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Abstract: The fuzzy fractional differential equation explains more complex real-world phenomena
than the fractional differential equation does. Therefore, numerous techniques have been timely
derived to solve various fractional time-dependent models. In this paper, we develop two compact
finite difference schemes and employ the resulting schemes to obtain a certain solution for the
fuzzy time-fractional convection–diffusion equation. Then, by making use of the Caputo fractional
derivative, we provide new fuzzy analysis relying on the concept of fuzzy numbers. Further, we
approximate the time-fractional derivative by using a fuzzy Caputo generalized Hukuhara derivative
under the double-parametric form of fuzzy numbers. Furthermore, we introduce new computational
techniques, based on fuzzy double-parametric form, to shift the given problem from one fuzzy
domain to another crisp domain. Moreover, we discuss some stability and error analysis for the
proposed techniques by using the Fourier method. Over and above, we derive several numerical
experiments to illustrate reliability and feasibility of our proposed approach. It was found that the
fuzzy fourth-order compact implicit scheme produces slightly better results than the fourth-order
compact FTCS scheme. Furthermore, the proposed methods were found to be feasible, appropriate,
and accurate, as demonstrated by a comparison of analytical and numerical solutions at various
fuzzy values.

Keywords: fuzzy time-fractional equation; convection–diffusion equation; fuzzy Caputo gH-derivative;
finite difference methods; implicit scheme method; brownian motion

1. Introduction

In recent years, the study of solving fractional partial differential equations has at-
tracted the attention of many researchers. This can be appraised through a large num-
ber of research articles dealing with such equations in several scientific databases. The
time-fractional convection–diffusion equation (TFCDE) differs from the integer convection–
diffusion equation in the sense that time-fractional derivative can be replaced by a fractional
derivative to describe both the movement and speed of particles that are inconsistent with
the classical Brownian motion type [1–5]. The exact solutions are often unobtainable using
analytical methods. Thus, mathematicians have resorted to using numerical methods to pro-
vide solutions for the governing equations. Several finite difference methods discussed by
many authors [6–8] are considered to be one of the most essential numerical techniques for
solving the time-fractional convection–diffusion equations. The high-order compact finite
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difference methods are usually preferred due to their high computational efficiency and ac-
curacy. Lately, a number of research articles have been published regarding high-order com-
pact finite difference schemes to solve the time-fractional convection–diffusion equations.

Gao and Sun [9] developed two different three-point combined compact alternating-
direction implicit schemes CC–ADI to solve time-fractional convection–diffusion in the
sense of the Riemann–Liouville fractional derivative. The CC–ADI is a combination of com-
pact and alternating-direction implicit schemes that yield a high-order accuracy numerical
solution. Several numerical examples are carried out to demonstrate the efficiency of the
proposed schemes. The unconditional stabilities of the proposed schemes were proven with
the Fourier method. Later, Fazio et al. [10] developed an implicit scheme of non-uniform
grids to solve the time-fractional convection–diffusion equation. A spatial non-uniform
net was utilized in order to increase the accuracy of the Caputo fractional derivative. The
stability analysis of the proposed method showed that the method is unconditionally stable.
Several numerical examples were reported to show that the finite difference method is
more accurate for the non-uniform grid than the uniform mesh, and the stability is better
in the non-uniform mesh than the uniform mesh.

Very recently, Sweilam et al. [11] used the compact finite difference method to obtain
a numerical solution for the stochastic fractional convection–diffusion equation. The
fractional derivative was approximated by the Caputo definition, and the stability and
consistency of the presented method were discussed. Two experiments were also presented
to examine the performance of the proposed method. It was found that all of the results
obtained are compatible with the analytical exact solutions. Li et al. [12] used a fourth-order
compact scheme for solving a fluid dynamic problem, groundwater pollution modeled
by two-dimensional TFCDE. The time-fractional derivatives of the considered equation
ere approximated by Caputo fractional derivative and fourth-order accuracy compact
finite difference discretization that was applied to the spatial derivatives. The solvability,
convergence, and stability of the proposed scheme were studied on the basis of the von
Neumann method. It was further established that the introduced method has unique
solvability and convergence with order O

(
τ2−α + h1

4 + h2
4).

In the mainstream investigation of the processes modelled by fractional partial dif-
ferential equations, the variables and parameters are defined exactly, but these quantities
(variables and parameters) may be uncertain and vague due to measurement errors that
occur in the real experiments and that lead to fuzzy fractional partial differential equations.

Senol et al. [13] developed the perturbation–iteration algorithm (PIA) for solving fuzzy
time-fractional partial differential equations with a generalized Hukuhara derivative. The
fuzzy time-fractional derivative was approximated by the use of the Caputo definition. The
convergence analysis of the proposed method was discussed and showed that the proposed
approach gives a fast convergence rate and high accuracy when compared with the exact
analytical solutions of the crisp problem. Shah et al. [14] presented analytical solutions of
fuzzy time-fractional partial differential equations under certain conditions. The Laplace
transform was used to compute series-type solutions for the considered equations under
the fuzzy concept. Some examples were solved to illustrate the feasibility of the proposed
method. Recently, two finite difference methods that are implicit backward time center
space (BTCS) and implicit schemes were developed by the authors in [15] to solve the fuzzy
time-fractional convection–diffusion equation (FTFCDE).

Based on the literature, it seems, as far as we know, that limited research has been done
in the field of fuzzy time-fractional convection–diffusion equations by using classical and
compact finite difference methods. Our motivation in this article is to examine the solution
of the fuzzy time-fractional convection–diffusion equation. In this research article, we will
develop and implement compact finite difference methods, in particular the fourth-order
compact Crank–Nicholson and the fourth-order forward time center space schemes to
obtain an approximate solution for the time-fractional convection–diffusion equation in the
double-parametric form of a fuzzy number.
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2. Preliminaries and Fundamental Definitions

In this section, the main definitions and theorems that are utilized later in this article
are considered as follows:

Definition 1 [16]. Let RF denote the set of fuzzy subsets of the real axis and u : R → [0, 1]
satisfies the following properties:

1. u is upper semi-continuous on R,
2. u is fuzzy convex,
3. u is normal,
4. Closure of {x ∈ R|u(x) > 0} is compact,

Then, by RF we denote the space of fuzzy numbers for every 0 < r ≤ 1.

Denote by u(r) =
{

xεRn ...u(x) ≥ r
}

= u(r)− u(r). Then, from Definition 1, it follows

that the r− level set u(r) is a closed interval for all r, 0 ≤ r ≤ 1. For arbitrary u, v ∈ RF
and k ∈ R, the addition and scalar multiplication are defined by (u ⊕ v)(r) = u(r) + v(r),
(k � u)(r) = [ku(r), ku(r)], respectively.

Definition 2 [16]. The Hausdorff distance between the fuzzy numbers is defined by
d : RF ×RF → R+ ∪ {0} as d(u, v) = suprε[0,1] Max {|u(r)− v(r)|, |u(r)− v(r)|}. The
r − level representation of the fuzzy-valued function f : [a, b] → RF is given by
(x; r) = [ f (x; r), f (x; r)],x ∈ [a, b], 0 ≤ r ≤ 1.

