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Abstract: A weak singularity in the solution of time-fractional differential equations can degrade the
accuracy of numerical methods when employing a uniform mesh, especially with schemes involving
the Caputo derivative (order «,), where time accuracy is of the order (2 — a) or (1 + «). To deal
with this problem, we present a second-order numerical scheme for nonlinear time—space fractional
reaction—diffusion equations. For spatial resolution, we employ a matrix transfer technique. Using
graded meshes in time, we improve the convergence rate of the algorithm. Furthermore, some sharp
error estimates that give an optimal second-order rate of convergence are presented and proven. We
discuss the stability properties of the numerical scheme and elaborate on several empirical examples
that corroborate our theoretical observations.

Keywords: predictor-corrector scheme; Caputo fractional derivative; nonlinear time-space fractional
equation; matrix transfer; graded meshes

1. Introduction

The last decade has witnessed tremendous developments in practical methods to
solve fractional differential equations. These problems are of particular importance because
they can provide a better model for understanding complex phenomena such as memory-
dependent processes [1-3], material properties [4], diffusion in media with memory [5,6],
groundwater modeling [7,8], and control theory [9]. Recently, many researchers have
adopted fractional-order models to predict and gain insight into the evolution of the
COVID-19 pandemic. This is possible due to the memory /hereditary properties inherent
in the fractional-order derivatives, cf. [10-14].

We study a nonlinear time-space fractional reaction—diffusion problem in the form

D8 i = —x(—8) u(x, 1) + g(u), in Q x (0,T),
u(x,0) = p(x), x€ QCR, @™
u(x,t)|aa =0

where Q) is bounded in R, Q) denotes the boundary of ), x is the diffusion coefficient,

(—A)g denotes the Laplacian of a fractional order , 1 < B < 2, and g(u) is a sufficiently
smooth function. The a-order Caputo derivative, 0 < a« <1, cDg,tu, in variable ¢, is adopted
here and defined as

cDgpu(x,t) =

1 t _aou(x,s)
71,(1_06)/0(1‘—5) o ds.
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The operator (—A)
B, 1 < pB < 2givenby

is taken here as the spectral Laplacian of a fractional order

NI

ad g
(=A)2u(x) = Y ciAf i)
k=1
where Ay and ¢ (x) are the eigenvalues and eigenfunctions of the Laplace operator —A on
Q), respectively, and ¢ are Fourier coefficients of u (in {¢y(x)}) (see [15]).

Several numerical methods for solving Problem (1) or some of its counterparts have
been developed and investigated by authors based on the uniform discretization of the
Caputo derivative (see, for example, [16-23]). In most cases, the derived schemes were
either (2 — &) or (1 + &) accurate in time. This somewhat reduced order of convergence is
to be expected due to a singular kernel (t —s) ~* embedded in the time derivative. This, in
turn, has motivated the research question of how to improve the order beyond (2 — «) and
(14 a). The natural choice is to use nonuniform time meshes.

Brunner [24] made use of meshes that are graded in order to improve the accuracy of
the approximation to a Volterra integral equation of the second kind with a weakly singular
kernel employing collocation methods. Zhang et al. [25] developed a numerical method for
a linear counterpart of (1) based on the nonuniform discretization of the Caputo derivative
and the compact difference method for spatial discretization. Their theoretical analysis
and numerical examples showed the efficiency of their methods. Lyu and Vong [26] pro-
posed a high-order method to resolve a time-fractional Benjamin-Bona—Mahony equation
over a nonuniform temporal mesh. Stynes et al. [27] investigated the stability and error
analysis of a finite difference scheme using a uniform mesh and meshes graded in time.
Liao et al. [28] investigated the convergence and stability of an L; technique to solve
linear reaction-subdiffusion equations with the Caputo derivative. Kopteva [29] discussed
the error analysis of the L; method for a fractional-order parabolic problem in two and
three dimensions using both uniform and graded meshes. Wang and Zhou [30] proved
the convergence of the corrected k-step backward difference formula without imposing
further regularity assumptions on the solution of the semilinear subdiffusion equation.
Mustapha [31] developed an L; scheme for subdiffusion equations with Riemann-Liouville
time-fractional derivatives on nonuniform time intervals. He used the regularity of the solu-
tion and the properties of the nonuniform mesh to obtain a second-order accurate scheme.

In this present study, we propose a predictor-corrector numerical scheme for solving
(1) based on time-graded meshes. The scheme is similar to the one given in [18]. We then
explore the regularity properties of the solution and some of the properties of the meshes
to derive a scheme that is second-order accurate in time.

The remaining sections are organized as follows. Section 2 briefly discusses the spatial
discretization method, and thereafter we derive the time-stepping scheme for the solution
of (3). In Section 3, we discuss the error analysis and stability of the scheme. In Section 4,
we give some numerical examples to illustrate the convergence of the scheme. Finally,
in Section 5 there are concluding remarks.

2. Numerical Scheme
2.1. Matrix Transfer Technique for Spatial Discretizations

Let M be given and we denote by x;, for 0 < j < M, a 1D uniform grid point of size h.

