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Abstract: Investigating the fractal behavior of iteration methods on special polynomials can help to
find iterative methods with global convergence for finding special matrix functions. By employing
such a methodology, we propose a new solver for the sign of an invertible square matrix. The
presented method achieves the fourth rate of convergence by using as few matrix products as
possible. Its attraction basin shows larger convergence radii, in contrast to its Padé-type methods of
the same order. Computational tests are performed to check the efficacy of the proposed solver.
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1. Introduction and the Fractal Behavior of Iteration Methods

When it comes to the designing, motivation behind, and importance of new iterative
methods, the convergence order is not the only factor when improving the existing solvers.
Based on the context that the researchers/practitioners deal with, the order or the method is
chosen or constructed. To illustrate this further, consider the problem of finding generalized
outer inverses for arbitrary matrices using iterative methods. In this context, the optimal
iterative methods do not yield useful iterations in the matrix environment, and one must
rely fully on non-optimal methods that can yield matrix methods having as few matrix
multiplications as possible; see [1,2] for more information.

Another context is when the dealing nonlinear problem is in the application and theory
of the matrix functions. For instance, when we need to compute the matrix sign function
using iterative methods, after Newton’s iteration, other higher-order optimal schemes will
not be useful. Additionally, many of the existing iterative methods are not fruitful since they
do not result in proper counterparts in the matrix environment (for such a task). In addition,
some of the optimal iterative methods will lose their global convergence in the calculation of
the sign of a matrix.

The other context is in solving nonlinear algebraic system of equations. As a matter
of fact, when it comes to a system of equations, the order optimality (as discussed by
Kung–Traub-1974 for iteration schemes without memory [3]) cannot be achieved anymore.
In such cases, the lower the computational cost of computing Jacobians/Hessian matrices,
the more useful the method is; see [4] for more information.

Note that the structure of the iterative method, the initial guess, the number of the
floating point arithmetic, the dealing problem, and the stopping criterion all affect the
choice of an iterative method in practice.

Recalling that Newton’s iteration for the nonlinear equation g(z) = 0 is given by:
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zl+1 = zl − f ′(zl)
−1 f (zl), l ≥ 0, (1)

and the secant method is given by:

zl+1 = zl −
f (zl)

f (zl)− f (zl−1)
zl−zl−1

, l ≥ 1. (2)

Iterative methods could be compared in terms of their sensitivity of initial approxima-
tions, when they possess the same rate of convergence and the same structure [5,6]. Let
us now draw the attraction basins of the methods (5) and (2) in Figures 1–4 for different
polynomials in a square of the complex plane using double-precision arithmetic. Here, we
follow the methodology discussed in [7,8] to find the attraction basins. Here, the red color
stands for the risky area that could cause an indeterminate state or divergence. As can
be observed clearly, the secant method has the lowest convergence rate and thus smaller
converging areas, while this is improved for Newton’s method. Note that in this way, 106

initial approximations are tested one by one when we find the attraction basins.

Figure 1. Attraction basins on f (z) = z2− 1 for the secant; Newton solvers on left, and right, respectively.

Figure 2. Attraction basins on f (z) = z3−1 for the secant; Newton solvers on left and right, respectively.
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Figure 3. Attraction basins on f (z) = z4− 1 for the secant; Newton solvers on left and right, respectively.

Figure 4. Attraction basins on f (z) = z6− 1 for the secant; Newton solvers on left and right, respectively.

The importance of the fractal behavior of different iterative schemes when applied
to different polynomials is in the fact that they could reveal which method globally con-
verges when it is extended for solving special matrix nonlinear equations. Important
matrix functions that depend clearly on the attraction basins are matrix sign functions and
sector functions.

This work focuses on finding and computing the matrix sign function, which plays
a significant role in the theory and practical applications of the matrix function [9].

