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Abstract: Direct current (DC) servo motors are central to many complex systems, such as electrical,
electro-mechanical, and electro-hydraulic frameworks. In practice, these systems can have nonlinear
characteristics and parameter variations. Accurate model representation and position tracking of
DC motors are the main issues in many real systems, such as twin rotors, aircraft, airships, and
robot manipulators. The precise position tracking of these systems has already been achieved
using conventional H-infinity (H∞) controllers. However, the order and structure become more
intricate when employing complex weights to shape the closed-loop system, which limits the current
proposals. To overcome the above-mentioned limitations, in this article, we provide a precise angular
position tracking of a DC servo motor utilizing an intelligent, robust linear controller based on a
fixed-structure linear fractional transformation. The conventional H∞ controllers are based on the
minimization of an unstructured linear fractional transformation objective function that leads to a
complex design of these controllers. The main advantage of the proposed intelligent H∞ synthesis
is the fixed and simple structure that increases its practical implementation. The methodology is
formulated in the MATLAB software for the robust design of the proposed synthesis based on an
intelligent fixed-structure H∞ optimization. Simulation results are compared with conventional H∞

and proportional-integral-derivative controllers. The results are also validated experimentally.

Keywords: fixed-structured controllers; H∞ controller; linear fractional transformation; mayfly
optimization; non-smooth H∞ optimization; proportional derivative integral controller

MSC: 13P25

1. Nomenclature, Introduction, and Objectives
1.1. Nomenclature

Table 1 presents the abbreviations/acronyms considered in this article to facilitate
its reading.

Table 1. Definitions of abbreviations and acronyms used in the present document.

Abbreviation/Acronym Definition

AC Alternating current
A/D Analog to digital
D/A Digital to analog
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Table 1. Cont.

Abbreviation/Acronym Definition

DC Direct current
EMF Electromotive force
GA Genetic algorithm
H∞ Hardy space of matrix-value functions
I/O Input to output
LFT Linear fractional transformation
LTI Linear time invariant
MIMO Multi-input multi-output
MSS Modular servo system
PCI Peripheral component interconnect
PID Proportional integral derivative
PSO Particle swarm optimization
PWM Pulse-width modulation
R(s) Reference input
RCT Robust control toolbox
S(s) Sensitivity
SIMO Single-input multi-output
SISO Single-input single-output
T(s) Complementary sensitivity

1.2. Introduction

In recent decades, researchers have dealt with precise position tracking of direct
current (DC) servo motors. These motors are widely used in many practical applications
due to their reliability, ability to handle large torques, fast response to input, and continuous
operation without damage.

The researchers have studied many nonlinear control techniques in different appli-
cations, such as neuro-fuzzy control of DC motors [1], where a DC motor is employed as
an actuator in the robotic manipulator. The DC servo motors have many applications in
robots, airships, aircraft, and twin rotors. In each above application, the precise position
tracking of the DC servo motor is required.

Predictive control of brushless DC motors in an automated process is achieved utilizing
a generalized algorithm presented in [2]. Similarly, a nonlinear sliding mode control [3]
of an actuator in robot application [4] is applied for obtaining precise results. Many other
applications include nonlinear servo control for electric machines [5], stability analysis
of servo control of DC motor drive, complete adaptive control of DC servo motors [6],
speed control of DC servo systems using nonlinear sliding models, and nonlinear feedback
control of series-connected DC motors [7]. Additionally, sliding mode optimal fuzzy [8],
adaptive sliding mode fuzzy [9,10], and motion [11,12] controllers are nonlinear techniques
that have been proposed.

Linear controllers are easy to implement in comparison to nonlinear controllers [13].
When conventional linear controllers are applied to nonlinear systems, the performance
of linear control systems is degraded [14]. Simple structures and gains-based linear con-
trollers have been used in many practical and industrial applications, such as simple
proportional-integral-derivative (PID) control [15]. PIDs are one of the most common types
of linear controllers, which have been employed for decades because of their low cost and
simple, practical structure. However, in practice, the performance of these controllers is
degraded when systems contain nonlinear characteristics. Conventional PID controllers do
not provide the desired transient and steady-state specifications when a system contains
nonlinearities or disturbance effects due to environmental conditions. Many advanced
optimal and intelligent optimization techniques have been considered by researchers, such
as optimized tuning [16], genetic algorithms (GAs), and metaheuristics [17], for optimal
calculation of linear controllers and to improve the performance in real-time applications.
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Compared to traditional PID controllers, fractional-order PID controllers produce
better outcomes [18]. Nevertheless, their design requires optimizing five parameters,
two of which are fractional derivative-order and integral-order parameters. The design
entails solving five equations, and the optimization complexity is particularly noteworthy,
primarily due to the fractional order.

