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Abstract: The design of a novel material necessitates a fundamental understanding of its structure–
property relation. Inorganic porous materials (media) such as natural soil and rock, and artificial
ceramic and cement, exhibit multifractal characteristics in view of their structural heterogeneity.
This paper presents a numerical investigation of the effective elastic modulus of multifractal porous
materials. Two types of deterministic and stochastic cascading algorithms are employed to synthesize
the multifractal fields, and then a mathematical formula is proposed to perform the conversion from
the intensity of a multifractal field to the local elastic modulus of a multifractal porous material.
Furthermore, a finite element method is used to achieve the homogenization of the local elastic
modulus. Special attention is paid to the dependence of the effective elastic modulus on the structural
heterogeneity of multifractal porous materials.

Keywords: numerical investigation; multifractal porous materials; elastic modulus; structural
heterogeneity; finite element method

1. Introduction

An essential part of material research is developing a fundamental understanding of
the structure–property relation [1]. It is believed that such a basic relation could provide
theoretical guidance for the design of novel materials from structure modification to
property optimization [2,3]. In practice, inorganic materials (media) such as natural soil and
rock and artificial ceramic and cement have very complex internal structures, i.e., irregular
fractures and pores are dispersed within a solid matrix. For such porous materials, the
structure–property relation depends not only on the solid matrix, but also on the pore
network [4].

A variety of experimental techniques have been applied to investigate the structural
features of porous materials, including gas adsorption, mercury intrusion porosimetry
(MIP), small-angle neutron scattering (SANS), scanning electron microscopy (SEM), X-ray-
computed tomography (XCT), and nuclear magnetic resonance (NMR) tests. Each has
its own advantages and drawbacks, as documented in detail [5–12]. Meanwhile, some
advanced theories have been proposed to describe the structural heterogeneity from a
mathematical viewpoint, such as fractal self-similarity and multifractal statistics [13]. Using
these, the structural heterogeneity may be defined as the quality or diversity of certain
characteristics. More specifically, porous materials (media) are represented by the level of
dissimilarity of pore-space, the pore and throat size distribution, the tortuousness of their
connections and their spatial distribution. Fractals refer to broken or fractured geometric
patterns with a shared feature called self-similarity. That can be understood by the analogy
of zooming into a digital image to uncover its finer structure; if this is done on a fractal,
no new details appear, i.e., nothing changes and the same pattern repeats over and over.
Fractal self-similarity shows great advantages related to its concise mathematics, i.e., a
universal power law relationship accounts for the scale-dependent structure. Nevertheless,
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the reality is more complex, since one often finds that most objects and phenomena tend
to deviate from a perfect fractal. In comparison to fractals, the term multifractal describes
objects or phenomena consisting of multiple fractals that depend on the scale or region
of interest. As a matter of fact, the multifractal statistic has proven itself as a valuable
tool for describing complex systems with chaotic and nonlinear dynamics, and therefore
highly irregular structural features. Instead of the single fractal dimension discussed in the
fractal theory, a group of multifractal parameters, such as the Rényi dimension, the Hölder
exponent and the multifractal spectrum, provide some good options for a quantitative
measurement of the structural heterogeneity within multifractal theory.

The application of multifractal statistics to inorganic porous materials, including soil,
rock, ceramic and cement, has undergone fast developments and contributed useful results
over the years. For instance, San José Martínez et al. investigated the representative
elementary area (REA) of soil space, i.e., the minimum area of a soil block section that was
required to represent the features of interest, in terms of the entropy dimension of the pore
network [14]. Soto–Gómez et al. used the multifractal spectrum to characterize the scaling
properties of the pore network in soil as the statistical descriptors of its topology, and even
to correlate the macroscopic physical properties, such as the transport and retention of
substances through it [15]. Guan et al. compared the multifractal parameters among shales,
through which the multifractal statistic was demonstrated as a promising tool for the
quantitative evaluation of the internal complexity of heterogeneous rocks [16]. Duan et al.
compared the multifractal characteristics of deeply buried carbonate rocks, and introduced
two multifractal parameters as the indicators of pore structure types via case studies [17].
Stach et al. carried out the multifractal statistic analysis of stereometric files obtained from
a confocal microscope and achieved high efficiency in detecting the locations of pores on an
alumina ceramic coating surface [18]. Dănilă et al. implemented the multifractal statistic to
achieve the reliable separation of replicas from genuine ceramics belonging to the Cucuteni–
Tripolye culture, as the relative rarity of genuine examples has led to a flood of fake
(replica) archeological artefacts in the marketplace [19]. Valentini et al. used the multifractal
spectrum extracted from digital images of cement paste as a structural probe to determine
the tendency of calcium silicate hydrate gel to form clusters [20]. Gao et al. adopted the
width of the singularity spectrum as the index to quantify the structural heterogeneity,
and further investigated its effect on the elastic modulus of ordinary Portland cement
paste [11,21].