It was shown in [32] that
B B
2

(=8)2u(x) = Azu(x) )
where
2 -1 0 0 0 u(x1)
e B S 0 u(x2)
A:h—2 , u(x) = : ,
o 0 0 a2 ulin-2)
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then, the error in (2) is of order 2. This approximation can be thought of as transferring the

B
matrix approximation of —A to approximate (—A) 2. Applying this technique to (1), we
obtain a system of nonlinear time-fractional differential equations in the form

B
Dgu+ A2u=g(u),

u(0) = ug,

®)

where u and g(u) are the vectors that denote the nodal values of u and g, respectively,
and we have chosen x = 1, without any loss of generality. In addition, we write u and g(u)
instead of u and g(u) to denote the vectors of the node values. Consequently, the major
concern of this paper is the accurate time discretization of Problem (3).

2.2. Time Discretizations

In this section, the second-order time-stepping scheme over time-graded meshes is
considered for solving the semi-discrete problem (3). Furthermore, the stability results
are developed. We use the time-graded mesh having subintervals I,, = [ty t,11], n =
0,---,N—1,with0 =ty < --- < ty = T. This has the following grid points:

T/ 7
ty=(n1)’, 0<n <N, fory>1, with 7= -
Let 7, = t,41 — t, denote the stepsize of the n-th subinterval I,. The following
properties (see [24,33]) hold forn > 1,

tn+1 < 2,yti’l/ (4)
1-1 1-1

A VT < g, < 'yTthM, (5)

T —Tyo1 < C,m*min{l, t}lﬁm} (6)

T < Tmax < YT/N. (7)

where
Tmax = mMax T
1<j<n—-1

We note that Equation (3) can be reformulated in the form of the Volterra integral equation

U S LN VY
u(t) — ug r(“)/o(t (= Aku(s) + g(u(s)) ) ds o
= 0Ly g(u(t)) — A2 oZj u(t),
where
WL w(t) = I’(loc) /at(t — )" Lw(s)ds,

T g(w(t)) = r(l) / (= s (w(s)) ds.

Now, let u, := u(t,) and g(uy) := g(u(t,)). Estimating t = t, and t,,,1, we obtain the
difference in successive terms as
B
u(twen) = (te) = [oZ8,, 8ty 1) — oT8, g(1,)| = A% [oZ8 u(tnsr) — 0T ulta)|

B
= tnIa g(unJrl) — Az tnI;X u(tn+l) =+ Qz,u + Q(;L,gr

tht1 n+1

where ;
1e1,u =—A2 OI;‘X,, [u(tn-‘rl) - u(tn)] )
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Qn,g - OItn [g(unJrl) g(un)] (10)
That is,
1 B tn+1 1 tn+1
tpe1) —ulty) = —— A2 tyy1 —8)" tu(s)d —/ tyy1 — )" d
(tns1) = u(t) A L =) ) ds & g [ (i =9 gl ds
+H;, (11)
where
HZ = fz,u + sz,g'
If we replace u(s) and g(u) with linear interpolants over the interval I,,, that is,
u(s) = up + (s — tn)M, S € [tn, tur1),
Tn
e (ty1) ~ 8(1,)
8 1) — &\
gu(s)) ~ ) + (s — ) St 8L,
We obtain
—ath T p Ty .
—u, = n__ [ E— . (12
uﬂ+1 Up 1—.(“+2)A Uy — F(DC+2)A M?Z+1+I-(D(+2)g7l+ n ( )

At a glance, we see that (12) is an implicit scheme. In order to reduce the computation
burden, we thus go back to (11) and approximate the nonlinear function, g(u), on the
interval [t,, t,41] by a constant polynomial to obtain the following predictor—corrector

scheme after some simplifications:

(I’(ac+2)]I+T“A2> b, = [(Iﬂ(szrZ)Hf(xT,ﬂ‘Ag)un+T,‘f(uc+1)g(un) + T (w+ 2)H

(F(oc+2)]1+rﬁ,‘A§)un+1 = [(F(a—l—Z)H—aTﬁ‘A%)un+Tﬁf(u¢g(u )+ g(u n+1)) +1"(oc—|—2)qu}.

where I is the identity matrix.

(13)

Using linear approximations for both u(t) and g(u(t)) in Equations (9) and (10),

the history term H¢, is approximated as

~H? = Za1n<—A§uj+g(uj)),

where

1+a 14w

—1 o
i (—Tn+1’0(rn+1,1 —aT) + T, 11 T Tu1Tho — 0T, — T

-1 1+a 1+a¢ l+zx 1+a
ij1(Tn+1,j 17 Tnj 1) +T <n+l]+1 Tn,j+1)
-1
Qg =—-———d =T (T T T T
jin r(a+2) n+1,j\ tj—1 n+1j-1 X j o tntLj+l
-1 —
+T,‘f,]' (Tj_lTn,j—l + T] Tn,j+1>/

R T )

-1 1+a x
T 1 (Tn+1,n_1 — Tit1,n-1Ty T

Tnj = ty — t]'.