The remaining portions of this paper are as follows. In Section 2, a novel multi-step
iteration method is proposed carefully to be employable for the calculation of the matrix
sign. Section 3 extends this method for calculating the sign of an invertible matrix. It is
theoretically investigated how the solver converges and does this under asymptotical sta-
bility with an appropriate choice of the initial matrix. To test the efficacy and stability of the
proposed solver, we examine numerical experiments on different test problems in Section 4.
Ultimately, based on the obtained computational observations, the suggested technique is
determined to be efficient. The conclusion, with some outlines for the forthcoming works,
is furnished in Section 5.

2. Iteration Methods on the Sign of a Matrix

Let A ∈ Cn×n be a nonsingular square matrix, and g stands for a scalar function. The
function g(A) is defined as a matrix function of A with the size n× n. If the function g is
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given on the spectrum of the A [10,11], then it is possible to have the facts below about the
matrix function g(A):

• For a given square matrix Z, it commutes with g(A) as long as Z commutes with A,
• g(γi) stand for the eigenvalues of g(A), where γi are the eigenvalues of A,
• g(ZAZ−1) = Zg(A)Z−1,
• g(AT) = g(A)T ,
• g(A) commutes with A.

The sign of a matrix could be defined using the Cauchy integral as follows:

sign(A) = M =
2
π

A
∫ ∞

0
(t2 I + A2)−1dt. (3)

Some of the functions of matrices under given assumptions can be computed nu-
merically by employing the fixed-point type iterative methods of the general form below:

Zl+1 = g(Zl), l = 0, 1, 2, . . . , (4)

wherein Z0 must be chosen carefully.
The second-order Newton’s scheme has the following structure for calculating the

sign of a square invertible matrix:

Zl+1 =
1
2

(
Zl + Z−1

l

)
, (5)

where the starting matrix is
Z0 = A. (6)

The work [12] presented an important family of iterative schemes for finding (3) by
employing the following Padé approximants:

g(ζ) = (1− ζ)−1/2. (7)

Let us consider that the (a1, a2)-Padé approximate to g(ζ) is defined by

Pa1(ζ)

Qa2(ζ)
, (8)

and a1 + a2 ≥ 1. Then, the authors [12] showed that the following iterative scheme

zl+1 =
zl Pa1(1− z2

l )

Qa2(1− z2
l )

:= ψ2a1+1,2a2 , (9)

converges with convergence speed a1 + a2 + 1 to ±1.
By considering (9), the following well-known locally convergent inversion-free New-

ton–Schulz method:
Zl+1 =

1
2

Zl(3I − Z2
l ), (10)

and the following Halley’s iteration scheme:

Zl+1 = [I + Z2
l ][Zl(3I + Z2

l )]
−1, (11)

belong to this family for appropriate choices of m1 and m2. It is noted that the Newton’s
scheme (5) is a member of the reciprocal of (9), see [13,14].

Two fourth-order methods from (9) having global convergence behavior are given by

Zl+1 = [I + 6Z2
l + Z4

l ][4Zl(I + Z2
l )]
−1, Padé [1, 2], (12)

Zl+1 = [4Zl(I + Z2
l )][I + 6Z2

l + Z4
l ]
−1, Reciprocal of Padé [1, 2]. (13)

After discussing the existing iteration methods to find the matrix sign functions,
this paper proposes a new one. It is known that the most challenging methods for such
a purpose arises from (9) with arbitrary order of convergence. Such methods are called
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optimal. However, in this paper, we present a novel root solver with global fourth-rate
speed for our target to calculate the sign of a matrix.