The conventional robust H2 and H∞ controllers are designed based on the theory
of hardy space of matrix-value functions, that is, H-infinity (H∞) [19,20], and H∞ loop
shaping in the frequency domain [21–23]. With conventional and unstructured representa-
tion, these controllers achieve optimal and robust results [24]. These conventional robust
controllers provide better transient and steady-state performances than traditional PID
controllers. However, conventional H∞ controllers have constraints on their structure order
and response speed [25]. Moreover, due to their complex and high-cost hardware structure,
conventional H∞ controllers are less used for real-time applications in the industry.

The existing literature provides studies on conventional H∞ control of DC servo motors
and alternating current (AC) motors [26,27]. Transient and steady robust performance
is achieved at the cost of the complex and higher-order structures of these conventional
controllers. In an existing work on conventional H∞ controllers [28], the authors selected
second-order weights for their optimization. This work considered a fourth-order controller
for the DC servo motor. In addition, the authors of [29] selected first-order weights to
optimize a third-order conventional H∞ controller.

The conventional H∞ controllers are linear and the sliding mode controllers are non-
linear. The structure of these controllers depends on the selection of shaping weights.
Due to the higher-order and complex structure, hardware implementation of conventional
H∞ controllers are hard and costly. Then, one can use a fixed-structure linear fraction
transformation (LFT)-based H∞ control architecture. This architecture is designed in the
frequency domain by shaping closed-loop and complementary sensitivities with complex
weights to obtain a robust, fast, transient, and steady-state behavior of the system.

The order of the fixed-structure H∞ controller is independent of the order of com-
plex weighting filters. The fixed structure ∞ controller is of second-order and whose
order is not affected by the selection of shaping weights. These frameworks can be repre-
sented as fixed-structure non-smooth H∞ optimization problems [30,31]. The fractional
transformation-based intelligent H∞ controllers are more practical due to their simple
structure and fixed order. Now, researchers have enhanced their focus on intelligent non-
smooth H∞ optimization. Many researchers use the GA-based intelligent approach to
optimize the results of H∞ controllers in different applications [32–34]. Another intelligent
technique is the particle swarm optimization (PSO) [35], which is considered more effective
in producing optimal results in H∞ control problems [36,37]. The mayfly algorithm-based
optimization [38] is helpful for the robust and optimal design of fixed-structure H∞ syn-
thesis. The corresponding tunable parameters may be optimized utilizing a novel mayfly
algorithm, which is an advanced form of the PSO [35].

The fractional transformation-based intelligent H∞ controller of a DC servo motor
proposed in the present investigation is describes next. The fixed-structure intelligent,
robust controllers are linear and their design requires a linear model of a DC servo motor.
Therefore, first, one can derive the DC servo motor’s linear time-invariant (LTI) model.
Then, based on this LTI model, one may implement the linear intelligent, robust controller
with a fixed structure and fixed order computationally; for example, by using MATLAB [39].
The linear control elements of the analyzed problem can be parameterized by using a non-
smooth H∞ optimization with the help of an intelligent, robust mayfly algorithm in MATLAB.
These control elements are optimal and robust with a fixed-structure LFT objection function.

1.3. Contributions and Plan of the Article

Our contributions are given in Table 2. The remaining part of this article is organized
as follows: Section 2 presents the mathematical modeling of DC servo motors. In Section 3,
we introduce the intelligent fixed-structure and fixed-order H∞, the conventional H∞,
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and traditional PID controllers. The comparison of the implemented three controllers by
simulations is established in Section 4. The experimental results are provided in Section 5.
Section 6 states the comparison and discussion for all three controllers. The transient
specification is also boarded in Section 6, proving the effectiveness of the proposed fixed-
structure H∞ synthesis. The conclusions of the present investigation are provided in this
section as well.

Table 2. Contributions of the present investigation.