3. Error and Stability Analysis

1§]§7/l—1,

(14)

Here, we carry out the error analysis and discuss the stability property of the proposed

scheme (13). For the error analysis, it is assumed that u, the solution to (1), satisfies
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llu(t)]]1 <M and |[ulD(£)]|; < METT*/27E 1 =1,2,3, (15)

with the regularity parameter ¢ € (0,1) to be determined from the error analysis. This is
in line with the published results [27,30,31,33,34]. The constant M is positive, t denotes
the partial derivative of an appropriate order of u with respect to t, and || - ||, is the
Sobolev norm on H!(Q). Of course, this reduces to the L, norm whenever ¢ = 0. The
stability analysis of this article considers the initial data perturbations, i.e., the sensitivity
of the numerical solutions to the small changes in the initial data. Function g(u) and its
derivatives with respect to u, g(") (1) for r = 1,2, are assumed to be Lipschitz in the time
domain Q) x [0, T].

3.1. Error Analysis

Lemma 1. Given any positive sequence {a;} and for oy > 1, we have

3
] L] 1n Lj,?’l—i—l

< Ctty Mmax( 72),
T =

a]]

Z“J
=2

where

. 1 tj+1 -1
= o / (s =) (tjs1 =) (tn —s)*" ds.
Proof. Cf. [31]. O

Lemma2. For1 <n <N,y > and T is sufficiently small,

2
c+a/2+1

< CTZtZJrStx/ZfZ/'Y,

1 rf /:H] [(thrl - S)‘X_l - (tn - 5)“_1} El’u(S) ds

Mo & 1
where
s s—ti) rt
E1,(s) = 1/ (w — s)2u" (w)dw — W/]+1(w— t)*u"” (w)dw.
2 Ji 2T Jy
Proof. Let
1 n—1 tin . .
I = WE, /t [ =51 = (= 5) | Eva(s) ds

Z /]+1 boyq —8) 1 — (tn*S)a_l}El,u(s) ds

e
< 2
~ I'(a

1

1 .t

j+1 _
[ =5 B ®) .
j=0 7t

~—

Forn=1,s € (t(), tl)

1 s s [h
IE@lh <5 [ <w—s>2||u'"<w>\|ldw+t—/ w?|u" (@) | do

< M/ w2w0+7_3+ / ww’ 23 dw

2t1
< Cmax{s’*2, stg+2 h.
Noting that

s
th —s = rﬂ(tl — n77> >n"(t; —s),
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we obtain

5] 51 o & _
/0 (tn—s)"‘_1||E1,u(s)||1dsSCn'Y(“_l)/O (t — )" T max{s7%, 5772} ds

Tl—Dé

< a—1
< Cty Nv(1-a)

t a_
/ (t‘l—s)"‘_lmax{s‘ﬂr%,st“lﬂ—2 1}ds
0

ty a a_q
< Ctﬁ_l"ﬂ(l_"‘)/ (t1 —s)* 1 Jrnax{s‘”r?,st(lﬂr2 }ds
0

1_y(1-a) 0+ % 1.2 oH§—3+1
< Culpr T opr1p2f T2
o+3-2 2
<Ct’, * 7, fory> —F .
=~ T lrr iy

Lets € (t]-, tj+1), j>landn >2,

2

| @g{/i( — )% 1| Equ(s) Ihd&+21/ﬁ _SalHau(”h%}.

Fors € (tj,tjy1)andj > 1

1 /s (s —t;) [tim
HEl,u<s>H1:§/(w—s>2||u“'<w>||1dw+ e | @ Pl @)l dw
i ] j
<C / /// H dw

3,3-3/v o+a/2-3
<Ct t].Jrl S .

Therefore,

]+1

1 o
75 tx 1||E1u( ||1dS < CT3 Z t;’)+13/7/ j+ t, S)a—lsa+§—3ds

< C'L'?’t%%/'y/ (ty —s)* 1s7+23 s
f
3

<C3t v,

Hence, the following bound is obtained
2 o+ 370( Ty
Hh,quSCT tn ;Y >

O

Lemma 3. Assume 1 < n < N and let T be sufficiently small,

n—1

2 u”(t]-) (Lj,n _ Lj,n+1)

j=0

o2
<ct T,

1

2 2
holds if y > , .
fr max{a+§+1 g+32"<_3}

Proof. We begin by letting
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Ly = i [L]n Lj,n—&-l}

n—1 . n—1 3
= = X0 [0 (tj0) = ()] D" " (1) [LO" = L2741 = Yo ﬁ1<_l>u
T

j=1 =1 j
T3 , 3
+ Z [j=im _ il ul/(tl)Ll,n+1 + u”(tn) 371 [r—1n
ijl Ti—1

:—’11—772+773—774,

where
n—1 )
no= Y [ (k1) —u" ()L,

=1

3

T

j+1 in

u L 1 |D",

2 ”l<ﬁ )

3
j—in _ pjmtl
(= ’

B

3
T _
q4::uH(hg[Lan+l__Lan]+_u~(h)LLn+l__u"<u04§ﬂan L

Tn—l

For 171, we have

nl b bt
Il < Y w [ @)l dw [ (b —s)* s
j=1 j j
j+1

1
<C Z = 240+a/2— Z/t.]+ (tn o S)afl ds
]

tn
< Ct? / (b — )% 17 T8/272/7 g

Iy
o+3-2 . 2
<Ct’, > 7, holdsify> TTIIT
2
Noting that
3 3 3
T ™ . — T
j+1 _ -1 1,1-2/y
= _TSCTj (]+1—T)<C’L'T t]+2 .
] ]
Therefore,

t:
—141-2 j+1 —
Hmm<cﬁzrlﬁ/mwwmmﬁ[ (1 —5)* " ds

j

t.
1 2/ j+1 _
<ct? 2 Ttiso lu"( tiv1) /t (b — )" ds

]