Definition 3 [17]. Let u, v ∈ RF and there exist w ∈ RF such that u = v + w. Then, w is
called the Hukuhara difference of u and v , and it is denoted by u 	 v, fora ≤ x and 0 < α ≤ 1.

Definition 4 [18]. The generalized Hukuhara difference (gH-differentiable for short) of two fuzzy
numbers u, v ∈ RF , gH- difference for short) is w ∈ RF defined by

u	gH v = w ⇔
{

(i) u = v + w
or (ii) v = u + (−1)w

.

Definition 5 [19]. The gH-differentiable of a fuzzy-valued function f (a, b)→ RF at x0 is
defined by (

f ′
)

gH(x0) =
lim
h→0

f (x0 + h)	 gH f (x0)

h
.

If ( f ′)gH(x0)εRF, we say that f is gH-differentiable at x0. In addition, we say that f is
[(i)− gH]-differentiable at x0 if:

5. ( f ′)gH(x0; r) = [( f )
′
(x0; r) ,

(
f )
′
(x0; r)

]
, r ∈ [0, 1], and that f is [(ii)− gH]-differentiable

at x0 if

6. ( f ′)gH(x0; r) = [( f )
′
(x0; r) ,

(
f )
′
(x0; r)

]
, r ∈ [0, 1].

Definition 6 [19]. We say that a point x0 ∈ (a, b) is a switching point for the differentiability
of f if, in any neighborhoodV of x0 , there exists points x1 < x0 < x2 such that: Type (I): at x1
(i) holds while (ii) does not hold and, at x2 , (ii) holds and (i) does not hold, Type (II): at x1 (ii) holds
while (i) does not hold and, at x2 , (i) holds and (ii) does not hold.

Definition 7 [20]. The fractional derivative was defined as follows

c
0Dα

t f (t) =
1

Γ(1− α)

∫ t

0

∂
∂t f (ξ)
(t− ξ)α ∂ξ, 0 < α < 1.
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The time-fractional derivative term is approximated as [21]

∂αu(x, t)
∂αt

=
∆t−α

Γ(2− α) ∑n
j=1 bj

(
un+1−j

i − un−j
i

)
,

where bj = (j + 1)1−α − (j)1−α , j = 0, 1, 2, . . ..

Definition 8 [22]. The fuzzy fractional Caputo gH- derivative of a fuzzy valued function f (t; r)
based on (i) and (ii) of gH-differentiable function f is defined as follows:

7. (c
gH Dα

t f (t; r) =
[

c
0Dα

t f (t; r), c
0Dα

t f (t; r)
]

, 0 ≤ r ≤ 1,

8. (c
gH Dα

t f (t; r) =
[

c
0Dα

t f (t; r), c
0Dα

t f (t; r)
]

, 0 ≤ r ≤ 1,

where c
0Dα

t f (t; r) = 1
Γ(1−α)

∫ t
0

∂
∂t f (ξ;r)
(t−ξ)α ∂ξ and c

0Dα
t f (t; r) = 1

Γ(1−α)

∫ t
0

∂
∂t f (ξ;r)
(t−ξ)α ∂ξ.

Definition 9 [15]. (The double-parametric form of fuzzy numbers) Using the single-parametric
form, we write Ũ = [u(r), u(r)] , which may be written as a crisp number using the double-
parametric form as

Ũ(r, β) = β[u(r)− u(r)] + u(r),where r and β ∈ [0, 1].

3. High-Order Compact Finite Difference Method in Fuzzy Environment

Let un
i indicate the approximation value of u at (xi, tn). Based on the Taylor series

expansions un
i+1and un

i+1 , u can be expanded about (xi, tn) to derive the fuzzy high-order
compact finite difference scheme for the spatial derivatives.

∼
u

n
i+1 =

∼
u

n
i + h

(
∂
∼
u

∂x

)n

i
+ h2

2

(
∂2∼u
∂x2

)n

i
+ h3

6

(
∂3∼u
∂x3

)n

i
+ · · ·

∼
u

n
i−1 =

∼
u

n
i − h

(
∂
∼
u

∂x

)n

i
+ h2

2

(
∂2∼u
∂x2

)n

i
− h3

6

(
∂3∼u
∂x3

)n

i
+ ...

. (1)

The first derivatives of un
i+1 and un

i−1 are(
∂
∼
u

∂x

)n

i+1
=
(

∂
∼
u

∂x

)n

i
+ h
(

∂2∼u
∂x2

)n

i
+ h2

2

(
∂3∼u
∂x3

)n

i
+ h3

6

(
∂4∼u
∂x4

)n

i
+ · · ·(

∂
∼
u

∂x

)n

i−1
=
(

∂
∼
u

∂x

)n

i
− h
(

∂2∼u
∂x2

)n

i
+ h2

2

(
∂3∼u
∂x3

)n

i
− h3

6

(
∂4∼u
∂x4

)n

i
+ ...

. (2)

The second derivatives of un
i+1 and un

i−1 are(
∂2∼u
∂x2

)n

i+1
=
(

∂2∼u
∂x2

)n

i
+ h
(

∂3∼u
∂x3

)n

i
+ h2

2

(
∂4∼u
∂x4

)n

i
+ h3

6

(
∂5∼u
∂x5

)n

i
+ · · ·(

∂2∼u
∂x2

)n

i−1
=
(

∂2∼u
∂x2

)n

i
− h
(

∂3∼u
∂x3

)n

i
+ h2

2

(
∂4∼u
∂x4

)n

i
− h3

6

(
∂5∼u
∂x5

)n

i
+ ...

. (3)

From Equations (1)–(3), the first and second partial derivatives are approximated
to give (

∂u
∂x

)n

i
=

δx/2h(
1 + 1

6 δ2x

)un
i +

h4

180

(
∂5u
∂x5

)n

i
+ O

(
h5
)

, (4)

(
∂2u
∂x2

)n

i
=

δ2
x/h2(

1 + 1
12 δ2x

)un
i +

h4

240

(
∂6u
∂x6

)n

i
+ O

(
h6
)

, (5)

where δx = ũn
i+1 − un

i−1 and δ2
x = ũn

i+1 − 2ũn
i + ũn

i−1 for 0 ≤ i ≤ M, 0 ≤ n ≤ N.
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By taking into account the average function that mentioned in [23], we assume that

1(
1 + 1

6 δ2x

) ũn
i =

1
6
(
ũn

i+1 + 4ũn
i + ũn

i−1
)
, 1 ≤ i ≤ M− 1, (6)

1(
1 + 1

12 δ2x

) ũn
i =

1
12
(
ũn

i+1 + 10ũn
i + ũn

i−1
)
, 1 ≤ i ≤ M− 1. (7)

4. Time Fractional Convection–Diffusion Equation in Fuzzy Environment

A fuzzy fractional convection–diffusion equation is used to describe both the speed
and movement of particles that are incompatible with the classical Brownian motion pattern.
The fuzzy fractional convection–diffusion equation can be used for modelling some physical
problems such as groundwater hydrology and gas transport through heterogeneous soil.
The applications also exist in aerodynamics and other fields [24–27].