In practice, several methods can be used for the analysis of the multifractal statistic,
which can be divided into two classes, i.e., box-counting methods and others based on
wavelets. For the first class, the space of interest needs be meshed with a certain number of
identical boxes, and a normalized measure is computed for each box [22,23]. The second
class is based on the wavelet transform, and there is here no need to mesh the space of
interest [24,25]. In contrast to the abundance of analysis tools, only a few works have
proposed actual algorithms for the generation or synthesis of the multifractal statistic,
particularly in controllable scaling exponents. To date, as inspired by canonical binomial
cascades, multiplicative cascades have always played a central role in generating multifrac-
tals [26,27]. For instance, Perfect et al. described the synthesis of a multifractal Sierpinski
carpet based on multipliers composed of average mass fractions calculated from the trun-
cated two-parameter binomial distribution [28]. Cheng proposed a five-parameter binomial
multiplicative cascade, which permitted the synthesis of an asymmetrical multifractal [29].
These attempts all relied on a deterministic algorithm, i.e., the same multipliers were used
through the cascading process. Besides this, some stochastic algorithms have been put
forward by means of the incorporation of random multipliers during the cascading process.
For instance, Barral and Mandelbrot introduced the multifractal products of cylindrical
pulses, i.e., the compound Poisson cascades, and recognized their rigorous multifractal
characteristics [30]. By prescribing the correlation function of the increments of a random
walk, Muzy and Bacry developed the multifractal random walk algorithm [31]. Chainais
formulated compound Poisson cascades as well as infinitely divisible cascading noise,
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motion and random walk in a general framework, and provided strong results regarding
convergence and scaling behavior [32,33].

As one of the fundamental parameters controlling mechanical properties, the elastic
modulus has been broadly studied in terms of the porosity–modulus relation in porous
materials. Much earlier, Hashin and Shtrikman proposed the widely used upper and lower
bounds for the effective elastic moduli of a macroscopically homogeneous and isotropic
composite material of an arbitrary phase geometry [34]. Such formulae were able to provide
a good estimate for the effective moduli, assuming the ratios between the different phase
moduli were not too large, i.e., the bounds derived were sufficiently close. Budiansky
and O’connell calculated the elastic moduli of bodies containing randomly distributed
flat cracks based on a self-consistent method, wherein general concepts were outlined for
arbitrary cracks and explicit derivations were given for elliptic cracks [35]. Zhao et al.
considered porous materials with spherical pores of given distributions, and derived the
five independent elastic constants for each arrangement by means of Mori–Tanaka’s mean
field theory in conjunction with the Eshelby’s solution [36]. Gong et al. applied a stepped
equivalent substitution approach to extend the Mori–Tanaka model to predicting the elastic
behavior of porous materials, whereby the effects of pore size, pore number and sample
size were taken into account [37]. Manoylov et al. examined the details of several models
used for the prediction of elastic characteristics of natural and synthetic porous materials,
and then introduced an extended Vavakin–Salganik model for those composed of isolated
spherical pores with various statistical distributions [38]. Making use of finite element
modeling, Chen et al. calculated the elastic modulus of porous ceramic films fabricated
by constrained sintering, wherein the microstructure was reconstructed from focused
ion beam/scanning electron microscope (FIB/SEM) tomography [39]. It was concluded
that porosity was the key variable that controlled the elastic modulus of the partially
sintered ceramic films, while other features of the microstructure, such as the pore size, had
only a minor influence. Some other relevant work can be found in Grigorenko et al. [40],
Abbas and Zenkour [41], Abbas [42] and Dyyak et al. [43]. Note that most previous
attempts have been concentrated on the dependence of the elastic modulus on the overall
porosity, pore shape and pore size distribution. Nevertheless, the usage of such parameters,
i.e., the overall porosity, pore shape and pore size distribution, might be insufficient or
inappropriate for describing the complexity of a realistic pore network, particularly for
multifractal porous materials. Balankin proposed the concept of multifractal elasticity for
the prediction of the mechanical behaviors of multifractal materials, and derived a closed
system of constitutive equations on the basis of two phenomenological laws of reversible
deformations of multifractal structures [44]. Thereafter, to the best of our knowledge,
progress related to a general investigation of the elastic characteristics for multifractal
porous materials remains sparse.