3\ J1-1/7,1-2/7,04a/2-2 ['1H! a1
<Cr Z tin Tt Tt /t (th —s)* 'ds
]: ]

1/.1-2/ fn 2-1/9-1 -1
<ct r]r1ax(t]+2 7) /fl e (P L

1/71-2/9\ ,0+3a/2-1/7-1
<ctl I}lax(tﬁz )tn .
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Next, we bound 773 using Lemma 1.

3
iLj—lfn — [jmt1
3
j—1
< Crty M7 shax (17+4/2722)
- i— ] ]
j=2

n—1
o+u/2-2
Il < E

_ -1 _
< Cr3tﬁ+2 3/71'{1a2><(t}7+"‘/2 2).
]:

To estimate ||74]|1, we begin with the bound

o )2 = 207 = || g o) s =9t =901 = (1 =) s

1
t
<O [ (k=9I (to) 1 s
0

tTl
< CTZ/ sTTH/ 272/ (1, — 5)¥ 1 s
0

S CTZtZ+3“/2*2/’Y‘

In addition,

5]
" (e L |y < CRIT2 [ 140 —5) s
1

)
< CT2/ Sa+a/2—2/7(tn _ S)a—l ds
ty

Hence, we obtain

Tg " n—1n Tg " fn a—1
s (b)) L | S C= [ ()]l [ (B — )" ds
T Tn—1 t
n—1 1 n n—1
t
2,3 JA/y-1,04+a/2-2-3/ n -1
< Ctty 41,y W/t 1(tn —s)* lds
tn
<Ct*t ., /t R e
n—1
2,0+3a/2-2/v-3,3
< Ctty i1
< C72t7+3a/2*2/7, for v > =
= n+1 Ty +3a/2-3
Thus, for v > 2 we obtain
HOTY > +3a/2-3"
2,0+3a/2-2/
llnallr < CTot, 17 I

Combining all the bounds, we finally obtain

l1 <l + 2l + 3l + sl la

2,0+30/2-2/y 3,04+30/2-1/y—1 n=1 ( 1-2/
< Ctt, + Ct°ty r?:alf<<tj+l )

‘ ‘ 12,14

+ O fhax (t‘.’ e/ 2*2)
=2 \J

B 2 2
<C 2t¢7+3tx/2 2/7, f , ,
= CT oY > M\ G a2+ 1 o+ 3a/2-3
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with 0 4 3a/2 > 3 and 7 is sufficiently small. [J

2 2
Lemma4. For1 < n < N,y > max{a+ac/2+1'a+3rx/2—3} and for a sufficiently

small T, the following error bound arises

+3a/2-2/
1Qfu — QG ull < CTP 77

7

where Qf, ,, is given by (9) and

with » 0
i(s) = uj+ (s — tj) L—

Proof. We begin the proof by observing that
1 & rhin 1 1 .
=% = T 2 /tj [ = 81 = (= 5)* ] (w— ) (s) s,
Now, u(s) —ii(s) = Ey,(s) + Ezu(s), where

(s — tj) ti1 5
Evu(s / $)2u” (w)dw — / (w0 — £;)2u" (w)dw
"2 25 Jy

and 1
Eyu(s) = 5(5 - tj)(s - tj+1)u”(tj)-

Then,
HQZ,u - Z,u”l >

To complete the proof, we use the results in Lemmas 2 and 3. O

Lemma 5. Let g(r)(u) be Lipschitz in u forr = 0,1,2. Then, for1 <n < N,

2 2
T max{a+1x/2+1'a+3zx/23
we have

} with 0 4+ 3a/2 > 3 and for a sufficiently small T,

3a/2-2
15, — QI < CT2ET30/272/,

where Qf, . is given by (10) and

L =9 = = o)

]

with
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8(u(s)) — &a(u(s)) = Erg(s) + Eag(s) + Eag(s),

Hutir) — ”(tj))] §'(u(t))

Eals) = 5| (u(s) —u(t)* = - ;jtf (ultjsr) - u<t]->>2] g (u(t))
Eas) = 3 [ uts) =t (o)) ) = 22 [ ) — ) P ) )