Let us now consider the general formula of the fuzzy time-fractional convection–
diffusion equation involving the boundary and initial conditions [28]

∂α ũ(x,t,α)
∂αt = −ṽ(x) ∂ũ(x,t)

∂x − D̃(x) ∂2ũ(x,t)
∂x2 + q̃(x, t) , 0 < x < l, t < 0,

ũ(x, 0) = f̃ (x), ũ(0, t) = g̃(0, t), ũ(l, t) = z̃ (l, t),
(8)

where ũ(x, t, α) is the density of a quantity such as fuzzy energy; the fuzzy mass

of crisp variables x, t, and α is an arbitrary order such that ∂αŨ(x,t,α)
∂αt denotes the fuzzy

time-fractional generalized Hukuhara derivative (gH-derivative) of order α; ṽ(x) is the
average velocity of a fuzzy quantity; D̃(x) is the diffusivity coefficient; q̃(x, t) is a function
for the uncertainty crisp variable x; t, ũ(0, t) and ũ(l, t) are the fuzzy boundary conditions
involving g̃ , z̃ is defined as a fuzzy convex number; and ũ(x, 0) is the fuzzy initial condition.

In Equation (8), the fuzzy functions f̃ (x), ṽ(x), D̃(x), and q̃(x) are defined as fol-
lows [29]: 

D̃(x) = θ̃1s1(x)
q̃(x) = θ̃2s2(x)
f̃ (x) = θ̃3s3(x)
ṽ(x) = θ̃4s4(x)

(9)

where s1(x), s2(x), s3(x) and s4(x) are the crisp (classical) functions of the classical variable
x where θ̃1, θ̃2, θ̃3 and θ̃4 are introduced as the fuzzy convex numbers. The fuzzy time-
fractional convection–diffusion equation is defuzzified based on the double-parametric
approach of fuzzy numbers as [14]:

[ũ(x, t)]r = u(x, t; r), u(x, t; r), (10)[
∂αũ(x, t, α)

∂αt

]
r
=

∂αu(x, t, α; r)
∂αt

,
∂αu(x, t, α; r)

∂αt
, (11)[

∂ũ(x, t)
∂x

]
r
=

∂u(x, t; r)
∂x

,
∂u(x, t; r)

∂x
(12)

[
∂2ũ(x, t)

∂x2

]
r
=

∂2u(x, t; r)
∂x2 ,

∂2u(x, t; r)
∂x2 , (13)

[ṽ(x)]r = v(x; r), v(x; r) (14)[
D̃(x)

]
r
= D(x; r), D(x; r) (15)

[q̃(x)]r = q(x; r), q(x; r) (16)

[ũ(x, 0)]r = u(x, 0; r), u(x, 0; r) (17)
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[ũ(0, t)]r = u(0, t; r), u(0, t; r) (18)

[ũ(l, t)]r = u(l, t; r), u(l, t; r), (19)[
f̃ (x)

]
r
= f (x; r), f (x; r), (20){

[g̃]r = g(r), g(r),
[z̃]r = z(r), z(r),

(21)

such that 
[D(x)]r =

[
θ(r)1, θ1(r)

]
s1(x)

[q̃(x)]r =
[
θ(r)2, θ2(r)

]
s2(x)[

f̃ (x)
]

r
=
[
θ(r)3, θ3(r)

]
s3(x)

[v(x)]r =
[
θ(r)4, θ4(r)

]
s4(x)

. (22)

By employing the fuzzy extension principle, the membership function is defined
as [10] {

u(x, t; r) = min{ũ(µ̃(r), t))|µ̃(r) ∈ ũ(x, t; r)},
u(x, t; r) = max{ũ(µ̃(r), t)|µ̃(r) ∈ ũ(x, t; r)}. (23)

Now, for 0〈x〉l, t > 0 and r ∈ [0, 1], Equation (8) is rewritten to yield the general
equation of the fuzzy time-fractional convection–diffusion equation

∂αu(x,t,α)
∂αt = −[θ(r)4]s4(x) ∂u(x,t;r)

∂x + [θ(r)1]s1(x) ∂2u(x,t;r)
∂x2 + [θ(r)2]s2(x),

u(x, 0; r) = θ(r)3s3(x),
u(0, t; r) = g(r), u(l, t; r) = z(r),

(24)


∂αu(x,t,α)

∂αt = −
[
θ4(r)

]
s4(x) ∂u(x,t;r)

∂x +
[
θ1(r)

]
s1(x) ∂2u(x,t;r)

∂x2 +
[
θ2(r)

]
s2(x),

u(x, 0; r) = θ3(r)3s3(x),
u(0, t; r) = g(r), u(l, t; r) = z(r).

(25)

Equations (24) and (25) present the lower and upper bounds of the general formula of
the fuzzy time-fractional convection–diffusion equation. Now, for defuzzification, Equa-
tion (8), based on the double-parametric form of the fuzzy numbers, as per the singular-
parametric form, may be expressed as[

∂αu(x,t,α;r)
∂αt , ∂αu(x,t,α;r)

∂αt

]
= −[ v(x, r), v(x, r)]

[
∂ui,n(x,t;r)

∂x , ∂ui,n(x,t;r)
∂x

]
+
[

D(x, r), D(x, r)
][ ∂2ui,n(x,t;r)

∂x2 , ∂2ui,n(x,t;r)
∂x2

]
+
[

q(x, t; r), q(x, t; r)
]
,

(26)

subject to the fuzzy boundary and initial conditions

[ u(x, 0; r), u(x, 0; r)] =
[

f (x, t; r), f (x, t; r)
]
, [ u(0, t; r), u(0, t; r)] =

[
g(0, t; r), g(0, t; r)

]
and [ u(l, t; r), u(l, t; r)] = [z(l, t; r), z(l, t; r)].

Now, via the double-parametric form (see, e.g., [14]), we rewrite Equation (26) as:{
β
(

∂αu(x,t,α;r)
∂αt − ∂αu(x,t,α;r)

∂αt

)
+ ∂αu(x,t,α;r)

∂αt

}
= −{β(v(x, r)− v(x, r)) + v(x, r)}

{
β
(

∂ui,n(x,t;r)
∂x − ∂ui,n(x,t;r)

∂x

)
+

∂ui,n(x,t;r)
∂x

}
+{β(D(x, r)− D(x, r)) + D(x, r)}

{
β

(
∂2ui,n(x,t;r)

∂x2 − ∂2ui,n(x,t;r)
∂x2

)
+

∂2ui,n(x,t;r)
∂x2

}
+{β(q(x, t; r)− q(x, t; r)) + q(x, t; r)},

(27)
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subjected to fuzzy initial and boundary conditions

{ β (u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)} =
{

β
(

f (x; r)− f (x; r)
)
+ f (x; r)

}
,

{ β (u(0, t; r)− u(0, t; r)) + u(0, t; r)} =
{

β
(

g(x; r)− g(x; r)
)
+ g(x; r)