This paper presents a numerical investigation of the effective elastic modulus of multi-
fractal porous materials, with special attention paid to the effect of structural heterogeneity.
To that end, two types of deterministic and stochastic algorithms are employed to synthe-
size multifractal fields. A mathematical formula is proposed to account for the conversion
from the intensity of a multifractal field to the local elastic modulus of a multifractal porous
material, and a finite element method is implemented to compute the effective elastic
modulus. The remainder of this paper is organized as follows: Section 2 presents a brief
description of multifractal porous materials; Section 3 introduces two types of cascading al-
gorithms, including the two-parameter binomial multiplicative cascade and the compound
Poisson cascades; Section 4 describes the conversion from the intensity of a multifractal
field to the local porosity and elastic modulus of a multifractal porous material; Section 5
focuses on the finite element method to achieve the homogenization of the elastic modulus;
Section 6 gives the results and discussion.
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2. Multifractal Porous Materials

The statistical properties of the structural heterogeneity of multifractal porous materi-
als are often characterized by parameters such as the Rényi dimension, the Hölder exponent,
and the multifractal spectrum. Depending on the experimental technique adopted, the
specific multifractal parameters considered might differ in practice. For this, Table 1
gives an overview of some previous works regarding the examination of the multifractal
characteristics of inorganic porous materials.

Table 1. Previous works examining the multifractal characteristics of inorganic porous materials.

Authors Porous Materials Experimental Techniques Multifractal Parameters

San José Martínez et al. (2007) [14] Soils from central Spain Confocal microscope,
digital camera Entropy dimension

Soto-Gómez et al. (2020) [15] Soils from northwestern Spain X-ray-computed tomography Rényi dimension,
multifractal spectrum

Guan et al. (2020) [16] Lacustrine shales from the
Bohai Bay Basin of China

Gas adsorption, mercury
intrusion porosimetry

Rényi dimension,
multifractal spectrum

Duan et al. (2021) [17] Carbonate rocks from the
Tazhong Uplift of China

Gas adsorption, mercury
intrusion porosimetry, nuclear

magnetic resonance

Capacity dimension,
Hölder exponent

Stach et al. (2014) [18]
Al2O3

coating deposited
on an aluminum alloy disc

Confocal microscope Hausdorff dimension
spectra

Dănilă et al. (2018) [19] Ceramic pottery in
Cucuteni–Tripolye culture Scanning electron microscopy Rényi dimension,

multifractal spectrum

Valentini et al. (2012) [20] Ordinary Portland cement X-ray powder diffraction
microtomography Multifractal spectrum

Gao et al. (2021) [21] Ordinary Portland cement X-ray-computed tomography Multifractal spectrum

The Rényi dimension Dq (also called the generalized fractal dimension) is defined
as [13]:

Dq = lim
δ→0

Iq(δ)

lnδ
(1)

Iq(δ) = −
1

q− 1
ln

N(δ)

∑
i=1

Pq
i (δ)

 (2)

N(δ)

∑
i=1

Pi(δ) = 1 (3)

Iq is the generalized entropy of order q, Pi (δ) is the probability (the normalized local
porosity) of a point lying in the i-th box (element) used to cover the space of interest, and δ
is the box size, which also represents the spatial scale. Some dimensions having explicit
physical meanings include the capacity dimension D0 for q = 0, the entropy (information)
dimension D1 for q = 1 and the correlation dimension D2 for q = 2. As shown in Figure 1,
the space of interest needs be meshed with a certain number of identical boxes for the first
class of methods in an analysis of the multifractal statistic. Usually, a power series of spatial
scales δ is chosen out of convenience.
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Besides Iq, the generating or partition function χq (δ) is defined as [13]

χq(δ) =

N(δ)

∑
i=1

Pq
i (δ) (4)

For the multifractal statistic, χq (δ) exhibits a scaling behavior over a wide range of
scales such that

χq(δ) ∼ δτ(q) (5)

τ(q) is called the mass exponent, which is a nonlinear function of q [14].
For each box, the relation between the probability measure P(δ) and the scale δ can be

expressed as
P(δ) ∼ δα (6)

α is called the Hölder exponent, which characterizes the strength of a singularity [14].
Because of the fluctuation of P(δ) among different boxes, α is a continuous variable that is
bounded within an interval. The number of boxes N(δ, α) with the same α satisfies

N(δ, α) ∼ δ− f (α) (7)

f (α) is called the Hausdorff dimension [15].
The multifractal parameters are not independent but correlated through [15]

τ(q) = (q− 1)Dq (8)

α =
dτ(q)

dq
(9)

f (α) = qα− τ(q) (10)

3. The Multiplicative Cascades Used for Synthesizing the Multifractal Fields
3.1. Paradigm of the Multiplicative Cascades