Contribution Description

1 While considering the cost and complexity issues of conven-
tional robust H∞ controllers, we design a decentralized and fixed-
structure robust control system [40]. Thus, the proposed intelli-
gent fixed-structure H∞ controller overcomes the hardware cost
and complexity limitations.

2 The fixed-structure H∞ controller has not been investigated for
precisely tracking the position of the DC servo motor.

3 The proposed controller is robust and linear with a fixed structure
and fixed order.

4 Intelligent optimization of tunable parameters with one degree
of freedom for the fixed-structure robust H∞ control problem is
another contribution to the proposed research. For this purpose,
the proposed fixed-structure H∞ for the control problem is formu-
lated in MATLAB with the help of the robust control toolbox [39].

5 The proposed intelligent linear robust controller is also investi-
gated on a real-time model of a DC servo motor. The performance
of the proposed controller is compared with PID and conventional
H∞ controllers in terms of transient specifications, such as rise
time, settling time, steady-state error, overshoot, and peak time.

2. Mathematical Modelling
2.1. Description of the DC Servo Motor

The DC servo module consists of a DC motor, tacho generator, gearbox with backlash,
inertia load, magnetic breaks, and output disk connected with a gearbox and encoder. This
servo mechanism is available at our laboratory, where a chain of modules starts with a
tacho generator connected to a DC motor and ends with a gearbox. The potentiometer is
placed outside the servo mechanism chain. The encoder measures the angle of the shaft’s
rotation of the DC motor. The voltages are produced by a tacho generator, which is directly
proportional to the angular velocity of the DC motor. For this purpose, the tacho generator
is directly connected to the DC motor. To implement the proposed control algorithm,
the servo mechanism is interfaced with MATLAB as the proposed synthesis is linear and
requires a mathematical model of the DC motor.

2.2. Mathematical Model of the DC Servo Motor

Nonlinear control applications require only a nonlinear model of a DC motor. Different
nonlinear characteristics can be considered, such as the field flux ∅ f (ia), where f represents
the magnetization curve and ia is the armature current. Then, the nonlinear model is
written as [7]

d(Laia +∅ f (ia))

dt
= −Raia − Ka∅ f (ia)ω + va, (1)

Jm
dω

dt
= Ka∅ f (ia)ia − Dω− τL, (2)

where the notations stated in (1) and (2) are the following: La is the armature inductance,
Ra is the armature resistance, Ka is the armature field constant, va is the armature input
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voltage, Jm is the moment of inertia, ω is the angular velocity, τL is the load torque, D is
the friction coefficient, and eb(t) = Ka∅ f (ia)ω is the back electromotive force (EMF) that
indicates the nonlinear behavior. The term τm = Ka∅ f (ia)ia represents the torque produced
by the motor. A linearized model of the DC motor is required for the proposed synthesis.
After designing this synthesis for a linear model, the controller can be evaluated on a
real-time model in the presence of all nonlinear characteristics. The first linear differential
equation on the electrical side of Figure 1 and the linearized mathematical model for the
DC servo motor are derived as

va(t) = Raia(t) + La
dia(t)

dt
+ eb(t). (3)

The second linear differential equation on the mechanical side of Figure 1 is written as

τm(t) = Jm
d2θ(t)

dt2 + βm
dθ(t)

dt
. (4)

In the formulations stated in (3) and (4), the mechanical variables are related to the
electrical variables as

τm(t) = Kt ia(t), (5)

eb(t) = Kb
dθ(t)

dt
, (6)

where Kt is the torque constant and Kb is the constant of back EMF.
Note that the above differential equations are expressed in the transfer function form as

Va(s) = Ra Ia(s) + LasIa(s) + Eb(s), (7)

Tm(s) = Jm s2θ(s) + βmsθ(s), (8)

Tm(s) = Kt Ia(s), (9)

Eb(s) = Kbsθ(s), (10)

which are the transfer function representations of the expressions given in (3)–(6), respec-
tively, assuming that the initial conditions are equal to zero. The angular velocity of the DC
motor shaft is the first derivative of the angular position of the DC motor. Three methods
may control the angular velocity, or angular position of the DC motor [41], which are
summarized in Table 3.

Table 3. Control methods for the DC motor.

Method Description

Armature control The angular velocity or position of the DC motor is controlled by varying
the armature resistance.