Thus, we have

Erg(s)ll1 < (u(s) = a(s))IIg' (u(tj)l1 < Mlfu(s) —i(s)[[x

and
E 1 2 S*t] 2 //
[Eaglls < 5| | (uls) —u(t)” - T (ultizr) —u(t)"|| lg" (u(t)lh
1
s —t;
Smax{iws)u(t»h, . ’||u<t]-+1>u(t»nl}uu(s)a<s>||1||g"<u<t]->>|1
]
j+1
<ma><{/ o ()]s d, —/ 4/ ||1dw}||u<> 7(s) allg” (51
< M2 [u(s) — ai(s) |
2-1 _
< Mtf 2T us) — a(s)| .
Moreover,
u(s) s—1t; u(tjt1) 2
[|Esg(s)|[1 < My / (u(s) — u(w))? du(w)|| + M, 5 ‘] / (u(w) — u(t)))” du(w)
u(t;) 1 Tj u(t;) .
<M (S t])3 30+3a/2— 3+ ,t]T3t?-i-1i_3a/2 3/71
\3.30430/2-3 S Tt _3.30+30/2-3/
SCmax{(s—t])s‘T * ,Tjr E }
Therefore,
11Qhe — Quellt < [hgllh + gl + | I3gll (16)

where the terms in the RHS are estimated as

1 = ortin _ -
gl < gy & [ =) = (=)l Eng (o)l ds
j=0 7t

< 2,04+3a/2-2/
<Ctt, , for v > max c+a/2+1" c+3a/2-3]"
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| |12,g

1 "=l rtia _ .
i & [t =9 = =9 [ Eaglh s
=

n—1 _ th B B ~
<t L H A [T (i =90 = (0 =) u(s) = (5) 1 s
j=0

j

n—1 ,t. 1
< o+a/2-1/y /’Jr _ a1 _ _ a1 iy
< Ctty Eﬁ, ; {(fnﬂ s) (th —s) }H“(S) i(s)||1 ds, fory > v ra/2

< Cth—&-a/Z—l/7T2t2+3a/2—2/7/

_ 1 2 2
—-C 3t2¢7+21x 3/7’ f ) )
o oY > M\ G a2 vt a/2 1 o1 3a/2 -3
and
laglh < 1 = 5)5 7 Esglh ds
e e \3.30+30/2-3 S T b 330+430/2-3/7
<CZ/ max{(s—t])s T T

n—1 .
+1
< c3 Z /7 (tn B S)tx—ls30+3tx/2—3/'y ds
j=0 7t
< CPBPTHN2-3/
< n .

The proof is completed using the estimates for || I ¢
where for a sufficiently small T, the 7> terms are assumed to be negligible. [

|1/ [T2,¢|[1and [|I3,¢[[1 in Equation (16),

Lemma 6. Assume the conditions given in Lemma 5. Then, for a sufficiently small T, the error

bound ) ,
n+1 _ 5 1/
Hr(w/t (a1 =) (8(w) — 1) () ds|| < Coty 377
holds uniformly on [ty, t,41].
Proof. Noting that
u(s
g(u(s)) = &1(u(tn)) = (u(s) — u(tn))g (u(tn) +/ (w))g" (u(w))du(w)
and
) = u(t)ll = I [ ol () diolly < (s = )52,
we have
1 tn+1 a1 B
Fag o (=) 7 ) ~ a0 @) ds|| < Mgl +1Eg
t 1
where

g, |1 </ bt —8)*[u(s) — u(tu)l[1]1g" (u(ta)) |11 ds
< C/ Hl(tnﬂ —5)% (s — t,)s7 /271 ds

< Cthz+11/'Y / (tn+1 _ S)a—ls(7+v</2—1 ds
Jt,

< otV
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Furthermore,

1 b1
ool < g [ b =9 [ us) = )" Cut)) ) s
<C / tus1 — S (X 1(5 _ tn)252tr+zx—2 ds

trg1
< CT,%/t (tn+1 _ S)ucflSZtTJrleZ ds
n

2,20+2x— 2/7
<Ct 1

We complete the proof using the bounds for ||I1 4|1 and || Ipg, |[1. O

Lemma 7. Assume the conditions of Lemma 5. Then, T is sufficiently small and we have the
estimate

< Cpotnia2ly

1
n+1

W /t:n+1(tn+1 — S)a_l(g(u) _ gz(u))(s) s

1

for

2 2
L max{(7+tx/2+1’(7+3¢x/2—3}
with o +3a/2 > 3.
Proof. The proof follows from Lemma 5 and is omitted. [
Theorem 1. Assume the conditions in Lemmas 4—7. Then, the error bounds
fub o —u(tys)|t <Ct  and  ||uyiq — ultyi1)|h < CT2

hold uniformly on 0 < t, < T, for a sufficiently small T, where u, u? are the solutions obtained
from the predictor and corrector schemes in (13).

Proof. Noting that A7 is symmetric, positive definite, and using the error bounds obtained
in Lemmas 4-7, we obtain

Hu(tnﬂ) - quH < u(ty) — un|] + H(la)A‘é /t:n+1(tn+l ) (s) ds

1

n+1 _ -
H (b1 =9 (800 = 10)(5) 5| | + 115~ @l
+H@ ng\
< (Ju(tn) — ]| + CTHLT 22T L gt/
< J[u(tn) — n|| + Ct Lo
Similarly,
2,0+3a/2— 2/7

[u(tns) — wpgal| < |utn) — unl| + CT24, 1
The proof is completed through mathematical induction. O

3.2. Stability Analysis

Definition 1. The scheme given by (13) is said to be stable if there is K > 0, independent of T and
n, so that
||un_uAnH§K||u0—uA0||, }’l:l/z/.../M.
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where uy, and 1y, satisfy (13) with the initial data ugy and .

