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Abstract: In this study, the variable order fractional calculus of the hidden variable fractal interpo-
lation function is explored. It extends the constant order fractional calculus to the case of variable
order. The Riemann-Liouville and the Weyl-Marchaud variable order fractional calculus are investi-
gated for hidden variable fractal interpolation function. Moreover, the conditions for the variable
fractional order y on a specified range are also derived. It is observed that, under certain conditions,
the Riemann-Liouville and the Weyl-Marchaud variable order fractional calculus of the hidden
variable fractal interpolation function are again the hidden variable fractal interpolation functions
interpolating the new data set.

Keywords: hidden variable fractal interpolation function; variable order; Riemann-Liouville
fractional calculus; Weyl-Marchaud fractional derivative

1. Introduction

Traditional approximation approaches of data samples obtained in scientific and
natural phenomena are influenced by Euclidean geometry, in which elementary functions
such as linear functions, polynomials, trigonometric functions, and exponential functions
play a vital role. Interpolation is an effective method in approximation theory, and there
are traditional methods reported for interpolating unknown/known data of function,
surfaces in Euclidean space that can be used to describe regular objects. However, many
objects in natural phenomena such as clouds; forest horizons; the surface of the sea; rocks;
and porous objects cannot be easily described using only regular functions in Euclidean
geometry. In order to overcome this problem, Mandelbrot invented the fractal theory
beyond the standard Euclidean geometric to describe irregular objects. Despite the number
of ways available to define the fractals, the effective and simple way is an iterated function
system in which fractal can be constructed as a unique attractor. Based on a Hutchinson
theorem, Barnsley [1] provides a method for constructing fractal-interpolation function
(FIF) using iterated function system theory (IFs). For more information, read [2-7]. The
fractal-interpolation function becomes a powerful tool in applied science and engineering
for modeling irregular phenomena in the last 30 years. The graph of the fractal-interpolation
function is produced as a unique attractor of a certain unique type of iterated function
system. In the evolution of FIF theory, many researchers have developed different types of
FIFs, one of which is the hidden variable fractal interpolation function. A hidden variable
FIF (HVFIF) is a very different, impressive, and irregular than FIF, which was developed
by Barnsley et al. [8]. The purpose is to use the FIF approach on an extended data set in R3
such that the associated FIF’s graph projected onto R? provide the appropriate interpolation
function for the data set {(x;,yx) € R> : k = 0,1,...,N}. Working with R3 provides us
with an extra degree of freedom, resulting in hidden variables and the HVFIF. The HVFIF
are useful for modifying the fractal dimension and the shape of the interpolation functions.
However, HVFIFs are not suitable for simulating curves that are half self-affine and half
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non-affine because they can only be used to generate non-self-affine or non-self-similar
functions. Chand and Kapoor [9] developed a non-diagonal IFS that devised both self-affine
and non-self-affine FIS at the same time based on free and constrained variables on a large
set of interpolation data. A CHFIS is the attractor of such an IFS, and it is the preferable
choice for investigating highly irregular surfaces such as clouds, sea surfaces, rock surfaces,
tsunami waves, and so on. In R?, Bouboulis and Dalla [10] created a hidden variable
vector valued FIFs on random grids. In [11], it is examined that how to build a repetitive
FIS and how to calculate its box-counting dimension. The coalescence hidden variable
fractal interpolation function (CHVFIF) was introduced by Chand and Kapoor in [12] to
approximate both self-affine and non-self-affine functions at the same time. According to
a Lipschitz exponent of the associated CHFIS, Kapoor and Srijanani [13] investigate the
smoothness of such surfaces.

In general, fractal-interpolation functions are nowhere differentiable though they are
everywhere continuous. Hence, researchers have recognized the significance of applying
fractional calculus to analyses of fractal functions. Furthermore, the review of the literature
demonstrates that fractional calculus significantly influences fractal-interpolation functions
and their fractal dimension. Recent years have witnessed a number of proposals for fractal-
interpolation functions with regard to constant-order fractional calculus developed in
the literature, connecting the fractal-interpolation function to different fractional calculus
theories. Srijanai investigated the Riemann-Liouville (RL) fractional integral of order
v for a CHVFIF in [14]. The Weyl-Marchaud (WM) fractional derivative for HVFIF is
discussed in [15]. The fractional calculus of the cubic spline hidden variable recurrent
fractal-interpolation function was discussed by Ri and Mi-Gyong et al. [16]. For more
information, read [17-28]. In [29], it is discussed that differentiating a function f(x) with
different integers n for different points x may lead to a discontinuous function, and this
can be addressed with the choice of continuously varying order y(x), where p(x) must
take fractional values. Further, since the value changes from point to point, the variable
order fractional calculus generalizes the constant-order fractional calculus method. With
this advantage, in the present paper, the order for both the fractional calculus methods is
chosen as a variable rather than a constant since practical systems are changing with respect
to time, and their behavior changes over time because nature always likes uncertainty .
Hence, there is interest in fractional calculus with constant order rapidly transferred to
variable order fractional calculus (see [29-32]). Needless to say that the research gap, the
change of fractal functions when applying the variable order fractional calculus, motivated
us to discuss the variable order fractional calculus of HVFIE.