Flux control The flux variation is controlled by adding the resistance parallel to the
armature of the DC motor.

Input voltage control The input voltage to the armature of the DC servo motor is varied to
control the angular velocity or position of the shaft.

The final closed-loop transfer function is achieved by solving the equations presented
in (7)–(10). The block diagram representation of the DC motor model is given in Figure 1.

1
sLa +Ra

Kt
1

Jms2 +βms

Kbs

Va(s)

θ(s)Eb(s)

Figure 1. Block diagram of the DC motor.
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Now, the feedback rule is applied to the block diagram in Figure 1 to achieve the
final transfer function between the input voltage and output angular position. This rule is
stated as

θ(s)
Va(s)

=
Kt

La Jm s3 + (Ra Jm + La Bm)s2 + (Ra Bm + Kb Kt)s
. (11)

In terms of s, we have that

θ(s) =
ω(s)

s
. (12)

Replacing (12) in (11), we obtain the transfer function between the input voltage and
output angular velocity of the shaft of the DC motor by means of

ω(s)
Va(s)

=
Kt

La Jm s2 + (Ra Jm + La Bm)s + (Ra Bm + Kb Kt)
.

Hence, the specific model of the DC motor, which is available in the laboratory of our
university [42], is shown in Figure 2. The description of the variables can be seen in Table 4.

Table 4. Interpretation of the variables presented in Figure 2.

Variable Description

va(t) Input voltage.
ia(t) Armature current.
θ(t) Angular position.
ω(t) Angular velocity.
Ra Armature resistance.
Jm Inertia moment.
βm Damping coefficient.
eb(t) Back EMF.
τm(t) Electromechanical torque.

Figure 2. Linear model of the DC motor available in the laboratory.

The mechanical and electrical formulas are stated as

va(t) = Ra ia(t) + Kbω(t), (13)

Jmω̇(t) = Kt ia(t)− βm ω(t). (14)

Note that the static kinetic friction of the model presented in (13) and (14) is linear,
where the saturations are neglected. The first-order inertial system is obtained with the
combination of electrical and mechanical formulations. Here, the inertial system is given by

Ts ω̇(t) = −ω(t) + Ksm v(t), (15)

where Ts is the time constant of the DC motor and Ksm is the motor gain. Both constants, Ts
and Ksm, are defined as Ts = (Ra Jm)/(βmRa + KbKt) and Ksm = Km/(βmRa + KbKt).
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In the frequency domain, the expression formulated in (15) becomes

Ts[sω(s)] = −ω(s) + Ksmv(s). (16)

From (16), we define the transfer functions, which are stated as

GP1(s) =
ω(s)
v(s)

=
Ksm

sTs + 1
, (17)

GP2(s) =
θ(s)
v(s)

=
Ksm

s(sTs + 1)
. (18)

The transfer function between angular velocity and the input voltage is given in (17),
whereas the transfer function between the angular position and the input voltage is pro-
vided in (18).

The pulse-width modulation (PWM) signal is applied as the control signal to the
DC servo motor. The input signal v(t) is scaled as u(t) = v(t)/vmax, which satisfies the
condition |u(t)| ≤ 1. By defining Ks = Ksmvmax, the final transfer functions for the angular
velocity and position as outputs are presented as

ĜP1(s) =
ω(s)
u(s)

=
Ks

sTs + 1
, (19)

ĜP2(s) =
θ(s)
u(s)

=
Ks

s(sTs + 1)
, (20)

with the notations used in (19) and (20) being established as above.

2.3. State-Space Model Equations of the DC Servo Motor

Two state variables are defined for representing the model in state-space form. The state
vector contains two state variables, which we see in Table 5.

Table 5. Interpretation of variables in the DC servo motor mathematical model.

Variable Description

x1 Angle θ in radians (rad), which determines the angular shaft position.

x2 Velocity ω in rad/sec, which represents the angular shaft velocity.