Lemma 8. If 0 < a < 1 and tj = (oY, j=01,...,n,vy > land T = %/’Y Then, the
following estimate holds

Z(tap1 — o), j=0,

jn < Ko %(tnﬂ —t)% 1<j<n-1,
Tfléfl’ J=n

where

B a+1 2(a+1) g
K“_max{l"(zx—f—Z)'l”(ac—i—Z)'z a+15.

Proof. For j = 0, we have
TOF(DC +2)a0,n = (tn+1 — i’l)a-H — (i’n — i’1)a+l + (tn — to)a[(tn — (IX + 1)i’1]

= (tus1 — 1) [(tns1 — (2 + 1)tq]
< (tugr = 0)*F = (b — 1)
With ¢ € (ty, t,+1) and using the MVT, we have
ol (¢ +2)agn < (x+ 1)1 (5 — 11)"
which implies
Agn < F(Z);J;lz)) (tnt1 —t1)"

For1<j<n-1,
1
[(a+2)aj, = i[(tn+l — 4 )" = (b — ) (b — 1) (b — £1)

1
= (b = )" (b1 =t = D]+ (b1 = £52)" 7 = (b — £52)"
]

+ (tn — )" (tn — tjy1) — (a1 — )" (tus1 — tj31)]

< — ) [(tng1 — 151'71)%rl — (tn — t]el)'Hl + (tng1 — tj+l)a+1 — (tn — tj41)"].
Ti_

Again, applying the MVT, we have

2(0(+1) Tn
= AL PR S T
ﬂ],n = F(DC-FZ) _L,j_l(n-i-l Ji 1)

Forj=mn,

TyaT( + 2)ann = (Tw + Tu1)* T = T — 710 + (& + 1) Tp1]

T:x+1[ (‘X + 1) (Tn—l )171)( + (“ - 1)“(“ + 1) (Tn—l )2706 + ..

I Y Ty 3! Ty —1]
ala+1)  (a—1)a(a+1)
S 3] o]

= (2" —q —2)7"],
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where we have used the generalized binomial theorem to arrive at the last inequality and
the fact that 7; is non-decreasing.
Therefore, an, < Ky7,;_1. O

Lemma9. Assume that 0 < o < 1 and
Tl’l « .
aj,n - Kﬂ%(tl’l-‘rl - tj,l) 7 (] = 1/2/' e, n—= 1)/
Ti—1
and -
Ao = Kal(tn+1 - tl)“
T
for tj = (jr)7,j=0,1,...,n, n=1,2,...,M. Let 8o be a positive number and assume the
sequence {1;} satisfies
Yo < 8o

n—1
¥ <Y ;i + Cogy,
=0

Then,
lpi’l < COg()/ n= 172/' o /M*
Proof. The proof uses a modification of that of [35] (Lemma 3.3). O

Theorem 2. Suppose that u; (j =1,2,---,N) (3) due to Scheme (13) and where g(u) is Lipschitz
in Q) x (0, T] (with respect to u). Then, (13) is stable.

Proof. We start by considering a history-term perturbation in the form

~d n—1 B ~ B~ ~
H, =), aj,n(—A2”j+g(”j+“j) _g(”j)) +‘1n,n<—A2”n +g(u,, + un) _‘o’(“n))-
=0

By using the positive definiteness of Az, the fact that g(u) is Lipschitz continuous,
and Lemma 8, we obtain

~a n—1
[H, | < K[ Y aj

Iuj||+T£‘||un||>-
j=0

Here, K is assumed to be a positive constant. The perturbation of Equation (13) works
out to be

~p VA w A B\~ N ~
i :(F(a+2)]I+TnA2) (r(a+z)u—mnAz)un+rn(a+1)(g(un+un)—g(un))}

g\ L ~a
+ (F(oc +2)1+ T,”}A?) T(a+ Z)Hn],

~ -1 ~ ~
it = (Tl@+2)I+ TgAg) (ra+2)1- sz,ﬁ‘Ag) i+ Tha(g (1, + 1) — g(1,))],
~a

A ~p
+(F(a +2)I+ T;';Az) T (g(ub y + upy1) —g(ub 1)) +T(a +2)Hn].

By the positive definiteness of Ag, it follows that 0 < C < 1, where

c= H (T +2)1+ T;'fA§> - (T +2)1- m;;‘Ag) H



Fractal Fract. 2023, 7, 40 15 of 20

Therefore,

~p ~ ~ ~ _
[ty 11]] < Cllunll + K (Téﬁax\lunII + Thaxl [1n ]| + Z720 2

),
~ ~ ~ ~p ~ _ ~
[t Il < C 1fabll + Ko (i (]| 4 it 1) + T hll + 2223 w3511,

where C, Ky, K5 are constants, with Tax = max{Tj}LO. We show the remaining part by
employing induction. For n = 0 and a sufficiently small Tmay, it follows that

~p ~ ~ ~
[lua[] < [luol| and |[us[ < [Juoll.

Suppose that
fujll < [luoll, j=1,2,---,n.

