for (1) is proved to be fully explicit, also

involving the decay rate of the solutions.
The asymptotic stability property of (1) for both scalar and vector cases is stated by

the following result:

Theorem 1 ([25]). Let q ∈ (0, 1) and A ∈ Rd×d. Then, (1) is asymptotically stable if and only
if the isolated zeros, off the non-negative real axis, of det(I − z−1(1− z−1)−q A) lie inside the
unit circle.

In [22], the aim is to formulate an alternative stability criterion for the integer
difference system:

∆y(n) = Ay(n), n = 0, 1, ..., (2)
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where ∆y(n) = y(n + 1)− y(n) is the standard operator here for q = 1.
As is well known, the system (2) is asymptotically stable if and only if all the eigen-

values of I + A, where I is the identity matrix, are located inside the unit circle. If one
considers the stability set for Equation (2) in the polar form

S =

{
z ∈ C : |z| < − cos(arg z) and | arg z| > π

2

}
,

the stability result can be reformulated in the following form:

Theorem 2 ([22]). The linear difference system (2) is asymptotically stable if and only if λ ∈ S
for all the eigenvalues λ of A. In this case, the solutions of (2) decay towards zero exponentially as
n→ ∞.

In order to introduce an alternative stability criterion for (1), as a direct extension of
Theorem (1), consider the following set:

Sq =

{
z ∈ C : |z| <

(
2 cos

| arg z| − π

2− q

)q
and | arg z| > qπ

2

}
, (3)

Note that the second inequality in (3) represents the Matignon criterion.
The main result in [22] is:

Theorem 3 ([22]). Let q ∈ (0, 1) and A ∈ Rd×d. If λ ∈ Sq for all the eigenvalues λ of A, then
system (1) is asymptotically stable. In this case, the solutions of (1) decay towards zero in such a
way that

‖y(n)‖ = O(n−q) as n→ ∞,

for any solution y of (1). Furthermore, if λ ∈ C \ cl(Sq) for an eigenvalue λ of A, then (1) is
not stable.

Because of the explicit and convenient form of Sq, drawn in the complex plane for
eigenvalues, Theorem 3 became widely used in practical applications.

In this paper, it is shown that for some empirically found values of q ∈ (0, 1), the form
of Sq might present other unexpected shapes. In addition, a conjecture related to the shape
of Sq in the case of the Mandelbrot set of fractional order is introduced.

2. On the Shape of the Stability Area Sq

The parametric equations of the frontier of the stability region Sq for a fixed point,
z = x + ßy, x, y ∈ R, can be easily drawn in the following form [22]:

x = −2q cosq θ cos((2− q)θ)
y = −2q cosq θ sin((2− q)θ), |θ| ≤ π/2.

(4)

On the other hand, to analyze the shape of Sq in more detail, consider the form (3).
As is known, the argument of a complex number z = x + iy, arg z, used in (3), is the angle
between the positive real axis and the line joining the origin and the image in the complex
plane of z. Usually, the value of the argument is numerically computed as

argz = atan2(y, x),

where the two-argument function atan2 is an available implemented function in the math
libraries of many programming languages.

In contrast to the inverse tangent function, tan−1 (arctan, or atan), the function atan2
computes the principal value of the arctangent of y/x, determining the quadrant of the
returned value by using the signs of both arguments. Note that a domain error may occur if
both arguments are zero. (Regarding the 1999 ISO C, 1978 ANSI Fortran, or 1982 ISO Pascal
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Standard standard descriptions and other issues related to atan2 for the case of x = 0 and
y = 0, they are referred to on p. 70 [26]) . However, as will be shown below, the problem
of arg in (3) can be quite complicated, even if both arguments are not zero, as shown next
with simple reasoning.

While arctan gives an angle between −π/2 and π/2, the function atan2 always
provides a result within (−π, π).

Denote, in (3),
a := | arg z|, (5)

and consider the argument of the cos function in Sq as the function Ea : R \ {2} → R,
defined as

Ea(q) =
a− π

2− q
,

with a being a parameter (Figure 1). Being determined with atan2, a given by (5) satisfies
the following relations: a ∈ [0, π), and a− π ∈ [−π, 0). Therefore, because for q ∈ (0, 1),
2− q > 0, one has

Ea(q) < 0.

In order to determine in which quadrant the values of Ea(q) are situated, let us analyze
and sketch the graph of the restriction of the function Ea to (0, 1). The derivative of Ea
is E′a(q) = (a− π)/(2− q)2 < 0. Therefore, from the monotonicity, one deduces that Ea
decreases from (a − π)/2, for q ↓ 0, but to a − π, for q ↑ 1. For example, for the limit
case of a = 0, E0(q) takes values within the range (−π,−π/2), i.e., E0(q) are situated in
quadrant III (Figure 1a). For the case of a = 0.7π/2, the values of E0.7 π

2
(q) can be situated

in both quadrants III and IV (Figure 1b). For a = π/2, E π
2

moves within in the quadrant
IV (Figure 1c). The case of a = 0.8π is presented in Figure 1d. Therefore, for q ∈ (0, 1)
and a ∈ [0, π), the argument Ea can take values situated in quadrant III and/or IV, where
cos(E) could be either negative or positive.