From (15), we have

Tsω̇(t) = −ω(t) + Ksm(vmaxu(t)),

Tsω̇(t) = −ω(t) + Ks u(t),

ω̇(t) =

(
−1
Ts

)
ω(t) +

(
Ks

Ts

)
u(t). (21)

The system of differential equations that is obtained from (21) for the LTI state-space
model is given by

ẋ1 = x2 (22)

ẋ2 = ax2 + bu, (23)

where a = −1/Ts < 0 and b = ks/Ts > 0. The final single-input multi-output (SIMO)
state-space model is established as

[
ẋ1

ẋ2

]
=

0 1

0 − 1
Ts

[x1
x2

]
+

 0

ks

Ts

u. (24)
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The matrix representation expressed in (22) and (23) is formulated in (24). The linear
model stated in (24) is unstable for the open-loop step response of the angular position.
The parameter values of the laboratory servo mechanism are estimated experimentally,
where the DC motor is connected to the tacho generator, inertia load, gearbox, and output
disk. The estimated parameter values are provided in Table 6. We can see the open-loop
Simulink model in Figure 3. Similarly, in Figure 4, the closed-loop Simulink model is
displayed. This closed-loop Simulink model is developed with unity gain as a controller
in the feedforward path to the DC servo motor in a negative feedback closed-loop system.
In addition, the input voltage, open-loop step response for the angular position, and open-
loop step response for the angular velocity are given in Figures 5 and 6, respectively.
Additionally, Figure 7 shows the closed-loop step response for the position and velocity.
The closed-loop model, the expression stated in (23) is replaced by ẋ2 = ax2 + bu− bx1.

Table 6. Values of experimentally estimated parameters for a DC servo motor.

Symbol Values Units

vmax 12.00 V
Ts 1.04 sec
Ks 186.00 rad/sec
a −0.96 seg−2

b 178.80 rad/seg2

Figure 3. Open-loop Simulink model of the DC servo motor.

Figure 4. Closed-loop Simulink model for position tracking of the DC servo motor.
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(a) (b)
Figure 5. Input voltage (a) and open-loop step response for position (b) of the DC servo motor.

Figure 6. Open-loop step response for velocity of the DC servo motor.

(a) (b)

Figure 7. Closed-loop step response for position (a) and velocity (b) of the DC servo motor.

3. Design of Controllers for a DC Servo Motor System
3.1. PID Controller

In recent decades, the PID controllers were designed with standard techniques such
as the root locus, pole-zero placement, and Ziegler–Nichols methods. These controllers
are widely used in many control applications, and their implementation is simple. If the
systems are nonlinear, the performances of these controllers become poor. Such controllers
do not conduct well with environmental disturbances because of their conventional design.
A traditional PID controller was designed using the Ziegler–Nichols method [43].
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The values of the tuned parameters Kp, Ki, and Kd of PID controllers are provided
in Table 7. We compare the traditional PID controllers according to their transient speci-
fications and commanded signal tracking. The expressions that govern the behavior of a
traditional PID controller are described as

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dt

, (25)

U(s) =

(
Kp +

Ki
s
+ sKd

)
E(s), (26)

where the formula presented in (26) is obtained by applying the Laplace transform to (25),
assuming that e(0) = 0, where here “s” is the Laplace variable.

Table 7. Tuned parameters of PID controllers using the Ziegler–Nichols method for angular tracking.

Symbol Description Value

Kp Proportional gain 0.1405
Ki Integral gain 0.0305
Kd Derivative gain 0.0240

3.2. Design of the Conventional H∞ Controller

The design of a conventional H∞ controller is based on filters shaping the open-loop
or closed-loop frequency responses. This controller is designed in the frequency domain.
The complex weights shape the closed-loop sensitivity S(s) and complementary sensitivity
T(s). Thus, with the selection of suitable complex weights on S(s) and T(s), the H∞ norm is
reduced. This norm is the main constraint on this conventional controller’s robust structure,
bandwidth, and transient specifications. Its formulation is known as the H∞ optimal control
problem [44]. The constraints to optimize the controller parameters are given by

‖ws(s)S(s)‖∞ ≤ 1, ‖wT(s)T(s)‖∞ ≤ 1. (27)

The constraints stated in (27) provide a margin for robustness and a better disturbance
and noise rejection over a range of frequencies. The H∞ optimal control is also robust and
provides better performance than the traditional PID. The MIXSYN tool is used to design
this H∞ optimal robust controller in MATLAB. The order of this controller is increased by
utilizing the complex weight. The drawback, which reduces the practical importance, is
the complexity of the structure of this synthesis. The calculated state-space structure of the
3rd-order H∞ controller of DC servo motor is expressed as

A =

 −0.001 0 0
2.2× 107 −2753 −3.18× 109

0 0.001 0

, B =

0.106
0
0

, C =

 1.62× 106

−202.70
−2.34× 108

>, D =
[
0
]
.