}
,

and
{ β (u(l, t; r)− u(l, t; r)) + u(l, t; r)} = { β (z(x; r)− z(x; r)) + z(x; r)},

where β ∈ [0, 1]. Now we donate

∂α ũ(x,t;r,β)
∂αt =

{
β
(

∂αu(x,t,α;r)
∂αt − ∂αu(x,t,α;r)

∂αt

)
+ ∂αu(x,t,α;r)

∂αt

}
ṽ(x) ∂ũ(x,t;r,β)

∂x = { β (v(x, r)− v(x, r)) + v(x, r)}
{

β
(

∂ui,n(x,t;r)
∂x − ∂ui,n(x,t;r)

∂x

)
+

∂ui,n(x,t;r)
∂x

}
,

ã(x) ∂2ũ(x,t;r,β)
∂x2 =

{
β
(

D(x, r)− D(x, r)
)
+ D(x, r)

} {
β

(
∂2ui,n(x,t;r)

∂x2 − ∂2ui,n(x,t;r)
∂x2

)
+

∂2ui,n(x,t;r)
∂x2

}
,

q̃(x, t; r, β) =
{

β
(

q(x, t; r)− q(x, t; r)
)
+ q(x, t; r)

}
,

ũ(x, 0; r, β) = { β (u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)},
f̃ (x; r, β) =

{
β
(

f (x; r)− f (x; r)
)
+ f (x; r)

}
,

ũ(0, t; r, β) = { β (u(0, t; r)− u(0, t; r)) + u(0, t; r)},
g̃(x; r, β) =

{
β
(

g(x; r)− g(x; r)
)
+ g(x; r)

}
,

ũ(l, t; r, β) = { β (u(l, t; r)− u(l, t; r)) + u(l, t; r)},
z̃(x; r, β) = { β (z(x; r)− z(x; r)) + z(x; r)}.

Substituting these equations into Equation (26) reveals

∂α ũ(x,t,α,β)
∂αt = −ṽ(x) ∂ũ(x,t,β)

∂x + ã(x) ∂2ũ(x,t,β)
∂x2 + b̃(x, t, β) , 0 < x < l, 0 < β < l, t < 0,

ũ(x, 0, β) = f̃ (x, r, β), ũ(0, t, β) = g̃ , ũ(l, t, β) = z̃.
(28)

To obtain the lower and upper solutions of equation (28) in the single parametric form,
assume β = 0 and β = 1, respectively, to obtain

ũ(x, t; r, 0) = u(x, t; r) and ũ(x, t; r, 1) = u(x, t; r).

5. The Fuzzy Fourth-Order Compact Implicit Scheme Method for the Solution
of FTFCDE

In this section, the fourth-order compact implicit scheme method is developed and ap-
plied to a double-parametric form of fuzzy numbers, utilizing fourth-order approximation
at time level n + 1

2 . In addition, the first- and second-order space derivatives, along with a
fuzzy Caputo gH-derivative formula, are discretized to approximate the time-fractional
derivative to solve the fuzzy time-fractional convection–diffusion equation.

To obtain an approximate solution to the fuzzy time-fractional convection–diffusion
equation based on the fuzzy fourth-order compact implicit scheme method, the fuzzy
Caputo gH- derivative formula has been applied to approximate the fuzzy time-fractional
derivative given in Equation (8). The first and second space partial derivatives are, respec-
tively, approximated by using Equations (4) and (5) as

∆t−α

Γ(2− α)
[ũi,n+1 − ũi,n +

n

∑
j=1

bj
(
ũi,n+1−j − ũi,n−j

)
] = −ṽ(x, r)

δx
2h(

1 + 1
6 δ2x

) + D̃(x, r)
δ2

x
h2(

1 + 1
12 δ2x

) + q̃(x, r). (29)
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Hence, from Equations (6), (7) and (29) can be simplified to give

∆t−α

Γ(2−α)
× 3

12 ((
∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 )− (

∼
u

n
i+1 + 6

∼
u

n
i +

∼
u

n
i−1)

+
n
∑

j=1
bj[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )])

= −∼v(x, r)
∼
u

i+1,n+ 1
2
−∼u

i−1,n+ 1
2

2h +
∼
D(x, r)

∼
u

i+1,n+ 1
2
−2
∼
u

i,n+ 1
2
+
∼
u

2
i−1,n+ 1

2

h2

+

(
∼
q

n+ 1
2

i+1 + 6
∼
q

n+ 1
2

i +
∼
q

n+ 1
2

i−1

)
(30)

∆t−α

Γ(2−α)
× 3

12 ((
∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 )− (

∼
u

n
i+1 + 6

∼
u

n
i +

∼
u

n
i−1)

+
n
∑

j=1
bj[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )])

= −∼v(x, t, r) 1
2 ×

[∼
ui+1,n+1−

∼
ui−1,n+1

2h +
∼
ui+1,n−

∼
ui−1,n

2h

]
+
∼
a(x, t, r) 1

2

[∼
ui+1,n+1−2

∼
ui,n+1+

∼
ui−1,n+1

h2 +
∼
ui+1,n−2

∼
ui,n+

∼
ui−1,n

h2

]
+
∼
b(x, t, r).

(31)

Therefore, we have

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 −

∼
u

n
i+1 − 6

∼
u

n
i −

∼
u

n
i−1 +

n
∑

j=1
bj[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

= −
∼
v(x,r)∆tαΓ(2−α)

h [3
∼
ui+1,n+1 − 3

∼
ui−1,n+1 + 3

∼
ui+1,n − 3

∼
ui−1,n]

+
∼
a(x,r)∆tαΓ(2−α)

h2 [6
∼
ui+1,n+1 − 12

∼
ui,n+1 + 6

∼
ui−1,n+1 + 6

∼
ui+1,n − 12

∼
ui,n + 6

∼
ui−1,n]

+12∆tαΓ(2− α)[(
∼
b

n+1

i+1 + 6
∼
b

n+1

i +
∼
b

n+1

i−1 )].

(32)

Now, assume p̃1(r) =
ṽ(x,t;r) Γ(2−α) ∆tα

h , p̃2(r) =
D̃(x,t;r) Γ(2−α) ∆tα

h2 . Then, in view of
Equation (32) we derive

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 −

∼
u

n
i+1 − 6

∼
u

n
i −

∼
u

n
i−1 +

n
∑

j=1
bj[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

= [−3
∼
p1
∼
ui+1,n+1 + 3

∼
p1
∼
ui−1,n+1 − 3

∼
p1
∼
ui+1,n + 3

∼
p1
∼
ui−1,n]

+[6
∼
p2
∼
ui+1,n+1 − 12

∼
p2
∼
ui,n+1 + 6

∼
p2
∼
ui−1,n+1 + 6

∼
p2
∼
ui+1,n −

∼
p212

∼
ui,n + 6

∼
p2
∼
ui−1,n]

+12∆tαΓ(2− α)[(
∼
b

n+1

i+1 + 6
∼
b

n+1

i +
∼
b

n+1

i−1 )]

(33)

Thus, we simplify Equation (33) to obtain a general formula for the fourth-order
compact implicit scheme method of the FTFCDE as follows(

1 + 3
∼
p1 − 6

∼
p2

) ∼
u

n+1
i+1 +

(
6 + 12

∼
p2

)∼
u

n+1
i +

(
1− 3

∼
p1 − 6

∼
p2

)∼
u

n+1
i−1

=
(

1− 3
∼
p1 + 6

∼
p2

)∼
u

n
i+1 +

(
6− 12

∼
p2

)∼
u

n
i +

(
1 + 3

∼
p1 + 6

∼
p2

)∼
u

n
i−1

−
n
∑

j=1
bj

[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1

)
−
(
∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1

)]
+12∆tαΓ(2− α)

[(
∼
q

n+1
i+1 + 6

∼
q

n+1
i +

∼
q

n+1
i−1

)
.