The relation between q and a on the boundary between the two quadrants III and IV is

q = 2a/π.

To obtain the shape of Sq via relation (3), consider a variable fixed point with the under-
lying variable eigenvalue, z = x + iy, to be replaced in (3). Denote hereafter by Γ the curve
surrounding Sq. The two relations in (3) which define Sq represent the implicit inequalities of
two variables x and y that can be drawn with implicit functions plotting commands available
in software such as Matlab (e.g., fimplicit), Mathematica (e.g., ContourPlot), or by using the
free software Desmos [27]. In Figure 2a, the case of Sq for q = 0.5 is presented.

Remark 1. As is known, if in the expression xy, x is negative and y is not an integer, the math-
ematical situation is somewhat ambiguous. With infinite numeric precision, the correct result
of xy is mathematically well-defined without ambiguity. Certain values of y yield an imaginary
number as a result, while other values of y result in a real-valued result. Specifically, when x < 0,
the result of xy is real-valued exactly when y can be written as a fraction, m/n, where m is an
integer and n is an odd integer. Furthermore, the result is positive when m is even but negative
when m is odd. When y cannot be written as such, the result would be an imaginary number
(see, e.g., [28]). For example, in Matlab, for negative base x and non-integer y, the power function
returns complex results. A solution could be to use the function nthroot. However, note that in
IEEE floating-point computations

xy = exp(y log(x)).

Moreover, the log function domain includes negative and complex numbers, which can lead to
unexpected results if used unintentionally. Therefore, xy may be a complex number, if x < 0 and y is
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noninteger. In these cases, in some software, such as Matlab, imaginary parts of complex arguments
are ignored to the detriment of the shape of Sq.

Figure 1. Graph of the function Ea, for four representative cases: (a) the limit case a = 0;
(b) a = 0.7π/2; (c) a = π/2; and (d) a = 0.8π.

To summarize, for those values x and y for which Ea < −π/2, they are situated in
quadrant III, cos(E) < 0 and, therefore, cosq(E) is not well-defined . The consequence is
that, in addition to the expected area, for some values of q, Sq could present unexpected
additional parts. Thus, for q = 0.8, using Desmos, the domain S0.8 is presented in Figure 2b.

In these cases, the supplementary domain can be determined via the condition
| arg z| > qπ/2 (Matignon condition), for q ∈ (0, 1), and the lines | arg z| = qπ/2 be-
ing tangent to Sq. However, this is not possible in some more complicated cases (Figure 3,
Section 2). An animation which shows the variation in the stability domain for q ∈ (0, 1),
where several such cases appear, is presented as a Supplementary video.



Fractal Fract. 2023, 7, 49 5 of 10

Figure 2. Graph of Γ (red plot) for two representative cases: (a) q = 0.5; (b) q = 0.8. Green plot
represents the stability domain Sq, surrounded by Γ, delimitated by the inequality | arg z| > qπ/2,
while light blue and white domains do not belong to the stability domain.

Figure 3. Mandelbrot sets of IO and FO and their stability domains. (a) IOM set; (b) FOM set and the
main cardioid (red plot) surrounding the stability domain for q = 0.85.

To verify if Sq in the considered cases of q = 0.5 and q = 0.8 contains the stability
points, consider the points Xi, i = 1, ..., 4 (images of the underlying complex numbers) for
the case of q = 0.5 and, Yi, i = 1, 2, ..., 7 for the case of q = 0.8, respectively (see Figure 2),
and denote

Aq(z) := |z| −
(

2 cos
| arg z| − π

2− q

)q
, q ∈ (0, 1).
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The graph of Aq(z) is the boundary curve Γ and

Sq =

{
z ∈ C : Aq(z) < 0 and | arg z| > qπ

2

}
.

Therefore, the images of z for which Aq(z) > 0, or Aq(z) are complex values are not Sq points.
The values of Aq at the points Xi, and Yi are presented in Table 1 and Table 2, respectively.

Regarding the numerical implementation, if in the atan2 function, x and y have
different signs, then atan2 and arctan (atan) could have different values. Thus, if in some
software the atan2 function is not implemented, it can be emulated with

atan2(y, x) = arctan
y
x
+

π

2
sign(y)(1− sign(x)).