A New Solver

The following nonlinear equation plays an important role when the solvers for the
sign of a matrix are constructed (see e.g., [15]):

g(z) := z2 − 1 = 0. (14)

The main aim here is to propose a new solver to be effective when it is extended
for finding the matrix sign function. This means that when we now want to propose
a new root solver, the purpose is not to fulfill the optimality conjecture of Kung–Traub for
producing optimal root solvers or to design methods with memory to achieve as high an
order of convergence as possible [16]. In fact, the iterative root solver should be useful and
new when it is applied to finding the matrix sign function. Therefore, many of the recent
super-high-order methods are put aside. Here, we propose a three-step method without
memory for such a target as follows:

xl = zl − g(zl)g′(zl)
−1, l = 0, 1, . . . ,

vl = zl −
g(zl)− 9/30g(xl)

g(zl)− 39/30g(xl)

g(zl)

g′(zl)
,

zl+1 = vl −
g(vl)

g(vl)−g(zl)
(vl−zl)

.

(15)

It is necessary to show the convergence order of (15) before any extensions to the
matrix environments. This is pursued in the following theorem.

Theorem 1. Assume that β ∈ D is a simple root of the sufficiently differentiable function
g : D ⊆ C→ C, and assume that the initial value w0 is close to the solution. The scheme (15) has
quartical convalescence rate and reads the error below:

µl+1 =
7b3

2
10

µ4
l +O(µ

5
l ), (16)

where µl = zl − β and bl =
g(l)(β)
l!g′(β)

.

Proof. Considering the assumption of the theorem, now we expand g(zl) and g′(zl) around
β to obtain that:

g(zl) = g′(β)[µl + b2µ2
l + b3µ3

l + b4µ4
l + b5µ5

l +O(µ
6
l )], (17)

and
g′(zl) = g′(β)[1 + 2b2µl + 3b3µ2

l + 4b4µ3
l + 5b5µ4

l +O(µ
5
l )]. (18)

Now, from (17) and (18), we have

g(zl)

g′(zl)
= µl − b2µ2

l + 2(b2
2 − b3)µ

3
l +

(
−4b3

2 + 7b2b3 − 3b4

)
µ4

l +O(µ
5
l ). (19)

By substituting (19) into zl of (15), we obtain

zl = β + b2µ2
l +

(
−2b2

2 + 2b3

)
µ3

l −
(
−4b3

2 + 7b2b3 − 3b4

)
µ4

l +O(µ
5
l ). (20)

From (17) and (19), and a similar methodology, we obtain

v(zl)− β =
7

10
b2

2µ3
l +

(
9b2b3

5
−

159b3
2

100

)
µ4

l +O(µ
5
l ). (21)

Now, the use of (15) and (21) implies that
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g(vl)− g(zl)

(vl − zl)
= b2g′(β)µl + b3g′(β)µ2

l +

(
7b3

2g′(β)

10
+ b4g′(β)

)
+ g′(β)µ3

l +O(µ
4
l ). (22)

At last, by employing (15) and (22), it is possible to attain (16). Therefore, the iteration (15)
has fourth-order convergence.

Here, it might be asked how the scheme (15) is built. Although the scheme is presented
as a given, the presence of a detailed argument regarding the choice of such a scheme
could make it possible to understand whether the scheme is unique or hides a class of
possible schemes behind it. The scheme (15) consists of three steps. The first two steps
have been designed based on a Traub-like third-order method with the coefficients set to
9/30 and 39/30 to obtain the third order of convergence and as high a number as possible
of the attraction basins . The last substep is based on the secant solver from the first
and second steps, which includes the computation of a divided difference operator. To
discuss further, this structure was obtained by us after severe attempts in order to fulfil
the following:

• To keep the global convergence order at four for the quadratic equations.
• To keep the number of matrix products at four, with one matrix inversion, just like the

associated methods (12) and (13) .
• The global attraction basins (carried forward in Figures 5 and 6) must be larger than

the associated methods (12) and (13).

Figure 5. Basins of attractions for (5) on left, (12) on right.

Figure 6. Basins of attractions for (23) on left and (24) on right.