(34)

6. The Fuzzy Fourth-Order FTCS Method for the Solution of FTFCDE

In this section, the fourth-order FTCS method is developed and applied to the double-
parametric form of fuzzy numbers implementing the fourth-order approximation at time
level n. The, we discretize the first- and second-order space derivatives and the fuzzy
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Caputo gH-derivative formula to approximate the time-fractional derivative that gives rise
to the solution of the fuzzy time-fractional convection–diffusion equation.

To obtain an approximate solution to the fuzzy time-fractional convection–diffusion
equation based on fuzzy fourth-order compact FTCS method, the fuzzy Caputo gH-
derivative formula has been applied to approximate the fuzzy time-fractional derivative
Equation (8). The first- and second-space partial derivatives are therefore approximated by
Equation (5) to yield

∆t−α

Γ(2−α)
[ũi,n+1 − ũi,n +

n
∑

j=1
bj
(
ũi,n+1−j − ũi,n−j

)
]

= −ṽ(x, r)
δx
2h

(1+ 1
6 δ2x)

+ D̃(x, r)
δ2x
h2

(1+ 1
12 δ2x)

+ q̃(x, r).
(35)

Hence, simplifying Equation (35) reveals

∆t−α

Γ(2−α)
× 3

12 ((
∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 )− (

∼
u

n
i+1 + 6

∼
u

n
i +

∼
u

n
i−1)

+
n
∑

j=1
bj[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )])

= −∼v(x, r)
∼
ui+1,n−

∼
ui−1,n

2h +
∼
D(x, r)

∼
ui+1,n−2

∼
ui,n+

∼
ui−1,n

h2 + (
∼
q

n
i+1 + 6

∼
q

n
i +

∼
q

n
i−1)

(36)

Therefore, we have obtained

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 −

∼
u

n
i+1 − 6

∼
u

n
i −

∼
u

n
i−1 + ∑

j=1
bj[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

= −
∼
v(x,r)∆tαΓ(2−α)

h [6
∼
ui+1,n − 6

∼
ui−1,n]

+
∼
D(x,r)∆tαΓ(2−α)

h2 [12
∼
ui+1,n − 24

∼
ui,n + 12

∼
ui−1,n] + 12∆tαΓ(2− α)[(

∼
q

n
i+1 + 6

∼
q

n
i +

∼
q

n
i−1)].

(37)

Now, let p̃1(r) = ṽ(x,r) ∆tαΓ(2−α)
h , p̃2(r) = D̃(x,r)∆tαΓ(2−α)

h2 . Then, from Equation (37)
we write

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 −

∼
u

n
i+1 − 6

∼
u

n
i −

∼
u

n
i−1 +

n
∑

j=1
bj[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

= [−6
∼
p1
∼
ui+1,n + 6

∼
p1
∼
ui−1,n] + [12

∼
p2
∼
ui+1,n − 24

∼
p2
∼
ui,n + 12

∼
p2
∼
ui−1,n]

+12∆tαΓ(2− α)[(
∼
q

n
i+1 + 6

∼
q

n
i +

∼
q

n
i−1)]

(38)

By simplifying Equation (38), we obtain the general formula for the fourth-order
compact FTCS of the FTFCDE in the form

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1

i−1

= (1− 6
∼
p1 + 12

∼
p2)
∼
u

n
i+1 + (6− 24

∼
p2)
∼
u

n
i + (1 + 6

∼
p1 + 12

∼
p2)
∼
u

n
i−1

−
n
∑

j=1
bj[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

+12∆tαΓ(2− α)[(
∼
b

n

i+1 + 6
∼
b

n

i +
∼
b

n

i−1)]

(39)

7. The Truncation Error Analysis

In this section, the truncation error of Equation (34) is considered by employing the
Taylor series expansion to give
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∼
T
(

xi, tn+ 1
2

)
= 1

Γ(2−α)∆tα

n
∑

j=0
bj

(
∼
u

n+1−j
i − ∼u

n−j
i

)
+ δx/2h

(1+ 1
6 δ2x)

un+ 1
2

i − δ2
x/h2

(1+ 1
12 δ2)

∼
u

n+ 1
2

i

= 1
Γ(2−α)∆tα

n
∑

j=0
bj

(
∼
u

n+1−j
i − ∼u

n−j
i

)
− ∂α∼u

∂αt

∣∣∣n+ 1
2

i
+ δx/2h

(1+ 1
6 δ2x)

un+ 1
2

i − ∂
∼
u

∂x

∣∣∣n+ 1
2

i
+ ∂2∼u

∂2x

∣∣∣n+ 1
2

i
− δ2

x/h2

(1+ 1
12 δ2x)

∼
u

n+ 1
2

i

= 1
Γ(2−α)∆tα

n
∑

j=0
bj

(
∼
u

n+1−j
i − ∼u

n−j
i

)
− ∂α∼u

∂α

∣∣∣n+ 1
2

i
+ h4

180

(
∂5u
∂x5

)n

i
+ h4

240

(
∂6∼u
∂x6

)n+ 1
2

i
Ii

= O(∆t)2−α + O
(
h4)+ O

(
h4) = (∆t)2−α + O

(
h4)

(40)

It is not of place to mention here that we have to take into consideration that the trunca-
tion error for the second-order implicit scheme method of Equation (14) is
O(∆t)2−α + O

(
h2).