We consider j = n + 1, for ZZH, that is,

~p ~ ~ ~ n-1 ~
[t gal] < Clluall + K (T&axllunll + Tonax 1| + 1 ﬂj,nlluj|>
j=0

n—1

< Collun|| + K1 Y_ aj
=0

]
< [fuoll,

where 0 < Cyp = C + 2K Thax < 1 for a sufficiently small Tmax, where Lemma 9 has

been used.
We have
|uj] |>

-~ - -~ ~p - n—1
[[tna]] < Cllunl[ + K (Tféux(IIMnII + [ sl]) + Tonas |l + )
j=0

n—1
< Cy [|unl |+ Kz Y aj | ujl|
=0

< [luoll,
where 0 < C; = C + 3Ky15 .« < 1. This completes the proof. O

4. Numerical Illustrations

Here, we corroborate the analysis through the empirical study of the convergence rate
for different test problems. For the examples that we consider in this section, the conver-
gence rate (CR) is given by

CR = log, (Error% / Error,, ) ,

where

Errory = ||u,, —u

M
2

and u,, is the vector of the solution with M mesh points. The numerical examples are the
same as those given in Biala and Khaliq [18] and the results for y = 1 can be found there.

Example 1. We consider

N

(Dgu = —(—A)2u+g(u), te(0,1], xe0,1]

p(x) = x2(1 - x)2
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As the initial data ¢(x) € C®(Q) N H(QY), the regularity property in (15) holds true for

any o € Iy = (0, %) Consider the problem g(u) = 0, whose solution can be seen to be

o _ 1’127'[2 _ _1\n
u(x,t)zz4( 12+ 715)7551+( ")

n=1

Ex(—(nm)Pt*) sin(nmx),

Here, E, is the one-parameter Mittag—Leffler function. Tables 1 and 2 show the error
and the convergence rates when g(u) = 0 and g(u) = u?, respectively, using the L, norm.
We used a small step size of dx = 0.001 so that the error in time is dominant. By Theorem 1,
we expect to have O(7?) convergence for

2 2 8 8
(g max(a+a/2—|—1'a+3a/2—3) —max<3a T4 70 —12)'

In fact, the second term in the maximum function is not necessary since 0 < a < 1.

8
3a- +4'
we show the results for only two values of ¢ (one that is slightly greater than ﬁ
and another that is slightly lower) to validate our theoretical order of convergence. We

In order not to pepper the text with so many tables with different values of v >

the O(73/2+€) for some € € (0,1/2) is achieved. However,

observe that with ¢y = 3215

the O(7?) is obtained, which corroborates our theoretical analysis. These

for vy = 8 ,
3a+3
observations are further depicted in Figures 1 and 2, where we fit a linear line for the
logarithm (base 10) of M~! and the corresponding errors. The values of the slope in these
figures that depict the rates of convergence for different values of « and -y further support

our theoretical observations.

_ __8 y = = _8
a=04 v=5>= a=04 7=373
3 -3.5
slope = 1.769 slope = 2.064
35 4l
- 45}
g 4 s
i) iy
> o -5
o o
—-4.5 -
-5.5
-5
-6
-5.5
. . . . . . -6.5 . . . . . .
26 -24 -22 -2 -1.8 -16 -14 -1.2 -1 26 -24 -22 -2 -1.8 -16 -14 -12 -1
log(1/M) log(1/M)
_ _ 8 _ __8
a=08 v=55 a=08 v=373
3 -3
slope = 1.929 slope = 2.015
35 35
-4+
-4
g g 4.5
i 5 -4
5 -4.5 k=
o K}
-5
-5
-5.5
-5.5
-6
26 -24 -22 -2 -1.8 -16 -14 -12 -1 26 -24 -22 -2 -1.8 -16 -14 -12 -1
log(1/M) log(1/M)

Figure 1. Log-log error plots for Example 1 with g(u) = 0, showing the rate of convergence of
the scheme.
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_ _ 8 _ _ 8
a=03 7=g53 a=03 7=
-3
slope = 1.809 4 slope = 2.299
-3.5
-4.5
-4
= - -5
< [
S, &
B4 855
5 -6r
-6.5
-5.5
26 -24 -22 -2 -18 -16 -14 -12 -1 26 -24 -22 -2 -1.8 -16 -14 -1.2 -1
log(1/M) log(1/M)
_ _ 8 _ _ 8
a=07 v=3575 a=07 v=375
-3.5
35 slope = 1.865 slope = 2.001
-4
-4
-4.5
S S
t-45 £
w w
5 3 5
k] o
-5
-5.5
-5.5
-6
-6 L L L L L L L -6.5 L L L L L L L L
26 -24 -22 -2 -18 -16 -14 -12 -1 26 -24 -22 -2 -18 -16 -14 -1.2 -1
log(1/M) log(1/M)

Figure 2. Log -log error plots for Example 1 with g(u) = u?, showing the rate of convergence of
the scheme.