In practice, apart from the reconstructed microtomographic images providing a three-
dimensional description, most microstructural information is two-dimensional, as obtained
from direct images of various kinds, such as digital camera and microscope images. For
this, the synthesis of multifractal porous materials prevails in the two-dimensional case,
and thus this was also the case in the current study. The multiplicative cascades have
always played a central role in the synthesis of multifractal fields [26]. The paradigm of a
cascading process is illustrated in Figure 2. A dimensionless unit box (see n = 0) is divided
into b2 identical small ones of size 1/b (see n = 1), where b is the cascading resolution. Each
sub-box is assigned a weight pi ≥ 0 (i = 1, 2, . . . , b2). Then, this process is repeated. The
small boxes of size 1/b are further divided into b2 identical smaller ones of size 1/b2, and
the weights qj ≥ 0 (j = 1, 2, . . . , b2) are assigned such that each smaller box has a weight
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piqj (see n = 2). This is continued n times until the homogeneity scale (δ = 1/bn) is reached,
at which point each small box becomes homogeneous. In principle, the specific choice of
the weights or multipliers (pi, qj, . . . ) determines the type of the cascading process. That is,
if the multipliers are kept the same through the cascading process, this is a deterministic
algorithm; if the multipliers are independent but correlated at a given cascading level, this
is a stochastic algorithm.
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3.2. Two-Parameter Binomial Multiplicative Cascades

The classical Sierpinski carpet and its three-dimensional cousin (the Menger sponge)
have a long history of applications in modeling pore and fracture networks in natural
porous materials (media). It is well known in mathematics that they are strict fractals.
Based on this, Perfect et al. described the synthesis of a multifractal Sierpinski carpet or
Menger sponge, wherein the multipliers were assigned average mass fractions calculated
from the truncated binomial distribution of two parameters [28]. In particular, let N = b2,
and the multipliers can be given as

pi =
i−1

∑
k=0

B(N − k, N, p)
1

N − k
(11)

B is the truncated binomial probability, written as

B(k, N, p) =

(
N!

k!(N−k)!

)
pk(1− p)N−k

∑N
k=1

(
N!

k!(N−k)!

)
pk(1− p)N−k

(12)

The values of pi depend on the two critical parameters b and p. Figure 3 shows the
variation of pi with p for b = 4, which tends to be less steep when p→ 1. The solid lines are
used for the sake of clarity, and pi is valid only at the discrete integers of i. The horizontal
axis refers to i = 1 . . . 16, denoting the serial number of a sub-box. The vertical axis
shows the values of the multipliers pi. As mentioned above, when the cascading process
is continued, the same multipliers {pi} = {qj} shall be used. Since p→ 1 leads to a smaller
discrepancy between the upper and lower bounds of pi, i.e., 0.135 for p = 8/16 and 0.076
for p = 13/16, a rather homogeneous multifractal field can be anticipated. That is, the
structural heterogeneity depends fully on b and p for the multifractal field generated by the
two-parameter binomial multiplicative cascades.
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For the two-parameter binomial multiplicative cascades of the deterministic algorithm,
the generating function χq (δ = 1/bn) is expressed as

χq

(
1
bn

)
=

(
1
bn

)τ(q)
(13)

Equation (13) has to be satisfied for any a cascading level (the times of repeating) n.
Thus, setting n = 1 and substituting Equations (11) and (12) into Equation (13) gives the
Rényi dimension as 

Dq = 1
(1−q)lnb ln

 N

∑
i=1

(pi)
q

, q 6= 1

D1 = −
N

∑
i=1

piln(pi)/lnb, q = 1

(14)

3.3. Compound Poisson Cascades

The multiplicative cascades of the deterministic algorithm are computationally very
easy to implement, but they have two major drawbacks. Their construction is not space
shift-invariant, i.e., it is not strictly stationary. Besides this, the scaling behavior favors only
the prescribed scale ratio equal to the given parameter b (integer ≥ 2). One of the solutions
to both drawbacks is to replace the rigid nested arrangement of multipliers with some
random ones generated in a marked Poisson point process (x, r, W) [32,33]. For this, the
locations x are i.i.d. uniformly distributed on the real space with density 1; the scales r are
i.i.d. random variables on (δ, 1) with a well-chosen probability; the marks or multipliers
W are i.i.d. positive random variables. Such types of random multiplicative cascades are
often called the compound Poisson cascades, since they are built as a combination of the
Poisson point process of (x, r) and the random multiplier W. In particular, by introducing
the space-scale cone of influence Cδ (x) = {(xˆ, r): δ ≤ r ≤ 1, ‖xˆ–x‖ < r/2}, the compound
Poisson cascades give [32]

Qδ(x) =
∏(xi ,ri)∈Cδ(x) Wi

E
[
∏(xi ,ri)∈Cδ(x) Wi

] (15)