3. A New Solver and Its Convergence

Let us now solve (14) by the iterative method (15). This can be symbolically deduced
to the following numerical method in the matrix environment:

Zl+1 = Zl

(
29I + 114Z2

l + 17Z4
l

)[
3I + 86Z2

l + 71Z4
l

]−1
, (23)

using the initial value (6). Note that, similarly, one may obtain the reciprocal version of (23)
as follows:
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Zl+1 =
(

3I + 86Z2
l + 71Z4

l

)[
Zl

(
29I + 114Z2

l + 17Z4
l

)]−1
. (24)

Theorem 2. For computing the sign of A with no eigenvalues on the axis of imaginary, let Z0 be
selected via (6). The iterative method (24) (or (23)) converges to the M, and the convergence order
is four.

Proof. We consider that W is the Jordan block matrix, K is an invertible matrix of the same
size, and A is decomposed by:

A = KWK−1. (25)

Now, by using the solver (24) from the iterate l to l + 1, we obtain an iteration that
maps the eigenvalues as follows (see [14] for more information):

γi
l+1 =

(
3 + 86γi

l
2
+ 71γi

l
4)[

γi
l

(
29 + 114γi

l
2
+ 17γi

l
4)]−1

, 1 ≤ i ≤ n, (26)

where mi = sign(γi
l) = ±1. In general, and after some mathematical simplifications, the

expression (26) reveals that the eigenvalues conerge to mi = ±1; that is to say,

lim
l→∞

∣∣∣∣∣γi
l+1 −mi

γi
l+1 + mi

∣∣∣∣∣ = 0. (27)

The relation (27) gives the convergence of the iteration to ±1 via (24). Now, to investi-
gate the rate of convergence, we first write as follows:

∆l = Zl(29I + 114Z2
l + 17Z4

l ). (28)

Using (28), we can write:

Zl+1 −M = (3I + 86Z2
l + 71Z4

l )∆
−1
l −M

= [3I + 86Z2
l + 71Z4

l −M∆l ]∆
−1
l

= [3I + 86Z2
l + 71Z4

l − 29Zl M− 114Z3
l M− 17Z5

l M]∆−1
l

= [−3(Zl −M)4 + 17Zl M(Z4 − 4Z3
l M

+6Z2
l M2 − 4Zl M3 + I)]∆−1

l
= [−3(Zl −M)4 + 17Zl M(Zl −M)4]∆−1

l
= (Zl −M)4[−3I + 17Zl M]∆−1

l .

(29)

Using (29), it is possible to obtain that:

‖Zl+1 −M‖ ≤
(
‖ − 3I + 17Zl M‖‖∆−1

l ‖
)
‖Zl −M‖4, (30)

which shows the fourth order of convergence. This completes the proof. The error analysis
for (23) can be deduced similarly.

For economic reasons, it is important to employ an algorithm to solve practical prob-
lems . That is to say, the convergence rate is not the only factor, and a method is useful only
if it can compete the most efficient existing solvers of the same type. When we compare (24)
to (12) and (13), it is observed that all possess four matrix products and only one matrix
inversion per cycle. Moreover, it is now seen and checked that the proposed methods
(23) and (24) have wider convergence radii.

To check the global convergence of the presented method in contrast to the existing
solvers, we may draw attraction basins of the iterative methods when solving (14) on the
complex domain [−2, 2]× [−2, 2]. In fact, we divide the domain into a refined mesh and
test to what root each of the mesh points converge. The results of the comparisons are
brought forward in Figures 5 and 6 by employing the stopping termination

|g(zl)| ≤ 10−3. (31)
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The results are shaded via the number of cycles required to attain the convergence.
They also show that for (23) and (24), there are wider convergence radii, in contrast to their
competitors of the same order from (9) .

Theorem 3. Using (24) and similar assumptions on A as in Theorem 2, then {Zl}∞
l=0 with Z0 = A

is stable asymptotically.