3.3. Design of the Proposed Intelligent Fixed-Structure H∞ Controller

Conventional H∞ controllers have a monolithic structure. Due to their complex
structure, these controllers have not been used widely in industrial applications. Such
controllers also have a constraint on their order. However, although they are robust, they
are not suitable for many practical applications due to the mentioned constraints. These
H∞ controllers have a constraint on the H∞ norm regarding the speed of response and
robust bandwidth. To overcome the limitations of conventional PIDs and H∞ controllers,
the fixed-structure H∞ control synthesis with intelligent optimization is proposed. These
fixed-structure H∞ controllers are robust and linear with a fixed order [45]. The standard
form of the proposed fixed-structure control, with non-tunable and tunable blocks, is shown
in Figure 8.
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Next, we describe a standard formulation and a design of fixed-structure H∞ synthesis
using a mayfly optimization algorithm. This standard formulation is comprised of two
parts: (i) the block P(s) that is LTI, which is comprised non-tunable fixed blocks, and (ii)
the second block that is comprised fixed-order control elements Ci(s), where i ∈ {1, . . . , N}
in diagonal form. This diagonal matrix, diag(C1(s), . . . , CN(s)) namely, is used in MIMO
systems. Each tunable control element Ci(s) is LTI with a fixed order. The second block
contains one control element in the case of single-input single-output (SISO) systems. Note
that the single control element is robust and LTI.

Figure 8. Standard formulation of the fixed-structured H∞ synthesis.

According to the robust control theory, all the SISO or MIMO systems can be for-
mulated into the standard form of Figure 8. The isolated tunable control elements exist
in the lower block of Figure 8, where each of them has a defined structure in the case
of MIMO systems. The non-tunable plant model is placed into block P(s). Note that
P(s) and C(s) are the transfer function representations of non-tunable and tunable blocks,
respectively. This transfer function form is achieved by applying the Laplace transform
to the time domain LTI equation. The external inputs are combined in w, such as distur-
bances and the commanded inputs. The variable z(t) contains the error signal, such as
z(t) = y(t)− r(t), where y(t) is the true output, and r(t) is the reference input. Consider
the matrix formulation given by(

z(t)
v(t)

)
= P

(
w(t)
u(t)

)
=

(
P11 P12
P21 P22

) (
w(t)
u(t)

)
. (28)

The partition of (28) is the standard formulation of the fixed-structured LFT H∞
synthesis. The LFT from w(t) to z(t) is Twz(s) = Fl(P, C) := P11 + P12C(I − P22)

−1P21 or
H(s) = Fl(P(s), diag(C1(s), . . . , CN(s))). The criterion on the fixed-structure LFT objective
function for robust transient response is defined as

fo = ts < 0.3 sec (2% error criteria);
f1 = σ− 0% (percent overshoot);

f2 = ‖Fl(P, C)‖∝ < γ, where γ = 1.

The next challenge is to achieve the defined objective criteria of the proposed fixed
structure. The H∞ problem is resolved using the mayfly approach, where the proposed
intelligent procedure works as indicated in Algorithm 1. Four parameters of linear robust
controllers, such as Kp, Ki, Kd, and Tf , are optimized by the above proposed intelligent fixed-
structure H∞ optimization employing Cj(s) = Kp + Ki/s + Kds/Tf s + 1. These parameters
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are tuned to fulfill the design requirements. The complex weights shape the closed-loop
sensitivity S(s) and complementary sensitivity T(s).

Algorithm 1: Mayfly optimization approach

begin
Step 1: Initialize the shaping weights and tunable parameters of the fixed-structure
synthesis as individuals, where they find positions pi(t) and velocities vi(t) for the
current iteration as pi(t) = pi(t) + vi(t).
Step 2: Update the weighted distance using an expression stated as

vi(t + 1) =

{
gvi(t) + a1exp−βr2

m [xi(t)− yi(t)], if f (yi) > f (xi);
gvi(t) + f lr1, if f (yi) < f (xi);

where g is the weighted current velocity, rm is the Cartesian distance between them, r1
is a random number, and other parameters are constants. The Cartesian norm of their
positions is formulated as ‖xi − yi‖ = (∑n