8. Stability Analysis

The Fourier method is used in this section to examine the stability of the presented
method for the fuzzy time-fractional convection–diffusion equation. First, suppose that
the discretization of the initial condition tends to the fuzzy error ε̃0

i . Assume ũ0
i = ´̃u0

i − ε̃0
i ,

ũn
i , and ´̃un

i are the numerical fuzzy solutions of the fourth-order compact formula in
Equation (14). Let [ũn

i+1(x, t; α)]r = β[u (r)− u (r)] + u(r)], where r, β ∈ [0, 1]. Then, we
define the fuzzy error bound as

[ε̃n
i ]r =

[
´̃un
i − ũn

i

]
r

, n = 1, 2, 3, . . . . . . , X×M; i = 1, 2, 3, . . . . . . ; X− 1. (41)

Then, by making use of the presented approach of [30], Equation (14) can be read as(
1 + 3

∼
p1 − 6

∼
p2

) ∼
u

n+1
i+1 +

(
6 + 12

∼
p2

)∼
u

n+1
i +

(
1− 3

∼
p1 − 6

∼
p2

)∼
u

n+1
i−1

=
(

1− 3
∼
p1 + 6

∼
p2 − b1

)∼
u

n
i+1 +

(
6− 12

∼
p2 − 6b1

)∼
u

n
i +

(
1 + 3

∼
p1 + 6

∼
p2 − b1

)∼
u

n
i−1

−
n−1
∑

j=1

(
bj+1 − bj

)(∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1

)
+ bn

(
∼
u

0
i+1 + 6

∼
u

0
i +

∼
u

0
i−1.
) (42)

The error bound of Equation (42) therefore has the form(
1 + 3

∼
p1 − 6

∼
p2

) ∼
ε

n+1
i+1 +

(
6 + 12

∼
p2

)∼
ε

n+1
i +

(
1− 3

∼
p1 − 6

∼
p2

)∼
ε

n+1
i−1

=
(

1− 3
∼
p1 + 6

∼
p2 − b1

)∼
ε

n
i+1 +

(
6− 12

∼
p2 − 6b1

)∼
ε

n
i +

(
1 + 3

∼
p1 + 6

∼
p2 − b1

)∼
ε

n
i−1

−
n−1
∑

j=1

(
bj+1 − bj

)(∼
ε

n−j
i+1 + 6

∼
ε

n−j
i +

∼
ε

n−j
i−1

)
+ bn

(
∼
ε

0
i+1 + 6

∼
ε

0
i +

∼
ε

0
i−1

)
,

(43)

provided that ε̃n
0 = ε̃n

X = 0, n = 1, 2, . . . ., T ×M.
Let ε̃n

i = [ε̃n
1, ε̃n

2, . . . . . . , ε̃n
X−1]. Then, the fuzzy norm is introduced as

‖ε̃n‖2 =
√

∑X−1
i=1 h

∣∣ε̃n
i

∣∣2
Then, it yields

‖ε̃n‖2
2 = ∑X−1

i=1 h |ε̃n
i |

2. (44)

Suppose that ε̃n
i can be expressed in the form

ε̃n
i = λ̃n e

√
−θi , where θ̃i = qih. (45)
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Then, substituting Equation (45) into Equation (43) implies(
1 + 3

∼
p1 − 6

∼
p2

) ∼
λ

n+1
e
√
−θi +

(
1− 3

∼
p1 − 6

∼
p2

)∼
λ

n+1
e
√
−θi−1

=
(

1− 3
∼
p1 + 6

∼
p2 − b1

)∼
λ

n
e
√
−θi+1 +

(
6− 12

∼
p2 − 6b1

)∼
λ

n
e
√
−θi

+
(

1 + 3
∼
p1 + 6

∼
p2 − b1

)∼
λ

n
e
√
−θi−1

−
n−1
∑

j=1

(
bj+1 − bj

)(∼
λ

n−j
e
√
−θi+1 +

∼
λ

n−j
e
√
−θi +

∼
λ

n−j
e
√
−θi−1

)
+bn

(∼
λ

0
e
√
−θi+1 + 6

∼
λ

0
e
√
−θi +

∼
λ

0
e
√
−θi−1

)
(46)

Divide Equation (46) by e
√
−θi to have

[
(

6 + 12
∼
p2

)
+

(
e
√
−θi + e−

√
−θi
)
− 6
∼
p2

(
e
√
−θi + e−

√
−θi
)
]
∼
λ

n+1

=
[(

6− 12
∼
p2 − 6b1

)
+ (1− b1)

(
e
√
−θi + e−

√
−θi
)
+ 6
∼
p2

(
e
√
−θi + e−

√
−θi
)]∼

λ
n

−
n−1
∑

j=1

(
bj+1 − bj

)[
6 +

(
e
√
−θi + e−

√
−θi
)]∼

λ
n−j

+ bn

[
6 +

(
e
√
−θi + e−

√
−θi
)]∼

λ
0

(47)

Then, simplify Equation (47) to write

λ̃n+1 =

[
8−8b1−4 sin2( θ

2 )+4b1 sin2( θ
2 )−24p̃2 sin2( θ

2 )
8−4 sin2( θ

2 )+24p̃2 sin2( θ
2 )

]
λ̃n

− ∑n−1
j=1 (bj+1−bj)(8−4 sin2( θ

2 )) λ̃n−j+bn(8−4 sin2( θ
2 ))λ̃0

8−4 sin2( θ
2 )+48p̃2 sin2( θ

2 )+12
√
−1 p̃1sin θ

.
(48)

Proposition 1. Let λ̃n be the fuzzy numerical solution for Equation (48). Then, we have∣∣∣λ̃n
∣∣∣ ≤ ∣∣∣λ̃0

∣∣∣ .

Proof. From Equation (48), we, for n = 0 , write

∣∣∣λ̃1
∣∣∣ =

8− 4 sin2
(

θ
2

)
− 24p̃2 sin2

(
θ
2

)
8− 4 sin2

(
θ
2

)
+ 24p̃2 sin2

(
θ
2

)
∣∣∣λ̃0

∣∣∣.
Hence, it follows ∣∣∣λ̃1

∣∣∣ ≤ ∣∣∣λ̃0
∣∣∣ .

Now, assume that ∣∣∣λ̃m
∣∣∣ ≤ ∣∣∣λ̃0

∣∣∣, m = 1, 2 , 3 , . . . , n− 1.

Therefore, by [30], we state that the standard coefficient bj = (j + 1)1−α − (j)1−α,
j = 1, 2, 3, . . . , satisfies

9. bj > 0, j = 1, 2, ...
10. bj > bj+1, j = 1, 2, . . . .

Hence, in view of Equation (48) and the above statement, we obtain

λ̃n+1 ≤
[

8−8b1−4 sin2( θ
2 )+4b1 sin2( θ

2 )−24p̃2 sin2( θ
2 )

8−4 sin2( θ
2 )+24p̃2 sin2( θ

2 )

]∣∣∣λ̃n
∣∣∣−

∑n−1
j=1 (bj+1−bj)(8−4 sin2( θ

2 )) |λ̃n−j|+bn(8−4 sin2( θ
2 ))|λ̃0|

8−4 sin2( θ
2 )+24p̃2 sin2( θ

2 ).
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Thus, we write

λ̃n+1 ≤

8− 8b1 − 4 sin2
(

θ
2

)
+ 4b1 sin2

(
θ
2

)
− 24p̃2 sin2

(
θ
2

)
−
[
(bn − b1)

(
8− 4 sin2

(
θ
2

))]
+ 8bn − 4bn sin2

(
θ
2

)
8− 4 sin2

(
θ
2

)
+ 24p̃2 sin2

(
θ
2

)
∣∣∣λ̃0

∣∣∣
That is,

λ̃n+1 ≤

8− 4 sin2
(

θ
2

)
− 24p̃2 sin2

(
θ
2

)
8− 4 sin2

(
θ
2

)
+ 24p̃2 sin2

(
θ
2

)
∣∣∣λ̃0

∣∣∣ ≤ ∣∣∣λ̃0
∣∣∣.