Table 1. g(u) = 0 with p =1.2.

a=04 a = 0.8
= 3ai5 = 3a8+3 r= 3«15 r= 3«13
M Error CR Error CR Error CR Error CR
10 1.324 x 1073 4925 x 10~* 1.094 x 1073 9.290 x 10~*

20 3884x107%* 17690 1214x10"* 20201 2.896x10"* 19167 2.340x10"* 1.9891
40  1.143x107% 1.7648 2990 x10~° 20217 7.657x107° 19194 5.854x107°  1.9989
80 3367 x107° 17629 7.328x10°¢ 20287 2021x1075 19216 1459 x107>  2.0046
160 9.889x107° 1.7677 1.751x107°® 20656 5300x 107 19311 3.599 x 10~°®  2.0193
320 2.859x107® 1.7901 3.707 x 1077 22394 1.354x107° 19684 8518x10~7  2.0792

Table 2. g(u) = u? with g = 1.6.

a=10.3 a =07
_ 8 _ 8 _ 8 _ 8
Y= 3at5 7= 3at3 7= 3a+5 7= 3at3
M Error CR Error CR Error CR Error CR
10 9.400 x 10~* 2.356 x 10~* 6.739 x 10~* 3.985 x 1074

20 2804x10"*% 17450 5.495x107° 21002 1.854x10"* 1.8621 1.009 x 10~*  1.9823
40 8348x 1075 17482 1259x 107> 21258 5.089x 1075 1.8649 2523x10°°  1.9991
80 2454x107° 17664 2655x107° 22456 1398 x 1075 1.8638 6.285x10°°  2.0051
160 6914x107° 18276 3.816x107 2798 3.839x10°° 18646 1.564x10°°  2.0071
320 1.709x10°¢ 20161 9.071x10°8 20728 1.052x10°® 18676 3.885x10°7  2.0090

Example 2. Let us consider a two-dimensional time—space reaction—diffusion problem of frac-
tional order

D= —(—A) u+g(u), te (0,1, (xy) € [0,1]x[0,1]

u(x,y,0) = xy(1—x)(1-y)
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with a Dirichlet homogeneous boundary condition. We first solve the problem when g(u) = 0. The
solution in this case is given in Yang et al. [36], by

() () ﬁ
u(x,y,t) =Y Y Eu (—/\,%/mt”‘) cnmPnm (X, ).

n=1m=1
A = (n2 + mz)nz,

Gnm(x,y) = 2sin(nmx) sin(nmy),
c :/1/luv(1—u)(1—v)¢ (u,v) dudo
n,m o Jo nm\U, .

A space-step size of dx = 0.008 (for CPU memory constraints) is used in this problem.
Similar to the 1D problem, the results here (see Tables 3 and 4) show that the O(7?) order

. Figure 3 shows the exact and numerical

. . 8
of convergence is achieved when ¢ > 314

solutions with p = 1.4 and & = 0.2.

-3
x108 %10
7 7
6 6
5 5
4 4
3 3
2 2
1 1
N 0
[N i R >l 7
Uity 3 i /]
i ! g TR gt gl
i 3 o
e Wy i os g A 0.8
g U - Ui S
i 0.6 0.4 it Sy 0.6
0.4 4 - - @ 04
0.4 g
g 0.2

Figure 3. Plots of exact (left) and numerical solutions (right) with p = 1.4 and &« = 0.2.

Table 3. g(u) = O with p = 1.4.

x = 0.2 o= 0.6
_ 8 _ 8 _ 8 _ 8
V= 3a+5 7= 3at3 7= 3a+5 7= 3at3
M Error CR Error CR Error CR Error CR
10 1369 x 1072 3.031 x 1073 1.316 x 1072 6.117 x 1073

20 4.178x1073 17126 6349 x107* 22554 3441 x1073 19352 1.368 x 1073  2.1609
40  1270x1073 17176 1299 x 107* 22886 9.647 x 10* 1.8346 3.370x 107*  2.0209
80 3804x107*% 17395 1953 x107° 27343 2666 x10~* 1.8556 7.703 x 107>  2.1293
160 1.076 x 107*  1.8225 6519x10°° 15829 6912x107° 19473 1.234x107° 2.6424

Table 4. g(u) = u® with g = 1.8.

a = 0.5 « =09
_ 8 _ 8 _ 8 _ 8
Y= 35 V= 3a+3 T = 3aF5 T = 3at3
M Error CR Error CR Error CR Error CR
10 1.049 x 1072 6.170 x 1073 5917 x 1073 2.970 x 1072

20 2962x107° 1.8250 6.315x107*% 3.2883 1551 x 1072 19312 1.697 x 1073  4.1296
40 8509 x107% 1.7993 1549 x10~* 2.0278 4.060x10~* 19341 8376x 107>  4.3404
80 2454x10°* 17937 3.790x10"° 20307 1.047x10"* 19556 1.807 x 107>  2.2127
160 7107 %1075 1.7880 9.292x 107 20244 2.690x 107> 19600 4539 x10°®  1.9933
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5. Conclusions

In this work, we developed a numerical scheme over time-graded meshes for nonlin-
ear time-space fractional reaction—diffusion equations. The analysis uses the regularity
properties of the solutions of the proposed equations and an O(7?) order of convergence
is achieved. The regularity properties of the solution to this class of problem are used to
improve the convergence properties of the proposed numerical scheme on time-graded
meshes. The stability results are discussed and proved. Furthermore, the sharp error esti-
mates for an optimal O(7?) rate of convergence are proved. Some examples are provided
to demonstrate the efficiency and accuracy of our proposed scheme across different values
of the fractional order a.
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