k=1 (xik − yik)
2)1/2. Note that after spending

several years in water, at the end of their life, mayflies travel to their mate to reproduce
with them. Female mayfly yi(t), with its little away mate xi(t), if f (yi) > f (xi), will
speed up to approach her male partner.
Step 3: Update their velocities according to the best global position xg utilizing

vi(t + 1) =


gvi(t) + a2exp−βr2

p (xhi(t)− xi(t)) + a3exp−βr2
g [xgi(t)− xi(t)],

if f (xi) > f (yi);
gvi(t) + dr2, if f (xi) < f (yi);

where rg and rp are the Cartesian distance between individual i and the best global
position in the swarms to the best historical trajectory, respectively. Observe that male
mayflies xi(t) tend to gather in swarms and will be stronger than their best fitness
values based on their experiences.
Step 4: Mate the top half of male flies with the remaining half of female flies, producing
offspring with their best fitness values, given as offspring1 = r0 male + (1 + r0) female
and offspring2 = r0 female + (1 + r0)male, where r0 represents a random number.
Step 5: Guarantee convergence, which is proposed using vi(t + 1) = −xi(t) +xhi
+gvi(t) +ρ(t)(1− 2r3), where r3 represents a random number generated from the
Gaussian distribution.

end

4. Comparison of Simulation Results for the Three Controllers
4.1. Setting

The optimized parameters of the proposed controller make the overall system robust in
the case of plant parameter uncertainty and also provide improved transient specifications
compared to the other two conventional controllers. The optimized parameter values are
given in Table 8.

Table 8. Values of the optimized parameters for structure H∞ synthesis for angular position tracking.

Symbol Description Value

Kp Proportional gain 0.0806
Ki Integral gain 1.17× 10−8

Kd Derivative gain 0.086
Tf 1st order differential coefficient 0.000129

4.2. The Conventional Controllers

The performance comparison between all three controllers for different reference
inputs is reported in Table 9. Figure 9a,b represent step input tracking and square input
tracking, respectively. Figure 10 shows the control effort comparison for all three controllers
for tracking a square input, whereas Figure 11 displays the disturbance rejection comparison
of all three controllers. Figure 12 provides the robust performance of the proposed controller
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in the presence of model uncertainty (a) and the proposed synthesis performance for the
model uncertainty (b).

Table 9. The performance comparison between proposed and conventional controllers.

Controller Controller Rise Time Settling Time Over-Shoot Steady-State
Order (sec) (sec) (%) Error

Traditional PID 0.25 2.5 24.2 0%
Conventional H∞ 3rd 0.20 0.35 0 0%
Intelligent fixed-structure H∞ 2nd 0.18 0.33 0 0%

(a)

(b)

Figure 9. Step input tracking (a) and square input tracking (b).
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Figure 10. Control effort of all three controllers for angular position tracking (square input tracking
as shown in Figure 9b).

Figure 11. Step disturbance rejection comparison among all three controllers.

4.3. The Proposed Controller

The proposed controller response is plotted in Figure 12 with its parametric uncer-
tainties (range of variations), which shows the robustness of the controller response, that
is, the controller performance is maintained despite variations. Because this is a robust
controller, a range of parameter variations are tested to validate its robustness. Then,
the corresponding open-loop and closed-loop responses are plotted.
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(a)

(b)

Figure 12. Plant’s open-loop step in the presence of parametric uncertainty (a) and the proposed
synthesis performance for the model’s uncertainty (b).

5. Experimental Setup and Results
5.1. Experimental Setup for a DC Servo Motor

The experimental setup of the DC servo mechanism available in the laboratory of our
university is comprised of the modules that we can see in Table 10. The whole MSS setup is
shown in Figure 13.

Figure 13. The experimental setup of the DC servo mechanism.
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Table 10. Modules of the DC servo mechanism.

Module Description

Tacho generator Converter of mechanical energy into electrical energy. A tacho generator measures the angular shaft speed and
provides output in the form of voltage proportional to the angular velocity.

Encoder Measurer of the angular rotation of the DC motor. The potentiometer is connected outside the servo mechanism.
MSS Connecter of backlash, magnetic brake, gearbox, and circular disk using the MSS inertia load in the chain.
MSS toolbox Tool operated directly in the Simulink of MATLAB environment. This MSS toolbox has the excess of all

the PCI/RTDAC acquisition board functions. The PCI board is equipped with an A/D converter, and the whole
measurement system is based on this PCI board equipped with an A/D converter.