The framework of this paper is follows: the construction of HVFIF is briefly explained
in Section 2. The definitions of variable order RL fractional calculus and the variable
order WM fractional derivative are given at the start of Section 3. Further, variable order
fractional calculus is applied on HVFIF. Finally, Section 4 offers concluding remarks of the
present work.

2. Brief of the Hidden Variable Fractal Interpolation Function

In order to extend the flexibility of the fractal interpolation method, a vector valued
fractal function called the hidden variable interpolation function is constructed in [8]. The
advantages of HVFIFs are not only limited to flexibility; they also offer greater diversity
since their values are continuously dependent on hidden variables. By introducing the
idea of constrained free variables and hidden variables, the HVFIF is constructed as the
projection of graphs of the vector-valued function. Using the HVFIFs, both self-affine and
non-self-affine functions can be approximated simultaneously. For more details of HVFIF,
the reader can refer to [8-10,12-17]. In the this section, the construction of the hidden
variable fractal interpolation function is recollected as the projection of an attractor of the
IFS defined on R3.

Let a data set {(x,yx) € I xR : k = 0,1,...,N} be given. The given data set
is generalized as {(xx, yk, zx) € I % R? : k = 0,1,...,N}; this notation is used in the



Fractal Fract. 2023, 7, 34

30f16

construction of an HVFIF, as follows: let N > 1 be a positive integer and I := [xp, xy] C R
such that xg < x1 < -+ < xn.Set I, = [x;_1, %), and forallk =1,2,...,N,let Ly : [ — I
be a contractive homeomorphism that satisfies the following end point condition:

Li(x0) = x¢—1, Lg(xn) = x¢.

Let F; : D — R? be the N continuous mappings for a compact set D of I x R?, which
satisfies the following condition:

Fi(x0,Y0,20) = (Yk—1,2k-1), Fe(xn,yn,2n) = (ko 2k)

p(Fe(x,y1,21) — Fe(x,y2,22)) < toe((y1,21), (Y2, 22)) 1)

where (x,y1,21), (y2,22) € I X R2,0<t<1, p is the sup norm on I x R?, and oE is the
Euclidean metric on R2. To define HVFIF, functions Ly and F; have taken the following:

Lk(x) = ax + by, 2)

Fe(x,y,2) = Ac(y,2)" + (pi(x), g (x)) T, 3)

0
with two arbitrary constants. Choose «j and -y as free variables such that |a;| < 1 and
|7%| < 1, Bx as constrained free variables such that |B¢| + |7x| < 1. The generalized
IFS required for the generating of the HVFIF corresponding to data {(x, vk, zx) : k =
0,1,...,N} is described as

. . . [«
where A; is an upper trlangular matrix ( k 5 k
k

) and pi(x), gx(x) are continuous functions

{Rz;wk(x,y,z) = Li(x), F(x,y,2z) : k=1,2,...,N}. 4)

With respect to the metric dy ((x,y,2), (x*,y%,2*)) = |x — x*| 4+ 0d((y, 2), (v*,2)),
where 0 = 12%”, a= max{% :k=1,2,...,N}, which is equivalent to the Euclidean
metric on RR; the IFS (4) is now a hyperbolic. As a consequence, there is a unique nonempty
compact set G C R3 called the attractor. The attractor G is the graph of the continuous
vector-valued function f : I — R? such that f(x;) = (yx, zx) forallk =0,1,...,N. Letting
f = (f1, f2), it follows that the continuous function f; : I — R interpolating the given data
(xx, yx) is called the hidden variable fractal interpolation function (HVFIF). Similarly, the fractal
function f; interpolating the data set {(x,z) : k = 0,1,..., N} is the projection [8]. The
continuous function f, which can be written as f(x) = (f1(x), f2(x)), is the graph of the
attractor of the IFS provided in (4) if and only if the fixed point of the Read—Bajraktarevié¢
(RB) operator T, say the space of continuous vector-valued functions f : I — R?, satisfies