Qδ (x) accounts for the intensity of a multifractal field at the location x and the spatial
resolution δ, and E denotes the mathematical expectation. Each realization of this random
process could be regarded as a block taken from a different location of the multifractal porous
material. The compound Poisson cascades have found many applications in the statistics of
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turbulent flows and natural images, since they are easy to synthesize numerically. The scaling
exponent is described as E [Qδ (x)q] = δϕ (q) with ϕ(q) = 1− E (Wq)− q(1− EW), or equivalently
E [εδ(x)q] = δτ (q), where εδ (x) is the box average of Qδ(x) over a ball of radius δ [33]

εδ(x) =

∫
||x̂−x ||<δ Q(x^)dx^∫
||x̂−x ||<δ dx^

(16)

In general, this satisfies ϕ (q) = τ (q), at least within some limited range of values of
q [45]. Furthermore, for a particular family of the compound Poisson cascades, i.e., when
the random multipliers have a probability density function G (W) = ζW(ζ − 1) with ζ > 0
and W∈[0, 1], they depend on the parameter ζ only. Figure 4 shows the variations of G (W)
for different values of ζ. The case ζ = 1 yields G (W) = 1, i.e., W is distributed uniformly
in [0, 1]. Meanwhile, one can note that the probability of W approaching unity becomes
much larger when ζ >> 1. If a random multiplier W→ 1, the cascading process becomes
WiW→Wi. That is, as the cascading level n goes down, the structural heterogeneity will
not be intensified. Therefore, for such a family of compound Poisson cascades, a fairly
homogeneous multifractal field can be anticipated when ζ >> 1.
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For these particular compound Poisson cascades, the Rényi dimension Dq takes the
simple form of

Dq = d− q
(ζ + 1)(ζ + q)

(17)

4. Conversion from the Intensity of a Multifractal Field to the Elastic Modulus

The intensity of a multifractal field g = pi or Qδ (x) can be normalized as:

f =
g− gmin

gmax − gmin
(18)

or
f =

g
gmax

(19)

gmin and gmax are the minimum and maximum values of g, respectively.
Equations (18) and (19) are equivalent in most practices, since gmin tends to approach
zero for the two types of multiplicative cascades. Such a linear transformation from g to
f does not change the structural heterogeneity on one side; naturally, it takes the form
0 ≤ f ≤ 1, and f can thus be considered as the porosity of a porous material in general on
the other side. As such, in the following sections, we define f as the local porosity of the
synthesized multifractal porous materials.
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A variety of empirical formulae have been proposed to account for the porosity–
modulus relation of porous materials [46–51]. One such classical equation is written in
terms of an exponential law:

E = E0exp(−A f ) (20)

where E0 is the zero-porosity elastic modulus, which depends on the solid matrix, and A is
a parameter related to the pore network of the material [46,47]. Herein, the dependence
of the Young’s modulus on porosity is demonstrated, while other forms of the elastic
modulus can be described in a similar manner [52]. These typical relations were fitted
from numerous sets of experimental data for different types of porous materials. Due to
the complexity of real porous materials, such as the transition of the pore structure from
interconnected to isolated, it is generally believed that A might not be constant for the
entire range of porosity 0 ≤ f ≤ 1. Wang presented different physical models and discussed
in detail the effects of pore neck geometry, particle size and grain growth, and the type of
packing system, which could influence the value of A, i.e., A = 1.72, 3.37 and 5.02, as shown
in Figure 5 [46]. In consequence, some nonlinear terms of f are often added to address
the deviations of the porosity–modulus relation from the classical formula, such as the
incorporation of high-order terms such as Af + Bf 2 [53]. According to Figure 5, it is not
difficult to conclude that as the porosity f increases, the deviations become more drastic.
The pure arithmetic fit in terms of the incorporation of high-order terms such as Af + Bf 2

will not result in a universal formula that can account for the porosity–modulus relation
of a porous material. Therefore, differently from previous attempts, we point out that the
parameter A can be viewed as a material constant for the entire range of porosity 0 ≤ f ≤ 1
if only the dimension of a porous material is small enough. Meanwhile, the deviations of
the porosity–modulus relation from the classical formula can be attributed to the structural
heterogeneity of realistic porous materials. For this, Equation (18) or Equation (19) can be
substituted into Equation (20), which yields a mathematical formula accounting for the
conversion from the intensity of a multifractal field g to the elastic modulus E, as:

E = E0exp
[
−A

(
g− gmin

gmax − gmin

)]
(21)

or

E = E0exp
[
−A

(
g

gmax

)]
(22)Fractal Fract. 2023, 7, x FOR PEER REVIEW 10 of 20 
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5. Finite Element Method for the Homogenization of Elastic Modulus

The finite element method considers each isotropic element as having its own elastic
modulus tensor. The essential idea is that a variational principle pertains for the linear
elastic problem, i.e., the final distribution of strain satisfies the condition that the total
elastic energy should be an extremum [54,55]. Using the Voigt notation of symmetry, the
elastic energy Θ stored in each element is written as [54]

Θ =
1
2

ε lElmεmdxdy (23)

εl and εm are local strains at a point (x, y) within the element; l and m are labels covering the
three components, i.e., l, m = 1, . . . , 3; Elm is the local elastic modulus tensor. The algorithm
reduces the energy equation to a quadratic form in terms of the nodal displacements.