Proof. Let χl stand for a computational perturbation that is produced in the lth iterate.
Now, one can write

Z̃l = Zl + χl . (32)

From now on, it is also considered that (χl)
i ≈ 0, i ≥ 2, which is via the first-order

analysis of error in this theorem. This is valid if χl is sufficiently small. Now, we obtain

Z̃l+1 = [3I + 86Z̃2
l + 71Z̃4

l ]× [Z̃l(29I + 114Z̃2
l + 17Z̃4

l )]
−1. (33)

For sufficiently large l, that is to say, in the convergence phase, we consider that
Zl ≈ sign(A) = M, where a note is used for simplifying

(L + U)−1 ' L−1 − L−1UL−1, (34)

for any the matrix U and any invertible matrix L, and while we also use M2 = I, and
M−1 = M, in order to obtain the following relation:

Z̃l+1 ≈
(

M +
1
2

χl −
1
2

Mχl M
)

. (35)

By further simplifications and using χl+1 = Z̃l+1 − Zl+1, we can find:

χl+1 ≈
1
2

χl −
1
2

Mχl M. (36)

This can lead to the point that the method at the stage l + 1 is bounded, i.e., we have:

‖χl+1‖ ≤ 2−1‖χ0 −Mχ0M‖. (37)

The inequality (37) reveals that the sequence of matrices obtained by (23) has asymp-
totical stability. This finishes the proof here.

4. Numerical Treatments

In this section, the iterative solvers discussed up to now have been compared in the
Mathematica 12.0 [17] in l∞ norm and the following termination:

‖Z2
l+1 − I‖2 ≤ 10−5. (38)

The methods that will be compared are (5), (11)–(13), (23), and (24) (shown by Newton,
Halley, Padé 4-1, Padé 4-2, PM1, and PM2, respectively). Other matrix norms might be em-
ployed in (38). Although they might be very useful in terms of reducing the whole elapsed
time for the compared methods, for the general case of complex dense matrices, the ‖ · ‖2
would be a reliable choice. The stopping termination (38) comes from the fact that at each
iterate, the numerical approximation must satisfy the matrix nonlinear quadraric equation.

Example 1. We have tested all of the numerical methods of the same type on 10 randomly generated
complex matrices given by the piece of Mathematica code below:
SeedRandom[456];
min = 11; number = 20;
Table[A[l] = RandomComplex[{-200 - 200 I,
200 + 200 I}, {50 l, 50 l}]; {l, min, number}];
tolerance = 10^-5;

The sizes are varied and are 550× 550, . . . , 1000× 1000.
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Results are provided in Tables 1 and 2 showing that PM1 has the best performance
against its competitors. Note that the convergence of the solvers for the matrix sign function
depends on the suitable selection of the initial matrices. It is seen the PM1 beats all of its
competitors by converging to the sign as quickly as possible. The mean number of iterates
required to achieve the convergence, as well as the mean of the CPU elapsed times, is lower
for the proposed solvers.

Table 1. Results of comparisons via number of iterates for Experiment 1.

Matrices Size Newton Halley Padé 4-1 Padé 4-2 PM1 PM2

#1 550× 550 22 14 11 11 11 9
#2 600× 600 23 15 12 12 11 10
#3 650× 650 28 18 14 14 13 12
#4 700× 700 24 15 12 12 12 11
#5 750× 750 23 15 12 12 11 10
#6 800× 800 24 15 12 12 11 11
#7 850× 850 26 17 13 13 12 11
#8 900× 900 24 15 12 12 12 11
#9 950× 950 23 15 12 12 11 10
#10 1000× 1000 24 15 12 12 11 11

Mean 24.1 15.4 12.2 12.2 11.5 10.6

Table 2. Results of comparisons based on CPU time (seconds) for Experiment 1.