Tf(x) = f(x) = R(Li ' (x), f(Lg (%)) ®)
forallk =1,2,...,N, which can be equivalently written as
(f(x), f2(x)) = Fe(Li ™ (x), fu(Li (2), oL (2)))- ©6)

Component-wise, the image T f of the vector valued function f can be represented as
(Tf1, Tf2); then, for all x € I, HVFIF f;(x) satisfies

Tfi(Le(x)) = fi(Le(x)) = Fix(x, f1(x), fa(x)) = axf1(x) + B fa(x) + pr(x) ()
similarly, fractal function f,(x) satisfies
Tfr(Li(x)) = fa(L(x)) = Fx(x, fo(x)) = Yifa(x) + qi(x). ®)

Example 1. Consider a data set (0,0,0),(1/3,1/2,2/3),(2/3,1/2,1/3),(1,1,1) with the scale
vectors « = (0.3,0.3,0.3), B = (0.2,0.2,0.2), and v = (0.5,0.5,0.5). Figure 1a,b depict
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the graphical representation of the non-self-affine fractal function fi and the self-affine FIF f,,
respectively. The influence of the free variable ay and the constrained free variable By can be
visualized in Figure 1a, whereas Figure 1b clearly depicts the influence of the variable . In both
the figures, the variables are chosen in such a way that the constraints |ay| < 1and |By| + || <1
are satisfied.

(a) (b)
Figure 1. Hidden variable fractal interpolation function: (a) non-self-affine f1, (b) self-affine f,.

3. Main Results

This section narrates the RL variable order fractional calculus and the WM variable
order fractional derivative of the HVFIE. The RL fractional integral of variable order j(s)
where y : [a,b] — (0,1) for a continuous function f is defined by

(s) _ 1 * s)—
IO = gy [, G- 0" o ©)

Suppose that f is an HVFIF decided by the IFS (4); then, the RL fractional integral of f
with order y(s) is defined as follows:

V) = gy L -0 A 10)
T o) = gy L - 07ttt an

Theorem 1. Let f be the HVFIF given in Equations (2) and (3). If ||.A;(H < 1 where A;( =

WﬁfﬂwMMﬁ@WMWMWWM=wﬁmMﬂWmmmmo
k

an HVFIF. Further, (Iffo(s)fl)(x) and (Iffo(s)fz)(x) are determined by the IFSs
o N

{ L), Brpen (20,0}

Fieus) (6, 0,2) = 'y + a9z + pr(x) and Bouts)) = a' oz + Gi(x) with

YN Al A1, 0N aC £ 1, frk=1,2,... N,

A N
and {Lk(x), Fy(iu(s)) (%, 2) }kzl' respectively, — where

Proof. The RL variable order fractional integral of f; is given by,

T A (L) = gy [ ke = 07 o
gy e () =0 = Gy = 09
b e @) 0
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In the third term, replace t = Li(u),

T4 AL) = e+ Fiiuon @) + ey [ (Lel) = L) 7o (L)l

The following equation is obtained using the functional equation in Equation (7):

pAC) X
T4 Fi(L(0)) = i+ i () + gy L, 0= 0" @i () + Bifa(u) + pe(x)u

0

= D1 + Frgpts) (0) + 2 DTS 7) () + al O BT ) () + al (T i) (x)
= a' O (T 1) (x) + a BT 1) (x) + pre(x).

using the notation py(x) = Je-1+ fi(ku(s) ( )+ af (T P (%), B = ey S

(¥t — PO ()t and foqepey) (6) = gy [0 (L) = DHO1 = (s — preo-1
) f1(t)dt. Now consider the RL variable order fractional integral of f, of order y(s)

T L) = gy [ s = 0P )

T(u(s

(‘ul(s)) /Xk 1 ((Lk(x) — t)H(S)—l B (xkfl B t)y(s)—l)fz(t)dt
k(%)
o) /x: - (Llx) = O fa(t)ae

In third term, replace t = Ly (u),

T4y (L) = Gt + Fatopto) () + iptsyy L (L) = Lefw) (L)

Using the functional equation in Equation (8), the following equation is obtained:

u(s)

T L)) = 2ot ot () + gy [ (6= 0" (0kfalu) + i)

= 211+ fagoptsy () + 2l O (T ) () + al O (T 1) (x)
= a Dy (T8 F1) (%) + ()

Apply the notation g (x) = 21+ fageu(s)) (¥) + k(T 1) (x), 21 = pbegy Jab!