As shown in Figure 6, the nodal displacement is written as urγ, where r (or s) = 1, . . . , 4
is the label covering the 4 nodes, and γ (or λ) = 1, 2 denotes the two components in a two-
dimensional Cartesian coordinate system. Each component of the displacement is linearly
interpolated across the element. As a result, the γ-th component of the displacement at a
point (x, y), i.e., uγ (x, y), is defined as

uγ(x, y) = Fγ,rλ(x, y)urλ (24)

Fγ ,rλ is the shape function for a square bi-linear element, i.e., Fγ ,1λ = (1–x) (1–y), Fγ ,2λ = x
(1–y), Fγ ,3λ = xy, and Fγ ,4λ = (1–x) y if γ = λ; otherwise, Fγ ,rλ = 0.
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The local strain can be converted from the local displacement at point (x, y) as

ε l(x, y) = Sl,rλ(x, y)urλ (25)

The conversion function S is written as

Sl,rλ(x, y) = TlγFγ,rλ(x, y) (26)

with T = (∂/∂x 0; 0 ∂/∂y; ∂/∂y ∂/∂x).
Substituting Equations (24)–(26) into the energy expression Equation (23) leads to [55]

Θ =
1
2
[Sl,rγurγ]

TElm[Sm,sλusλ]dxdy (27)
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Grouping the S and E matrices together, and performing the integral over the element
with respect to the terms that have (x, y) dependence, yields

Θ =
1
2
[urγ]

TΨrγ,sλ[usλ] (28)

with
Ψrγ,sλ = [Sl,rγ]

TElm[Sm,sλ]dxdy (29)

Ψrγ ,sλ is the stiffness matrix. The global elastic energy must be summed over all elements,
which is a large quadratic functional in terms of the nodal displacements. The variational
principle requires that the gradient of elastic energy with respect to the nodal displacements
is zero, which can be solved using a conjugate scheme. The effective strain <εl> and stress
<σl> are then obtained using the average of each component of the strain tensor and stress
tensor over all elements, such that

〈ε l〉 =
ε ldxdy
dxdy

(30)

〈σl〉 =
Elmεmdxdy

dxdy
(31)

< > denotes the averaging operator. Using the general Hooke’s law for an isotropic medium,
the effective modulus tensor Eeff is solved using

〈σl〉 = Eeff 〈ε l〉 (32)

6. Results and Discussions
6.1. The Structural Heterogeneity of Multifractal Porous Materials

The examples in Figures 7 and 8 show some digital images of the multifractal porous
materials synthesized from the two-parameter binomial multiplicative cascades and the
compound Poisson cascades. Each of these is 256 × 256 pixels (elements) in size. The
grayscale of each pixel corresponds to a distinct local porosity f with 0 ≤ f ≤ 1. The
higher the porosity, the darker the element. The multifractal porous materials (Figure 7)
synthesized by the two-parameter binomial multiplicative cascades exhibit the highly
regular patterns of a rigid hierarchy, which can be used to model fracture networks in soil
and rock. Those images (Figure 8) synthesized by the compound Poisson cascades exhibit
very random textures, which can be used to model pore networks in ceramic and cement.
Moreover, when p→ 1 (for the two-parameter binomial multiplicative cascades) or ζ >> 1
(for the compound Poisson cascades), one expects to observe rather homogeneous images
with a lot of black regions associated with small values (f → 0), and some isolated white
points associated with rare extreme values (f → 1).
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Figure 9 presents the quantitative characterization of structural heterogeneity for
the two-parameter binomial multiplicative cascades and the compound Poisson cascades.
In particular, the Rényi dimension Dq is taken into account. Theoretically, for the given
parameters (b, p) or ζ, if all the values of Dq are equal, a monofractal (strict fractal) is
described. If, however, the values of Dq are different, a multifractal is then described. We
define the range of Dq as ∆D = D0 − D+∞, where the capacity dimension D0 = 2 equals
the topological dimension 2 of the space, and D+∞ is approximated by D10. In essence,
∆D provides a quantification of the structural heterogeneity. That is, a highly clustered
distribution is indicated by a higher value of ∆D compared to a randomly dispersed
distribution, whereas the spectrum of a totally homogeneous distribution that fills the
global domain reduces to a point, such that ∆D = 0. Perfect et al. demonstrated that for the
two-parameter binomial multiplicative cascades, the multifractal scaling exponents were
consistent at any q of (−∞, +∞) [28]. Lashermes et al., however, showed that the compound
Poisson cascades could undergo systematic linearization—for a certain range of orders q,
the estimate accounts correctly for the multifractal scaling exponents; outside this range,
the estimate significantly departs from the correct values and behaves systematically as a
linear function of q [45]. Figure 9 indicates that as p (from 8/16 to 13/16) and ζ (from 0.5
to 16) increase, the structural heterogeneity ∆D decreases in the two-parameter binomial
multiplicative cascades (from 0.510 to 0.143) and the compound Poisson cascades (from
0.635 to 0.023), respectively.