Theorem 1. The fourth-order compact implicit scheme method Equation (34) is unconditionally stable.

Proof. From Proposition 1 and the formula of Equation (44), it can be easily shown that

‖ε̃n‖2 ≤ ‖ε̃0‖2 , n = 1, 2, 3, . . . . . . , N − 1

This means that the fourth-order compact implicit scheme method Equation (14) is
unconditionally stable. On the other hand, using the same approach, it is easy to show that
the fourth-order compact FTCS scheme Equation (39) is conditionally stable, i.e., there are
stability conditions for the time step.

9. Numerical Experiments

Consider the one-dimensional time-fractional convection–diffusion equation [28]

∂αũ(x, t, α)

∂tα
= −∂ũ(x, t; r, β)

∂x
+

∂2ũ(x, , t; r, β)

∂x2 , 0 < x < L, t < 0, (49)

subject to the fuzzy boundary conditions ũ(0, t) = ũ(1, t) = 0 and the fuzzy initial condition

ũ(x, 0) = k̃e−x, 0 < x < 1 (50)

According to the r-cut approach, the double-parametric is defined as follows

k̃(r, β) = ((β(0.2− 0.2r)) + 0.1r− 0.1).

It is clear that the time-fractional derivative ∂α ũ(x,t)
∂tα and the second-order space deriva-

tive ∂2ũ(x,t)
∂x2 follow the (i) case of generalized differentiability defined in Definition 5. It

can be noted from [28] that the analytical solution of Equation (34), which is illustrated in
Figures 1 and 2, can be defined by

ũ(x, t, α; r, β) = ∑∞
n=0

2n tnα

Ґ(nα + 1)
k̃(r, β)e−x. (51)
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The fuzzy absolute error for the numerical solution of Equation (49) can be determined as[
Ẽ
]

r
=
∣∣∣Ũ(x, t; r, β)− ũ(x, t; r, β)

∣∣∣ = { [E]r = |U(x, t; r, β)− u(x, t; r, β)|[
E
]

r =
∣∣U(x, t; r, β)− u(x, t; r, β)

∣∣ (52)

At h = ∆x = 0.6 and ∆tα = 0.01, and based on the use of Wolfram Mathematica
software, we obtain the following numerical results:

Figures 1–4 and Tables 1 and 2 demonstrated that the fourth-order compact implicit
scheme and fourth-order compact explicit FTCS scheme have a good agreement with the
exact solution at x = 5.4, t = 0.005 and for all r, β ∈ [0, 1]. Additionally, the numerical
solutions to the proposed schemes take on the shape of a triangular fuzzy number, which
satisfies the fuzzy number properties of the double-parametric form of fuzzy numbers. The
fourth-order compact implicit scheme was more accurate than the fourth-order compact
explicit FTCS scheme. Furthermore, the double-parametric form was established to be
a general and efficient method for converting a fuzzy equation to a crisp equation, as it
reduces computational costs and produces more accurate results than the single-parametric
form. In Figure 3, we see that the numerical result for the proposed methods is the more
accurate solutions at points that are close to the inflection point (β = 0.5). The reason for
using a small time step (∆t = 0.001) is that the compact FTCS method is conditionally stable,
which means that choosing the value of (∆t and ∆x) must be under the stability conditions
for the compact FTCS method. However, the compact implicit scheme method handles this
problem since it is unconditionally stable (as shown in Section 8), which means that we can
use any value of ∆t and ∆x.
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Table 1. Numerical solution of Equation (49) followed by fourth-order compact FTCS and fourth-
order compact implicit scheme at x = 5.4 and t = 0.005 for all r, β ∈ [0, 1].

Fourth Order Compact FTCS Fourth Order Compact Implicit Scheme

β r ~
u (0.9,0.5;r,β) Ẽ (0.9,0.5;r,β)

~
u (0.9,0.5;r,β)

~
E (0.9,0.5;r,β)

Lower
Solution

When
β = 0

0 −0.0005217566 1.20685× 10−5 −0.0005274596 6.36552× 10−6

0.2 −0.0004174053 9.65483× 10−6 −0.0004219677 5.09242× 10−6

0.4 −0.0003130539 7.24112× 10−6 −0.0003164758 3.81931× 10−6

0.6 −0.0002087026 4.82742× 10−6 −0.0002109838 2.54621× 10−6

0.8 −0.0001043513 2.41371× 10−6 −0.0001054919 1.27310× 10−6

1 0 0 0 0

Upper
Solution

When
β = 1

0 0.0005217566 1.20685× 10−5 0.0005274596 6.36552× 10−6

0.2 0.0004174053 9.65483× 10−6 0.0004219677 5.09242× 10−6

0.4 0.0003130539 7.24112× 10−6 0.0003164758 3.81931× 10−6

0.6 0.0002087026 4.82742× 10−6 0.0002109838 2.54621× 10−6

0.8 0.0001043513 2.41371× 10−6 0.0001054919 1.27310× 10−6

1 0 0 0 0
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Table 2. Numerical solution of Equation (49) by using fourth-order compact FTCS and fourth-order
compact implicit scheme at x = 5.4 and t = 0.005 for all r, β ∈ [0, 1].

Fourth-Order Compact FTCS Fourth-Order Compact Implicit Scheme

β r ~
u (0.9,0.5;r,β) Ẽ (0.9,0.5;r,β)

~
u (0.9,0.5;r,β)

~
E (0.9,0.5;r,β)

β = 0.4

0 −0.0001043513 2.41371× 10−6 −0.0001054919 1.2731× 10−6

0.2 −0.0000834811 1.93097× 10−6 −0.0000843935 1.01848× 10−6

0.4 −0.0000626108 1.44822× 10−6 −0.0000632952 7.63863× 10−7

0.6 −0.0000417405 9.65483× 10−7 −0.0000421968 5.09242× 10−7

0.8 −0.0000208703 4.82742× 10−7 −0.0000210984 2.54621× 10−7

1 0 0 0 0

β = 0.6

0 0.0001043513 2.41371× 10−6 0.0001054919 1.2731× 10−6

0.2 0.0000834811 1.93097× 10−6 0.0000843935 1.01848× 10−6

0.4 0.0000626108 1.44822× 10−6 0.0000632952 7.63863× 10−7

0.6 0.0000417405 9.65483× 10−7 0.0000421968 5.09242× 10−7

0.8 0.0000208703 4.82742× 10−7 0.0000210984 2.54621× 10−7

1 0 0 0 0

Figure 5 and Tables 3 and 4 demonstrate that the second-order implicit scheme and the
fourth-order compact implicit scheme have a good agreement with the analytical solution
at x = 5.4, t = 0.005 and for all r, β ∈ [0, 1]. The fourth-order compact implicit scheme was
more accurate than the second-order classical implicit scheme and thus satisfies and agrees
with the theoretical aspects in Section 4.
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Table 3. Numerical solution of Equation (14) by using second-order implicit scheme and fourth-order
compact implicit scheme at x = 5.4 and t = 0.005 for all r, β ∈ [0, 1].