(xp—1 — MO (B)dtand fop s (x) = ) Jx ((Lk( x) = ML — (g — ()71
) f2(t)dt. Hence, the RL variable order fractional integral of HVFIF is also HVFIE. Consider
the following equation for calculating new data points:

Zh Fi(Le(3)) = Dt + P (9 + 0 Vo (T 7))+ 0 Bu(TE o) ()
+af T po) (0.
Let x = xy and Lg(x) = x. Then, the above equation provides,

Tk = Jk-1 = figepu(s)) (xn) + af gy + " BT ) ()
+af (T i) (xn).
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The equation above is as follows when considered form the perspective of the equation
9k = G0+ Xt (0 = Fur):

k
m—z(flny (xn) + b iy + ah D B (T o) (xn) + ah (T pa) (x >). (12)

By changing k to N in Equation (12), #y is obtained as,

N

i = 3 (oo o)+ B2 )

n=1

+ah (T4 pa) (xn ) 1- Z ah® .

Consider the following equation to determine the new data set {(xy,2;) : K =
0,1,...,N}.

Th) o (Ly(x)) = 24 + Fatku(s)) (x) + a Dy (T ) () + al (T g ().

Let x = xy and Lg(x) = x¢. The above equation then yields,

2~ 21 = fopop(e)) (an) + 2 Dz +al O (T ) (xw).

The equation above is as follows when considered from the perspective of the equation
s A k N A .
Zr =20+ Ly (Zn — Zn1):

k
2k = 2 <f2(n,y(s)) (xN) + az(S)')’niN + a%(S) (Iy;ci)(S)Qn)(xN)> (13)

By changing k to N in Equation (13), £y is obtained as

N
8= 1 (Ftnatep ) + T 00100 ) 1= el
O

Remark 1. Theorem 1 shows the variable order RL fractional integral of HVFIF with the predefined

condition (Iffo(s) f1)(x0) = (L’:O(s) f2)(x9) = 0. Likewise, the the RL variable order fractional
integral f is defined with the upper limit xy as

280 fy (Li(x)) = —Wl(s)) [ et - o g
T L) = ~ gy [ (L) =0 (o)

Then, one can obtain that the function (IfA(]S) f(Lg(x))) is again HVFIF with variable or-
der generated by the IFS {Li(x), Fy( (s)) (%, 9,2)}N, and {Lk(x)/FZ(k,y(s))(xlﬁ)}jli1 where



Fractal Fract. 2023, 7, 34

7 of 16

A = 9 — fppe) () +a < f1><> % (T4 ) (x) + (T pe) (x)
and f2(x) = 2 — fageu(s)) (x) +a < O 6)(x) + (T ) (x)

() = Dk — Frgepen (1) + 2 (ZEE pe) (),
k

Je1=-Y (fl(n,ms))(xo) — i a0 — a® B (T 1) (x0)

n=1

+a%(”<z¢,§”pn><x0>),
N (s)
do=— z(fm, () — B (T ) (x0)

_Hz%(S)( IE;)pn > 1- E an D‘n/
G (x) = 2 — fageu(s)) (x) +al® <z££,5>qk><x>,

k
B =) <f2(nru(s))(xo) — a2 — aZ(S)(Ii‘S)w(xo)),

0=—Y, (fz(n,y(s))(x ) — (T ) (x )/1 - Z ali .
n=1

If the variable order y(s) is taken as a constant function, the above result coincides
with the result presented by Srijanani in [14]. Additionally, if we take y = 1, then the above
result coincides with the result presented by Chand [9]. The above remark gives the RL

variable order fractional integral of HVFIF with the predefined condition (Ifh(js) fxn) =0

Example 2. Observe the data points in Example 1 with the same scale vectors. Figure 2a presents
the RL variable order fractional integral of f1 with order u(s) = 0.5. Similarly, the graphical
representation of the RL variable order fractional integral of f, with order y(s) = 0.5 is displayed
in Figure 2b. In both Figure 2a,b, the fractional order y(s) is chosen to be the same yu(s) = 0.5 for
clear comparison.