6.2. Finite Element Method Used to Determine the Effective Elastic Modulus

Most importantly, each pixel (element) within the synthesized multifractal porous
materials must be small enough, and therefore the classical porosity–modulus formula can
be applied to compute the elastic modulus. Then, finite element computation can achieve
the homogenization of the local elastic modulus, i.e., the determination of the effective
elastic modulus Eeff/E0. To that end, the classical Spriggs’ equation with A = 1.72 is used
to account for the porosity–modulus relation, which does not compromise the generality.
That is, E/E0 = exp (−1.72f ) is assumed for each pixel (element) when computing the two
types of multifractal porous materials. The homogeneous engineering strains are imposed
on each element initially, i.e., (ε1, ε2, ε3) = (0.1, 0.1, 0.1). This accords with the preset rule
that when the total elastic energy reaches an extremum, the final dimensionless strain
(ε1) and stress (σ1) are recorded within multifractal porous materials. Figure 10 (for the
two-parameter binomial multiplicative cascades) and Figure 11 (for the compound Poisson
cascades) show maps of the dimensionless strain and stress. Then, homogenization of the
elastic modulus is performed by means of the general Hooke’s law for an isotropic medium.
The results are summarized in Tables 2 and 3, i.e., the macroscopic porosity <f> and the
effective elastic modulus Eeff/E0. For the two-parameter binomial multiplicative cascades,
at the given parameters b and p, the macroscopic porosity <f> holds a fixed value, while the
effective elastic modulus Eeff/E0 is bounded with errors derived from the random order
of the multipliers. For the compound Poisson cascades, at the given parameter ζ, both
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the macroscopic porosity <f> and the effective elastic modulus Eeff/E0 are bounded with
errors, since a realization of the random algorithm in fact represents a block taken from a
different location of the multifractal porous material. Each point of data listed in Tables 2
and 3 is averaged from 10 parallel realizations. Generally, as p (for the two-parameter
binomial multiplicative cascades) or ζ (for the compound Poisson cascades) increase, the
macroscopic porosity <f> increases, and meanwhile the effective elastic modulus Eeff/E0
decreases. Moreover, note that compared to Eeff/E0, the error of Eeff/E0 derived from
the randomness of the synthesized structure has a much smaller value, which indicates
the sound isotropy of multifractal porous materials. Later, these data shall be used as
inputs for a further discussion of the dependence of the effective elastic modulus on the
structural heterogeneity.
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Table 2. Macroscopic porosity <f> and effective elastic modulus Eeff/E0 of multifractal porous
materials synthesized by the two-parameter binomial multiplicative cascades.

Parameter <f> Eeff/E0 Error of Eeff/E0

b = 4, p = 8/16 0.046 0.904 0.019

b = 4, p = 9/16 0.080 0.848 0.023

b = 4, p = 10/16 0.128 0.776 0.031

b = 4, p = 11/16 0.197 0.692 0.035

b = 4, p = 12/16 0.289 0.592 0.029

b = 4, p = 13/16 0.409 0.484 0.021

Table 3. Macroscopic porosity <f> and effective elastic modulus Eeff/E0 of multifractal porous
materials synthesized by the compound Poisson cascades.