Table 1. Value of Aq at points Xi, i = 1, ..., 4, for q = 0.5 (see also Figure 2a).

z X1 6∈ S0.5 X2 ∈ S0.5 X3 ∈ S0.5 X4 ∈ cl(S0.5)

A0.5(z) 0.500 −0.609 −0.4142 0

Table 2. Value of Aq at points Yi, i = 1, 2, ..., 7, for q = 0.8 (see also Figure 2b).

z Y1 6∈ S0.8 Y2 6∈ S0.8 Y3 6∈ S0.8 Y4 ∈ S0.8 Y5 ∈ S0.8 Y6 6∈ S0.8 Y7 ∈ cl(S0.8)

A0.8(z) ∈ C ∈ C ∈ C −0.5583 −0.3823 0.5064 1× 10−4

3. Stability of the Mandelbrot Map of Fractional Order

Next, consider the fractional discretization of the Mandelbrot map

∆qz(t) = fc(z(t + q− 1), z(0) = 0, q ∈ (0, 1), t = 0, 1, 2, ..., (6)

where
fc(z(t + q− 1) = z2(t + q− 1) + c,

and z, c ∈ C, with c being the complex parameter. For the initial value problems for real
fractional discrete systems, see, e.g., [29,30] (in [31], several properties of the complex
Mandelbrot map of fractional order and the matlab code to draw the fractal are presented).

The numerical integral of the initial value problem (6) is (see [30] for the solution of
real fractional-order systems)

z(n) = z(0) +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

fc(z(i− 1)), z(0) = 0, n ∈ N∗, (7)

For q = 0.85, one obtains the fractional-order Mandelbrot (FOM) set, presented in
Figure 3b. The fractal is obtained with the FO_mandelbrot.m code [32].

To obtain the stability domain of the stable fixed points (period 1) of the FOM
map, consider next, for computational reasons, the problem in the Cartesian plane, with
c = cx + icy, cx, cy ∈ R. Contrary to the integer-order case, where the fixed points are found
from the equation fc(z) = z, here, the fixed points are obtained by solving the equation
fc(z) = 0, i.e., z2 + c = 0, with the solutions: z∗1,2 = ±i

√
c. For the fixed point z∗1 = i

√
c,

after some calculations, the eigenvalues are obtained as

λ1,2 =

√
2
√

c2
x + c2

y − 2cx ± i
√

2
√

c2
x + c2

y + 2cx, (8)
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while, for z∗2 = −i
√

c,

λ3,4 = −
√

2
√

c2
x + c2

y − 2cx ± i
√

2
√

c2
x + c2

y + 2cx. (9)

Consider the eigenvalue λ1, the reasoning for λ2 being similar. Then, the useful
parametric representation of Γ in coordinates cx and cy, defining Γ(c), are determined from
the following equations (see (4)):√

2
√

c2
x + c2

y − 2cx = −2q cosq θ cos((2− q)θ)√
2
√

c2
x + c2

y + 2cx = −2q cosq θ sin((2− q)θ), |θ| ≤ π/2.

The solutions, which represent the parametric equations of the curve Γ, are

cx = −22q−2 cos2q θ cos(2θ(q− 2)),

cy = 22q−1 sin(θ(2− q)) cos2q θ cos(θ(q− 2)), |θ| ≤ π/2.
(10)

In Figure 3a, the integer-order Mandelbrot (IOM) set is drawn together with the main
cardioid Γ which has the equation (see, e.g., [33–35])

|1−
√

1− 4c| = 1.

or, in parametric form,
4cx = 2 cos θ − cos(2θ),
4cy = 2 sin θ − sin(2θ), |θ| ≤ π.

The interior of the curve Γ corresponds to the stable fixed points, obtained from the
equation fc(z) = z, i.e. z∗1,2 = (1±

√
1− 4c)/2.

The curve Γ for the FOM set for q = 0.85, which surrounds the stability domain of
the fixed point z∗1 , S0.85, is presented in Figure 3. Note that in both the IO case (Figure 3a)
and the FO case (Figure 3b), the Mandelbrot sets (defined on the parametric plane of c in
coordinates (cx, cy)) and the stability domains (defined on the eigenvalues λ in coordinates
(λx, λy)) are overplotted.

As detailed in Section 2, to a fixed point z∗, the eigenvalues λ given by (8) or (9)
correspond. For a point λ ∈ Γ, z∗ loses its stability, while if λ /∈ S0.85, z∗ is unstable. If z∗ is
asymptotically stable, λ belongs to S0.85, and reversely, a point λ within S0.85 corresponds
to a point c for which z∗ is asymptotically stable.