30 30
as| ] os|
20} 1 20}
15 15
10 10
5 st
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
(a) (b)
Figure 2. The RL fractional integral: (a) I u(s) f1 with variable order p(s) = 0.5, (b) I H(s) f» with order
u(s) =0.5.

The following theorem explains the RL variable order fractional derivative of HVFIF

with the preset initial condition (D?O(S) f)(xp) = 0. The RL fractional derivative of variable

order (s) where y : [a,b] — (0,1), for a continuous function f is defined by the equation

() £() — 1 d *_ f(t)
DIV = g an d o .
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Suppose f is an HVFIF decisived by IFS (4); then, the RL fractional derivative of f of
order p(s) is defined as follows:

(s) _ 1 d v A1)

PEAC) = TGy g™ 1
(s) _ 1 d v fo(t)

DI fy(x) = 1—r(y(s))%/a (xjt)y(s)dt. (16)

Theorem 2. Let f be the HVFIF given in Equations (2) and (3). If | A, | < 1 where A, =
a8 B otk = 1,2, N, then (DI )0 = (DI o)), (DI o)) 5 o
an HVFIF. Further, (D,Iﬁo(s)fl)(x) and (foés)fz)(x) are determined by the IFSs

R N
{Lk(x), Fi(iou(s)) (x,9,2) }kzl

P ~ 2 1—u(s 1—u(s ~ s 1—
Fl(k,y(s))(x,y,z) = ak d )Déky + ak d )lBkZ + pk(.X) and F2(k,y(s)) = ak "
YN o e 21, YN el 21 fork=1,2,.. N,

. N
and {Lk(x), Fy(u(s)) (%, 2) }kzl, respectively, — where

)iz + i (x) with

Proof. The RL fractional derivative of f; is given by,

(s) o #i T fl—(t)
Dly” AilLi(x)) = 1—T(u(s)) dx /xo (Li(x) — t)H(S)dt

_ 1 d e Al A
+ 1— r(y(s)) dx ~/XO <(xk—1 _ t)y(s) (xk—l _ t)}l(s))dt
1 d L) fi(t)
TG L) — e

Replace the variable t = Li(u) in third term,

s R a d x L
DY £ (Li(x)) = Px1 + fiiku(s)) (X) + WIL(S))E/x (Lk(af)l(—kL(;jz)u)))V“)du'

Using the functional equation in Equation (7), we obtained the following equation:

© ., B d [ i) + Bef(u) + pilx)
(DA A LE0)) = it + Frteatn )+ Ty i o a;;<5>(:_2u>u<s> :

= D1+ frgopueen (0) Fap "an (DL fi) (x) + 0, MO (DL o) (x)
+ap MO D) ) (x)
— gy " (DY ) (x) + ap MO (DAY ) (x) + pr ().

Here, take Py (x) = Jk—1 + fi(kpu(s)) (¥) +a,l;y(s)(chlo(s)Pk)(x),]?k_1 = Fr(lw% ;;H

A1) — 1 d (% A1) A()
(xk,ll—t)ﬂ(s‘) dt and fl(k,pt(s))(x) = T-T(u(s)) dx xok 1((Lk(xl)—t)1‘(5) - (xk,ll—t)ﬂ(s)

sider the RL fractional derivative of f, of order y(s)

)dt. Now, con-

(s) o #i T fz—(t)
Dy fa(Li(x)) = 1—T(u(s)) dx /xo (Li(x) — t)H(S)dt

b d e LM L)
+ 1— r(y(s)) dx ~/Xo ((xk—l _ t)y(s) (xk—l _ t)}l(s))dt
1 d (L) fa(t)
TG ey G-
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In the third term, replace t = Li(u)

s R a d x Li(u
DEY £ (Ly(x)) = Dx 1 + fiiku(s)) (X) + ﬁky(s))ﬁ /XO (Lk(J{)Z(—kL(k(f))V(S) du.

The following equation is obtained using the functional equation in Equation (8):

s R a d ¥ u X
(Do) (Le(30) = 2t + oo () + %% /x (Zl;fj(?)((x)j uq)kz»((s>) )
k

=2k 1+ fagiu(s)) (X) + ay "y (D) £) (x) + ap M (DET ) (x)
= a; "I (DL f2) () + i (x).