PCI board Controller of angular speed and position of the DC motor. The PWM pulses are generated in an appropriate
sequence. The DC motor is configured with PCI board and I/O board for communication purposes. The PCI
board reads encoder signals and produces PWM pulses in the appropriate sequence to control the servo motor.

5.2. Results

The experiment results for the traditional PID and the proposed intelligent fixed-
structure H∞ are given in Figures 14 and 15, respectively. The discussion of these results is
provided in the next section.

(a)

(b)

(c)

(d)

Figure 14. The experimental PID controller for angular position tracking—sine input tracking—(a,b)
and the experimental PID controller for angular position tracking—square input tracking (c,d).
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(a)

(b)

(c)

(d)

Figure 15. The experimental fixed-structure H∞ controller for angular position tracking—square
input tracking—(a,b) and the experimental fixed-structure H∞ controller for angular position
tracking—sine input tracking (c,d).

6. Comparison, Discussion, and Conclusions
6.1. Performance Comparison and Discussion

Next, we study the proposed intelligent fixed-structure H∞ controller in real-time for
precise position tracking of a DC servo motor. As mentioned, this DC servo motor is a
compulsory part of many control systems; for example, its practical applications are in
robotics, aircraft, and twin rotors, among others. The performance of these systems always
depends upon the DC servo motor. Precise position tracking of this motor with the desired
transient specifications is challenging. As mentioned, although conventional PID controllers
are low-cost and have a simple structure, their design using traditional techniques does not
provide the desired transient specifications in many systems. The conventional H∞ optimal
controllers perform better than the standard PID controllers.
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In the case of higher-order systems, the structure of the conventional H∞ controllers
becomes complex. These controllers have limitations on their practical applications due to
this complex structure. The proposed fixed-structure H∞ controllers are robust and have
a very simple fixed structure. Because the proposed controller for the DC servo motor
has a similar structure to that of conventional PID, its hardware implementation requires
operational amplifiers for parallel implementation of integral, derivative, and simple gain
actions. As the parameters of the proposed controller are optimized intelligently, some
computational costs are incurred while keeping the fixed structure of such controller.
The order of this controller is independent of the complex weights used to shape S(s), T(s).

The parameters of the LTI structured control elements are optimized by intelligent
algorithms while fulfilling the H∞ condition. The proposed linear robust controller has
provided good experimental results. Additionally, the performance comparison presented
in Table 9 between the proposed and conventional controllers has proved that our proposal
gives better transient specifications than conventional controllers.

6.2. Conclusions

The DC servo motor is the functional part of many practical systems, such as twin
rotors, airships, aircraft, and robot manipulators. Precise angular position tracking with the
best transient specifications is a big challenge. The proposed intelligent fixed-structure H∞
synthesis has proved its practical importance by means of experimental results. The main
advantage of this controller is its simple structure and fixed order. The conventional
H∞ controller is also robust and gives better transient specifications than the traditional
PID controller. However, practical use of the conventional H∞ controller is limited due
to its complex structure. The order of the conventional H∞ controller is the sum of the
complex weighting filters and the plant’s order. Due to this reason, the structure of the
conventional H∞ controller becomes more complex in the case of higher-order systems.
Thus, the employment of conventional H∞ controllers in practice is limited. Note that
the order of the proposed controller is not affected by complex weighting filters. Because of
the reasons above, the practical use of our robust controller is simple, and the hardware and
computational costs are also meager. The parameters of the fixed-structure H∞ synthesis are
optimized by intelligent non-smooth algorithms to handle the plant parameters’ dynamic
behavior and provide robust stability in the case of parameter uncertainty. The proposed
fixed-structure H∞ controllers are effective for both MIMO and SISO systems. As the DC
servo motors are the compulsory part of many hybrid systems, the idea for future research
is that the proposed approach can also tune the decentralized controllers of such hybrid
and MIMO systems to reduce the complexity of complex MIMO systems. In addition,
a plant input saturation may lead to the integral windup phenomenon in the system.
The elimination of this phenomenon will require an anti-integral windup control strategy
in addition to the proposed control strategy, which will be further investigated.
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