Let us numerically verify this property. Consider λ = −0.5701 + i0.3019 ∈ S0.85

(magenta point 1 of coordinates (−0.5701, 0.3019) in Figure 3b). Because <λ < 0 and
=λ > 0, one chooses (9) with right-hand side having signs − and +, respectively. To find
the corresponding point c of this value of λ, one has to solve the problem (8) with unknown
cx and cy. The solutions are cx = −0.0585 and cy = 0.0861 (magenta point 2 in Figure 3b.
To verify the stability of the fixed point corresponding to this value of c, one integrates
the system with (7). The orbit starting from point c tends to be point 3 of the coordinates
(−0.2845, 0.1510) (Figure 3b), which is an approximation with an error of 1e− 3 of the fixed
stable point i

√
c = i

√
−0.0585 + 0.0861i = −0.2851 + 0.1510i.

Interestingly, in comparison with the IO case (Figure 3a), S0.85 does not fill the entire
FOM set (gray fill in Figure 3b). However, points within this gray area of S0.85, and similarly
for all studied cases of Sq, lead to the same result: the entire domain Sq contains eigen-
values points for which the fixed points are asymptotically stable. Consider, for example,
the eigenvalue λ = 0.1464− i0.2268 (green point 1 of coordinates (0.1464,−0.2268) in
Figure 3b). By solving system (8), one obtains the point cx = 0.0075 and cy = 0.0166 (green
point 2 in Figure 3b), from which the integral (7) generates the orbit tending to point 3
of the coordinates (−0.0725, 0.1134). This, with a precision of 1× 10−3, represents the
approximation of the fixed point i

√
c = −0.0732 + 0.1134i.
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On the other hand, points outside of S0.85 are eigenvalues for which the underlying
points c do not belong to the FOM set and, therefore, their fixed points are not stable.
Consider, for example, point 1 (blue plot in Figure 3b) of coordinates λx = 0.1231 and
λy = 0.5590. Solving system (8), one obtains cx = 0.0743, and cy = 0.0344 (point 2 blue
outside the FOM set in Figure 3b) from where the orbit diverges in agreement with the
definition of the Mandelbrot set of IO or FO.

Among several differences and resemblances between the FOM set and the IOM
set [36], one can see that the origin of the so-called “Elephant Valley” (see, e.g., [33]) in the
case of the IOM set is located at (1/4, 0), while for the FOM set, it is located at (0, 0) (see
dotted line in Figure 3).

While for q ≥ 0.5, Sq fills the main body of the FOM set well enough, for q < 0.5,
the shape of Sq does not cover the main body. In Figure 4a–c, for q = 0.5, q = 0.1 and
q = 1× 10−15, the numerically near 0 value, q = 1× 10−15, is chosen instead of Γ(0), which
is not defined. In this case, in order to obtain more fractal details (which look similar to
the IOM set), only 30 iterations were used, compared to 1000 iterations for the other cases).
One can see that q = 0.5 is the ultimate value for q. Thus, for q values below this limit,
Sq is shrinking with respect to the main body of the FOM set. Another characteristic is
that the shape of Γ obtained with Desmos (Figure 4d) presents an additional part (see also
Figure 1b). This image was obtained using both representations: the representation (3) and
the parametric form (10).

Figure 4. Mandelbrot sets of FO and their stability domains for three extra cases. (a) The FOM set
and Sq for the limit case q = 0.5; (b) FOM set and Sq for q = 0.1; (c) FOM set and Sq for q = 1× 10−15;
(d) Sq for q = 0.1, obtained in Desmos software.
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Therefore, the following conjecture is numerically sustained (see also [37]):

Conjecture 1. For q < 0.5, the surface of the stability domain Sq of the fixed points of the FOM
shrinks compared to the main body of the fractal set.

Remark 2. After the first result on the non-periodicity of non-constant solutions of FO, continuous-
time systems appeared [38]; this intriguing result has been extended to FO discrete systems too (see,
e.g., [39]). Thus, contrary to the IOM set, the head contains points generating two-period stable
cycles, and where the bulbs contain the points, generating multiple stable cycles of period 3,4, and so
on (Figure 3a). In the case of the FOM set, these apparent periodic orbits do not exist! For example,
points in the head (yellow fill in Figure 3b) do not generate periodic orbits. The same situations
happen to all bulbs.

4. Conclusions

In this paper, it is shown that drawing the stability domain Sq for empiric values
of q ∈ (0, 1) encounters the problem of the power of negative numbers which could be
differently treated by the software used. Therefore, depending on the software used, the
graphical results of the stability domain of the linear difference Equation (1) could be
unexpected. The power function appearing in Sq is applied to negative values when either
the logarithm is a complex number or one obtains an unexpected result (see Remark 1).
In addition, the stability domain for the fixed points of an FOM map is determined. The
asymptotical stability of the fixed points of the FOM map is verified numerically for q > 0.5.
For q < 0.5, the shape of Sq seems not to verify the filling characteristic encountered on
the IOM set, a fact that leads to Conjecture 1. Besides several differences between the
Mandlebrot sets of IO and FO, such as the shape, the position, and the shape of the stability
set, in the FO case, the head of the FOM set does not represent the points that generate
stable periodic orbits.
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