Here, §i(x) = 21+ fapuen(®) + " (DgVq0(x), 21 = =y e Sk

Al g e b Ao
ot and S () = s (G-~ Gy ) Hence, the

RL variable order fractlonal derivative of HVFIF is also HVFIF. Consider the following:

D) A(Li(x) = D1 + fagpie) (0) +ap (DL ) (x) +ap HO (DL ) (x)
+al (DI oy (x).

0

Let x = xy and Lg(x) = x. Then, the above equation provides,

Tk = Jk-1 = figepu(s)) (xn) + o 'Oy +a MY B(DEY ) (xw)
+ap (DL pi) ()

We know 7 = o + Zn 1(#n — Jn—1), the aforementioned equation is as follows:

k
=D (fl(n,y(s))(xN> +ay "D, (DE ) (aw) + an MY Bu(DEY ) (ki) (17)

In Equation (17), #y is obtained by converting k to N,
N

=y (fl(n,ms))(xm +ay "B, (DL ) (x)

n=1

+al O (DI ) ) 1— Z e

Consider the following equation to determine the new data set {(xx, %) : K =
0,1,...,N}

DI fo(Li(x)) = 21 + fagepts) (¥) +ap " r(DE o) (x) + ap (DI ) ().
Let x = xy and Li(x) = xg

—u(s)

2k — 2k-1 = fagku(s)) (XN) + a, My + ﬂllc_y(s) (DL 1) (xn)-
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We know 2 = 2y + Z];:l (24 — £,—1); the aforementioned equation is as follows:
: 1 (s () (s
=), <f2(n,y(s)) (xn) +an " iy + o, MO (DY qﬂ)(xN)> : (18)
n=1

In the Equation (18), £y is obtained by converting k to N

N 1—p(s) (. y1(s)
Z<f2nys) xN)+a” (on q”) xN) 1_2[1 Tn-

O

Remark 2. Theorem 2 describes the RL variable order fractional derivative of HVFIF with the

predefined condition (D,}:O(s) f1)(xg) = (D;‘O(S) f2)(x9) = 0. Additionally, the RL variable order
fractional derivative f is defined with the upper limit xy as

6 I S B (O
Diy fi(Li(x)) = 1—r(y(s))dx/x (Le(x) _t)ﬂ(s)dt

1 d [N fz(t)
XN fZ( k(x)) 1 —r(;l(s)) dx/x (Lk(x) _ t)ﬂ(s)
then one can obtain that function (foﬁls) f(Lg(x))) is again HVFIF with the variable order gener-
ated by the IFS {Li(x), Fl(ky(s))(x 9,2) N and {Ly(x), Fy(iu(s)) (%, 2)}N | where f1(x) = 9 —
frtusn @) + @ "V (DT 7)) + @ O p(DEY f2) () + @ (DE P (x) and
6) = 2~ a0 + D o)) + ) (D g
pr(x) = = Fugion () + o (DEY ) (),

k

Gr1=—), (fl(n,y(s))(xO) —ay "Daugo —ay " B (DL £2) (x0)

n=1
—ai““)(ng’pn)(xo)),
N 1—u(s (s)
Z <f1 (m,u(s)) xO —dp M :B"(Dgl\/ f2)<x0)
%@m%%nm>1zfmsn
Gi(x) = 2~ Fogp(ey (x) +ap "(DE g0 (),

k
Bt = Z(fm,s (x0) — M) 20 — GHE) (DEG gy o >),

n

z I

Z0 = — 2<f2nys) xO _a M(S)( ()q” ) 1_2‘1 Yn-

If the variable order y(s) is considered as a constant function, the above conclusion
gives the Srijanani’s result [14]. The RL variable order fractional derivative of HVFIF with

the predefined condition (D,’?IEIS) f)(xn) = 01is stated by the above remark.

Example 3. Consider the same data points and scale factors in Example 1 to obtain the RL variable
order fractional derivative of f1 and the RL variable order fractional derivative of f,. Figure 3a
shows that Dy s f1 and Figure 3b depict graphical representations of Dy s fo. The same choice of
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the fractional order u(s) helps to observe the non-self affine and self-affine nature of D*) f; and
DH) f, in Figure 3a,b respectively.

0.1 0.1
0.08
0.06 | f
0.05 i 0.04 u
0.02
[¢]
o B -0.02
-0.04
-0.06
-0.05 - - . = -0.08
o] 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
(a) (b)

Figure 3. The RL fractional derivative: (a) D f1 with variable order y(s) = 0.5; (b) D fz with
order y(s) = 0.5.