Matrices Size Newton Halley Padé 4-1 Padé 4-2 PM1 PM2

#1 550× 550 1.69 1.62 1.51 1.57 1.64 1.37
#2 600× 600 2.25 2.16 2.04 2.12 2.06 1.88
#3 650× 650 3.32 3.09 2.89 2.86 2.91 2.63
#4 700× 700 3.54 3.16 3.01 3.07 3.16 2.98
#5 750× 750 4.12 3.89 3.60 3.71 3.44 3.33
#6 800× 800 5.22 4.48 4.24 4.35 3.99 4.24
#7 850× 850 6.60 6.04 5.34 5.47 5.25 4.92
#8 900× 900 7.32 6.26 5.90 5.93 6.16 5.92
#9 950× 950 8.45 7.53 6.89 6.93 6.59 6.31
#10 1000× 1000 10.64 8.81 8.23 8.70 7.72 7.88

Mean 5.32 4.71 4.37 4.47 4.29 4.15

Thee computational tests in Section 4 have been performed to show the efficacy of
the new iteration method (and its reciprocal) for a variety of complex matrices of different
sizes. The mean of the CPU times for (23) and (24) performed better than the others.

Example 2. The target of this problem is to compare the solvers for 10 real, randomly generated
matrices of different sizes, as follows:

SeedRandom[123];
min = 11; number = 20;
Table[A[l] = RandomReal[{-1000, 1000},
{50 l, 50 l}]; {l, min, number}];
tolerance = 10^-5;

The results are given in Tables 3 and 4, which confirm the superiority of the proposed solver
against the existing solvers in terms of the number of iterates as well as the elapsed CPU time.
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Table 3. Results of comparisons based on number of iterates for Experiment 2.

Matrices Size Newton Halley Padé 4-1 Padé 4-2 PM1 PM2

#1 550× 550 28 18 14 14 13 12
#2 600× 600 33 21 17 17 14 14
#3 650× 650 23 15 12 12 11 10
#4 700× 700 25 16 13 13 12 11
#5 750× 750 23 15 12 12 11 10
#6 800× 800 28 18 14 14 13 12
#7 850× 850 25 16 13 13 12 11
#8 900× 900 24 15 12 12 11 10
#9 950× 950 27 17 14 14 13 12
#10 1000× 1000 25 16 13 13 12 11

Mean 26.1 16.7 13.4 13.4 12.2 11.3

Table 4. Results of comparisons based on CPU time (seconds) for Experiment 2.

Matrices Size Newton Halley Padé 4-1 Padé 4-2 PM1 PM2

#1 550× 550 1.10 0.92 0.82 0.82 0.75 0.74
#2 600× 600 1.53 1.31 1.18 1.22 1.03 1.06
#3 650× 650 1.34 1.11 1.02 1.04 0.98 0.90
#4 700× 700 1.65 1.44 1.28 1.40 1.28 1.22
#5 750× 750 1.82 1.60 1.43 1.52 1.38 1.30
#6 800× 800 2.67 2.22 1.91 2.04 1.90 1.80
#7 850× 850 2.74 2.33 2.07 2.20 2.05 1.86
#8 900× 900 3.05 2.56 2.21 2.37 2.22 1.96
#9 950× 950 3.85 3.18 2.94 3.13 2.91 2.72
#10 1000× 1000 4.13 3.52 3.42 3.36 3.13 2.92

Mean 2.39 2.02 1.83 1.91 1.76 1.65

5. Concluding Remarks

To calculate the sign of an invertible matrix is always a significant problem in the
theory and application of functions of matrices in mathematics. Accordingly, it is important
to design new methods for such a purpose. Toward this goal, in this paper, after discussing
the importance of studying the fractal behavior of iteration methods for solving nonlin-
ear equations on different polynomials, we have proposed a new solver. The proposed
multiplication-rich fourth-order method was developed, and its stability was proved, in
this paper. Computational tests were performed to check the efficacy of the proposed solver
and confirm the theoretical discussions. The presented scheme in this work has global
convergence for the matrix sign, but like the other similar methods of the same structure, its
convergence for the matrix sector function is local. This makes it important to investigate
how to choose a proper starting matrix to be in the convergence phase when it is employed
for finding the matrix-sector functions. Such an investigation is under investigation in our
team for future research works.
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