Second-Order Classical Implicit
Scheme Fourth-Order Compact Implicit Scheme

β r ~
u (5.4,0.5;r,β) Ẽ (5.4,0.5;r,β) ũ (5.4,0.5;r,β)

~
E (5.4,0.5;r,β)

Lower
Solution

When
β = 0

0 −0.0005055836 2.82415× 10−5 −0.0005274596 6.36552× 10−6

0.2 −0.0004044669 2.25932× 10−5 −0.0004219677 5.09242× 10−6

0.4 −0.0003033501 1.69449× 10−5 −0.0003164758 3.81931× 10−6

0.6 −0.0002022334 1.12966× 10−5 −0.0002109838 2.54621× 10−6

0.8 −0.0001011167 5.64831× 10−6 −0.0001054919 1.27310× 10−6

1 0 0 0 0

Upper
Solution

When
β = 1

0 0.0005055836 2.82415× 10−5 0.0005274596 6.36552× 10−6

0.2 0.0004044669 2.25932× 10−5 0.0004219677 5.09242× 10−6

0.4 0.0003033501 1.69449× 10−5 0.0003164758 3.81931× 10−6

0.6 0.0002022334 1.12966× 10−5 0.0002109838 2.54621× 10−6

0.8 0.0001011167 5.64831× 10−6 0.0001054919 1.27310× 10−6

1 0 0 0 0

Table 4. Numerical solution of Equation (14) by using second-order implicit scheme and fourth-order
compact implicit scheme at x = 5.4 and t = 0.005 for all r, β ∈ [0, 1].

Second-Order Classical Implicit
Scheme Fourth-Order Compact Implicit Scheme

β r ~
u (5.4,0.5;r,β)

~
E (5.4,0.5;r,β)

~
u (5.4,0.5;r,β)

~
E (5.4,0.5;r,β)

Lower
Solution

When
β = 0.4

0 −0.0001011167 5.64831× 10−5 −0.0001054919 1.2731× 10−6

0.2 −0.0000808933 4.51865× 10−5 −0.0000843935 1.01848× 10−6

0.4 −0.0000606700 3.38899× 10−5 −0.0000632952 7.63863× 10−7

0.6 −0.00004044669 2.25932× 10−6 −0.0000421968 5.09242× 10−7

0.8 −0.0000202233 1.12966× 10−6 −0.0000210984 2.54621× 10−7

1 0 0 0 0

Upper
Solution

When
β = 0.6

0 0.0001011167 5.64831× 10−5 0.0001054919 1.2731× 10−6

0.2 0.0000808933 4.51865× 10−5 0.0000843935 1.01848× 10−6

0.4 0.0000606700 3.38899× 10−5 0.0000632952 7.63863× 10−7

0.6 0.00004044669 2.25932× 10−6 0.0000421968 5.09242× 10−7

0.8 0.0000202233 1.12966× 10−6 0.0000210984 2.54621× 10−7

1 0 0 0 0

10. Conclusions

Two fourth-order compact finite difference methods for solving a fuzzy time-fractional
convection–diffusion equation were developed and implemented in our work. Based
on the approach of the double-parametric form of fuzzy number concepts combined
with the properties of the fractional derivative of Caputo sense, the considered equation
was transferred from the fuzzy domain to the crisp domain with more generalization.
The results obtained using the presented methods satisfy the properties of the fuzzy
numbers achieving a triangular shape. Furthermore, the stability analysis is illustrated,
following from the proof of the stability theorem of the presented schemes under the
double-parametric form of fuzzy numbers and has accuracy of order O

(
∆t2−α + ∆x4). A

comparison of numerical and exact solutions for the considered examples at various values
of the fuzzy level sets reveals that the fourth-order compact implicit scheme produces
slightly better results than the fourth-order compact FTCS scheme. The proposed methods
for solving the fuzzy time-fractional convection–diffusion equation were found to be
feasible, appropriate, and accurate, as demonstrated by a comparison of analytical and
numerical solutions at various fuzzy values.
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However, in this paper, the authors focused on the solution of fuzzy linear time-
fractional convection–diffusion by assuming the solutions are smooth. In future work,
the authors plan to discuss the solution of non-linear fuzzy time-fractional convection–
diffusion under the reasonable assumptions of the non-smooth solutions as discussed
in [31,32]. Furthermore, the authors plan to develop finite difference and finite elements
methods to solve the fuzzy linear and nonlinear fuzzy time-fractional convection–diffusion
under nonhomogeneous boundary conditions [33,34].
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28. İbiş, B.; Bayram, M. Approximate solution of time-fractional advection-dispersion equation via fractional variational iteration
method. Sci. World J. 2014, 2014, 769713. [CrossRef]

29. Ding, H.F.; Zhang, Y.X. Notes on Implicit finite difference approximation for time fractional diffusion equations [Comput. Math.
Appl. 56 (2008) 1138–1145]. Comput. Math. Appl. 2011, 61, 2924–2928. [CrossRef]

30. Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K. Stability and convergence of the difference methods for the space–time
fractional advection–diffusion equation. Appl. Math. Comput. 2007, 191, 12–20. [CrossRef]

31. Li, D.; Sun, W.; Wu, C. A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer.
Math. Theory Methods Appl. 2021, 14, 355–376.

32. Qin, H.; Li, D.; Zhang, Z. A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations. J. Sci.
Comput. 2021, 89, 65. [CrossRef]

33. Zhang, Z. Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems. Math. Comput. 2003,
72, 1147–1177. [CrossRef]

34. Allen, E.J.; Novosel, S.J.; Zhang, Z. Finite element and difference approximation of some linear stochastic partial differential
equations. Stoch. Int. J. Probab. Stoch. Process. 1998, 64, 117–142. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.na.2008.12.005
http://doi.org/10.1016/j.fss.2012.10.003
http://doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://doi.org/10.1007/BF02832039
http://doi.org/10.1155/2014/642989
http://www.ncbi.nlm.nih.gov/pubmed/24696040
http://doi.org/10.1140/epjp/s13360-022-03313-2
http://doi.org/10.1016/j.aej.2022.09.043
http://doi.org/10.1155/2022/2526951
http://doi.org/10.1155/2014/769713
http://doi.org/10.1016/j.camwa.2011.02.051
http://doi.org/10.1016/j.amc.2006.08.162
http://doi.org/10.1007/s10915-021-01672-z
http://doi.org/10.1090/S0025-5718-03-01486-8
http://doi.org/10.1080/17442509808834159

	Introduction 
	Preliminaries and Fundamental Definitions 
	High-Order Compact Finite Difference Method in Fuzzy Environment 
	Time Fractional Convection–Diffusion Equation in Fuzzy Environment 
	The Fuzzy Fourth-Order Compact Implicit Scheme Method for the Solution of FTFCDE 
	The Fuzzy Fourth-Order FTCS Method for the Solution of FTFCDE 
	The Truncation Error Analysis 
	Stability Analysis 
	Numerical Experiments 
	Conclusions 
	References