The WM variable order fractional derivative of HVFIF with a predetermined initial
condition (9,?0(5) f)(x0) = 0is demonstrated in the following theorem.
Let variable order y(s), where y : [a,b] — (0,1) of the WM fractional derivative of

continuous function f, be defined by the equation

(7471 = 5 (S /f el (19)

Suppose f is an HVFIF decisived by the IFS (4); then, the WM fractional derivative of
f of order u(s) is defined as follows:

A ) = i [ 0)
(A R)0) = s [ =y, Q)

Theorem 3. Let f be the HVFIF given in Equations (2) and (3). If || A || < 1 where .A;( =

ak_”(s) [08‘ Bk},for allk=1,2,...,N, then ( ffo(s)f) (x) = (.@fo(s)fl)(x), (@,’fo(s)fz)(x) is also

an HVFIF. Further, (@fo f1)(x) and (ng(s)fz)(x) are determined by the IFSs
A N .

{Lk( x), F (x,9,2 }k and {Lk( x), Fa, (S))(x,i)}kzl, respectively, — where

Fl(k<>>(x%)—ﬂk @ "

(S)o‘ky +a; "Bz + pr(x) and Baouts)) = Vkz + di(x) with

N o Ve £ 1, 8N 0y £ 1, fork=1,2,...,N.

Proof. The WM fractional derivative Equation (20) gives,

(A FL0) = oy [ A=A

T(1—u(s)) Jxo (X1 — t)lﬂ‘(s)
p(s) Yt (fi(Le(x) — A@)  fil-1) — fi(t)
T u() / ( (Le(x) — )IFHG)  (ap_q — £)1HHE) )dt
p(s) L) fi(Ly(x)) = f(t)
T u) /xH (Li(x) — £)1H#0) a.
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Replace t = Li(u) in the third term,

a(s) * All(x) = ALe(w)) o
(1 —pu(s)) Jxo (Li(x) — Li(u ))1+y(s)

The following equation is obtained using the functional equation Equation (7):

(21 1) (L (%)) = 951 + fi(iu(s)) (X) +

PR SO A
(247 A (LK) = Tt + Fiiipien) (¥) + §(1 —pr(s))k - ch(—)u)léfg()) !

5B fa(x) — ol ) ) — )
T(1—pu(s)) Jro (x —u)ltuts TA—u(s)) Jxy (x —u) v

= Dt + frgps) () + 3" ( 20 1) () + 0O B (280 ) (x)

+a, “(@o”pw( )

= 0" (D) 1) (x) + 0" Br( DS £2) (3) + Py (2)-

))du—i-

Here, Py, (s)(x) = yAH+f1<k,y(s)><x>+ak‘”“)<@¥é%k><x> P = iy Jat
X Xp_ L X,
B A0t and i () =ty fot (AR — Aol )dt Now,

consider the WM fract10na1 derivative of f, of order u(s),

(A ) (Ls(0)) = gge) s [ L) SRl

I'(1—pu(s)) Jx (xp_1 — t)l""V(S)
u(s) Y1 fo(Li(x) — fo(t)  falxk—1) — fo(b)
T u) / ( (ZLk&) - t)”i‘(s) - (ik,kl . t)lel(S) )‘”
p(s) L) fo(Le(x)) — fo(t)
CETTO) /xk L (Le(x) = H)1HHG) at.

Replace t = Li(u) in the third term,

ap(s) (¥ plx(x) = (L)) .
T(1—p(s)) Jxo (Lg(x) — Li(u))1+HG)

The following equation is obtained using the functional equation Equation (8):

(24 £2)(Li(%)) = Go1 + Fagepgsy (%) +

PO X _
(A0 L) = 2 + i () + et [ 2=l

a " u(s) ¥ qu(e) — q(u)
T(1—pu(s)) Jxo (x —u)ttr®)
= 211+ Fop(en (0 + 3"V (2ED ) () + 0 M (28 1) (x)
= 0, "y () £)(3) + i) (2)-

+ du

Here, diu(s)(¥) = zk,1+fzk,45 () + "N A ) (%), 2 = ey S
L) —folt )dt and fl (x ka 1 ( x)—f1(t) fl Xg_1) )dt Hence,

(xk— )1+y t)1+}t(s) xk 1— t)lﬂ‘

1 (s)
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the WM variable order fractional derivative of HVFIF is also HVFIE. Consider the following
equation for calculating new data points:

(25 ) (Le(x)) = G1 + Frgeueen (0) + a5 " O (28 f1) (x) + a " (LS ) (x)
+a. " (P p) ().