Parameter <f> Error of <f> Eeff/E0 Error of Eeff/E0

ζ = 0.5 0.036 0.023 0.920 0.042

ζ = 1.0 0.089 0.030 0.837 0.050

ζ = 2.0 0.218 0.045 0.686 0.074

ζ = 4.0 0.379 0.048 0.507 0.046

ζ = 8.0 0.550 0.058 0.383 0.039

ζ = 16 0.698 0.025 0.299 0.013

6.3. Dependence of the Effective Elastic Modulus on the Structural Heterogeneity

It has been stated that if the dimensions of porous materials were small enough, the
parameter A would be constant for the entire range of porosity 0 ≤ f ≤ 1. Meanwhile, the
deviation of the porosity–modulus relation from the classical formula should be attributed
to the structural heterogeneity of macroscopic porous materials. In analogy to Equation (20),
if we consider the synthesized multifractal porous materials as a whole, the macroscopic
porosity–modulus relation might manifest itself as

Eeff = E0exp[−(A + ∆A)〈 f 〉] (33)

where <f > is the macroscopic porosity, and ∆A > 0 is an auxiliary parameter used to quantify
the dependence of the effective elastic modulus on the structural heterogeneity. Various
factors, such as the pore neck geometry, particle size and grain growth, and the type of
packing system, influence the value of ∆A, as well as A. In combination with the results of
the finite element computation, as listed in Tables 2 and 3, it is possible to obtain the value of
∆A through the simple mathematical transformation ∆A = ln(E0/Eeff)/<f > − A.

In short, we find that the variations in ∆A are similar to those in ∆D with p or ζ. For
the two-parameter binomial multiplicative cascades, when p increases from 8/16 to 13/16,
∆A decreases from 0.469 to 0.048; for the compound Poisson cascades, when ζ increases
from 0.5 to 16, ∆A decreases from 0.658 to 0.013. Furthermore, the variations of ∆A~∆D
are plotted for the two types of multifractal porous materials. As shown in Figure 12,
it is noted that a sound positive correlation exists between ∆A and ∆D, which could be
fitted in terms of a linear relation (for the two-parameter binomial multiplicative cascades)
and a polynomial relation (for the compound Poisson cascades), respectively. Perhaps by
pure coincidence, such relations for ∆A in terms of the first- and second-order functions
of ∆D are similar to the linear and nonlinear expressions introduced to account for the
porosity–modulus relation, which needs to be further studied. In addition, it also confirms
that, similar to the range of the Rényi dimension ∆D and the width of the multifractal
spectrum ∆α, a highly clustered distribution shall result in a higher value of ∆A than a
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randomly dispersed distribution, whereas a completely homogeneous distribution implies
∆A = 0.
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It is worth noting that though plenty of numerical results have been presented, some
questions need further clarification. For instance, the current choice of 256 × 256 pixels for
the modeling size is somewhat trivial, and other options are available. More details will be
required to determine whether the modeling size can influence the porosity–modulus rela-
tion. Besides this, the current numerical investigation focuses merely on a two-dimensional
case. However, real porous materials are generally three-dimensional. Meille et al. pro-
posed that the pore network in the two-dimensional case tends to be more connected than
that in the three-dimensional case, which results in a loss of stiffness at the same level of
porosity [56]. A typical problem thus concerns relating two-dimensional computation to
three-dimensional measurement.

7. Concluding Remarks

It has been widely discussed that inorganic porous materials (such as natural soil and
rock, and artificial ceramic and cement) exhibit multifractal characteristics in view of their
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structural heterogeneity. In most cases, when subjected to external loads, the mechanical
responses can be described with their own elastic moduli considered as constant parameters.
Such treatment addresses the fact that the elastic modulus depends not only on the solid
matrix, but also on the pore network, which may vary with deformation. In this paper, we
present a numerical investigation of the elastic moduli of multifractal porous materials,
with special attention paid to the effect of the structural heterogeneity. Some general
conclusions are drawn, as follows.

1. Two types of cascading algorithms, i.e., two-parameter binomial multiplicative cas-
cades (deterministic) and compound Poisson cascades (stochastic), are employed
to synthesize the multifractal fields as well as the porous materials. The range of
the Rényi dimension ∆D provides a novel means of quantifying the structural het-
erogeneity. As the parameter p→ 1 (for the two-parameter binomial multiplicative
cascades) or ζ >> 1 (for the compound Poisson cascades), one expects to observe
rather homogeneous structures.

2. A mathematical formula, written as E = E0 exp [–A (g–gmin)/(gmax–gmin)] or E = E0
exp [–Ag/gmax], is proposed to account for the conversion from the intensity g of a
multifractal field to the local elastic modulus E of a multifractal porous material. The
finite element method can achieve the homogenization of the local elastic modulus
with great efficiency.

3. For the synthesized multifractal porous materials as a whole, the mathematical for-
mula for the macroscopic porosity <f > and the effective elastic modulus Eeff could
be described as Eeff = E0 exp [–(A+∆A)<f >]. ∆A > 0 is an auxiliary parameter used
to quantify the dependence of the effective elastic modulus on the structural hetero-
geneity. A sound positive correlation exists between ∆A and ∆D, which can be fitted
by a linear relation (for the two-parameter binomial multiplicative cascades) or a
polynomial relation (for the compound Poisson cascades).
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