Let x = x and Lg(xy) = x¢. Then, the above equation gives

D= D1 = frgpen (on) + 0 "Daedn + 3 H O B2 o) () + 0, M (2E i) (),

The aforementioned equation is as follows when considered from the perspective of
the equation 5 = 9o + Y5 _ (Ju — 9n_1) :

k
e = 2 (mm (xn) + an "Dy + 3" B (24 ) (xw) (22)

+an’*“><@fé%n><xw>).

In Equation (22), iy is obtained by varying k to N
3 Mg (o)
= 2 (om0 + 02" 27 ) o)

() ( p(5) W —uls)
+a, (2 ) (xn) ) J1 =) a, " d
n=1

Consider the following equation to determine the new data set {(xy, %) : K =
0,1,...,N}

P o (Li(x)) = 2r + fageuten (0) + ap " ( 250 ) (2) + a, " () 1) ().

Let x = x and Li(x) = x. Then, the above equation yields,

2= 21 = Fapten) (n) + " O nn +a " (21 g (xn).

The aforementioned equation is as follows when considered from the perspective of
the equation 2; = 2y + Zﬁzl(in —Z241):

k
Z (fz ey Cn) + a0z + 0, () g, (xN>). (23)

In Equation (23), Z) is obtained by varying k to N

i(}’ o)+, () o) 1—Za

O

Remark 3. The WM fractional derivative with the variable order of HVFIF is demonstrated in

Theorem 3 with a predefined condition (@ffo(s) f1)(xo) = (@fo(s) f2)(xp) = 0. Similarly, the WM
variable order fractional derivative f is defined with the upper limit xy as

(s) _ u(s) W f(Lx) = A
PRI ="ty e g - e
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(s) N 1) N fo(Li(x)) = fo(t)
(@?N fZ)(Lk(x)) F(l _ y(s)) . (Lk(x) _ t)1+y(s) at

then, one can obtain that function (9,}(‘]55) f(Ly(x)) is again HVFIF with the variable order gen-
erated by the IFS {Ly(x), Fy, M( ))(x,y, 2)MN | and {Li(x ),ﬁz(kfy(s))(x,ﬁ)}f\il where fi(x) =
9= Frteuton () + oV (Z1T £1) () + o "B P ) (x) + 0D pi) (x) and
F2(x) = 2k = o u(s)) (%) +a;H(S)7k(@f]\(] )fz)( )+at ( N(2894) (x)

Pr(x) = O — fageute (1) +a, " (24 p) (x),

k
for=- ) (fun,y(s))(xo) — ;"o — a," 0 Bu( 2L o) (x0)
0 O (D) p, ) (x >),
ul —uls) g oyh(s)
Jo=-1), (fl(n,y(s))(xO) — " Bu( Dy f2) (x0)
n=1

a7 (98D g, (x ) 1- Zﬂ
k(%) = 2k — fo(iop(s)) (X) + a5 ()(@A(,)q )(x),

2k_1=—z(fzm,y(s))(xo)—a;”“)fynfo—a MO (1) (x >),

il 1) p(s)
20=—-), (fz(n,y(s))(xO) —a, " (28 ) ( > 1- Z an

When the variable order 1 (s) is considered as a constant function, the above conclusion
provides Priyanka’s [27] result.

Example 4. The WM variable order fractional derivative of f1 and the WM variable order fractional
derivative of f, are calculated using the same data points and scale factors as in Example 1. 2 f;

is shown in Figure 4a, while a graphical representation of 2°° f, is given in Figure 4b.

0.2 T T T ™ 0.3

0.1f 0.2

0.1
(o]

[¢]
-0.1
-0.1

-0.2 |l

0.3} |

-0.4 -0.4
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 4. The WM fractional derivative: (a) 2*() f; with variable order ji(s) = 0.5, (b) 2"®) f, with
order u(s) = 0.5.

4. Concluding Remarks

This work introduces a novel approach to investigate variable order fractional inte-
gration. The evaluation of fractional integration and differentiation with continuously
varying-order ji(s) for each s € [xo, xn] is associated with the change of constant fractional
order y as a function of s. The RL variable order fractional calculus and the WM variable
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order fractional derivative of the HVFIF are explored with predefined initial conditions.
Further, the resultant functions are demonstrated as the HVFIF.
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