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Abstract: This paper is devoted to investigating the synchronization of fractional-order output-
coupling multiplex networks (FOOCMNs). Firstly, a type of fractional-order multiplex network is
introduced, where the intra-layer coupling and the inter-layer coupling are described separately, and
nodes communicate with each other by their outputs, which is more realistic when the node states
are unmeasured. By using the Lyapunov method and the fractional differential inequality, sufficient
conditions are provided for achieving asymptotic synchronization based on the designed adaptive
control, where the synchronized state of each layer is different. Furthermore, a quantized adaptive
controller is developed to realize the synchronization of FOOCMNs, which effectively reduces
signal transmission frequency and improves the effective utilization rate of network resources. Two
numerical examples are given at last to support the theoretical analysis.
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1. Introduction

Complex networks can be traced back to Euler’s pioneering graph theory, which can
be used to describe a large number of complex dynamical systems in the real world, such
as the Internet [1], biology [2], and the World Wide Web [3]. With the development of com-
plex networks, single-layer networks can no longer meet the requirements of the existing
complex systems, and research on multi-layer networks is urgently needed. According
to the different connection types among layers, multi-layer networks can be divided into
multiplex networks [4,5], multilayer networks [6,7], networks of networks [8], hyper net-
works [9], and interconnected network [10]. Among them, multiplex networks have a wide
range of applications in various real fields, including social networks [11], transportation
networks [12], and biological networks [13]. Nowadays, multiplex networks have become
one of the important research directions in the field of complex networks.

On the other hand, fractional calculus refers to the differential and integral of any
order, which can be regarded as the extension of the integral calculus, and has been widely
used in physics, engineering, and other fields [14,15]. Compared with integer calculus,
fractional calculus is more suitable for describing the change process with memory and
hereditary characteristics. Therefore, it is closer to reality, and it is more complete to
construct a dynamic model by means of a fractional differential equation. It is worth
noting that although scholars have conducted a large number of studies on the dynamic
characteristics of fractional-order complex networks [16–20], there are few studies on
fractional-order multiplex networks [21]. Hence, it is necessary to study the dynamic
behavior of fractional-order multiplex networks.

The synchronization phenomenon is widespread in real life, and the synchronization
of complex networks refers to the collective dynamic behaviour of the various nodes in the
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network under certain conditions, which plays a significant role in intelligent optimization,
secure communication, signal recognition, and other fields [22]. State-based coupling and
output-based coupling are two common communication modes in complex networks, and
most of the existing literature has focused on node state coupling [16–21]. However, the
state-coupled network needs to transmit the state information of all nodes, which will cause
the channel resources to be tight. On the other hand, the node states are not always mea-
sured due to environmental interference and physical and economic constraints. Therefore,
it is necessary to study the synchronization of output-coupling complex networks.

Nowadays, many various control strategies have been developed, including adaptive
control [23], intermittent control [24], pulse control [25], and event-triggered control [26].
Usually, the control gain is selected as a constant, but its value is often greater than the
actual need. Fortunately, adaptive control can perfectly address this trouble, where the
control gain varies and can be automatically adjusted over time. Contrary to rich results on
adaptive control for integer-order complex networks, little attention has been paid to the
adaptive synchronization of fractional-order multiplex networks. Very recently, Lv et al.
in [27] studied the adaptive synchronization of fractional-order coupled neural networks
with reaction-diffusion terms. Yang et al. in [28] developed a rigorous analytic tool for the
adaptive control of fractional-order models. In [29], Liu et al. designed a new effective
adaptive control to investigate the synchronization of fractional-order multiple neural
networks. Compared with the traditional adaptive control, it not only removes the linear
term, but also has the advantages of pinning control and adaptive control. Luo et al. in [30]
analyzed the adaptive synchronization of multiplex networks with fractional order and
time delays by the Lyapunov method and a new Halanay-type fractional inequality.

In addition, transmitted signals are often inevitably lost due to limitations and in-
terference. Luckily, signal quantization was proposed by Kalman [31], which can reduce
the bandwidth pressure and the risk of data loss. From then on, the quantitative control
of complex networks has attracted extensive attention. For example, Wu et al. used the
quantized control strategy to research the bounded consensus problem of multi-agents
in [32]. Sun et al. in [33] discussed the synchronization of discrete-time neural networks by
using a quantized sliding mode control. Combining an adaptive technique with quantized
output control, Bao et al. discussed the synchronization of fractional-order coupled neural
networks by the Lyapunov approach and LMIs technique in [34].

From the aforementioned analysis, the present work mainly focuses on the synchro-
nization of multiplex networks with the first-order, which is extremely lacking for fractional-
order multiplex networks. In particular, it is still an open and challenging problem for
fractional-order multiplex networks to develop adaptive quantized control for the realiza-
tion of synchronization. In addition, the state coupling is only considered in the most of the
studies on multiplex networks, but it is invalid when the nodes’ states are not measured.
Therefore, it is popular and valuable to develop a coupling mode based on output states
obtained by observation. Inspired by this, the main purpose of this article is to deal with
the synchronization of FOOCMNs based on adaptive quantization control. The main
contributions of this article are listed below.

(1) Different from the models of multiplex networks [35,36], the intra-layer coupling
and the inter-layer coupling are described separately in the modelling of multiplex
networks in this article. In addition, instead of the state coupling in [29,30,37], nodes
communicate with each other by their output states, which is more realistic and
valuable when the node states are unmeasured.

(2) Quantized adaptive control is introduced to achieve the synchronization of fractional-
order multiplex networks for the first time, which can reduce signal transmission
frequency and improve the effective utilization rate of network resources compared
with the traditional adaptive control utilized in [27–30].

(3) The developed control schemes and the synchronization criteria are more generic,
since they are also applicable when the factional-order system is reduced to the integer-
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order model. Thus, our results can be regarded as a valuable extension of the previous
results on the integer-order multiplex networks [35–37].

The remainder of this article is described below. Some basic preliminaries together
with model descriptions are introduced in Section 2. Some criteria are established in
Section 3 to synchronize multiplex networks. In Section 4, two numerical examples are
provided to illustrate the proposed model and synchronization results. The summary of
this article is given in Section 5.

Notation 1. Throughout this article, R = (−∞,+∞) and Rn denote the n-dimensional Euclidean
space. T represents the transposition of a matrix or a vector. In is the n × n identity matrix.
Ñ = {1, 2, . . . ,N} and M̃ = {1, 2, . . . ,M}. ‖·‖ is the Euclidean norm in Rn. For a matrix
A ∈ Rn×n, A > 0 represents that A is positive definite, and λmax(A) and λmin(A) are the largest
and smallest eigenvalues of the matrix A when it is symmetric. ⊗ denotes the Kronecker product.

2. Preliminaries and Model Description
2.1. Preliminaries

Definition 1 ( [38]). Function φ̄(t) : [t0,+∞)→ R is integrable. The fractional-order integral is
defined as

t0
I ᾱ
t φ̄(t) =

1
Γ(ᾱ)

∫ t

t0

φ̄(s)
(t− s)1−ᾱ

ds, 0 < ᾱ < 1,

where Γ(ᾱ) =
∫ +∞

0 tᾱ−1e−tdt.

Definition 2 ( [38]). Function φ̄(t) : [t0,+∞)→ R is differentiable. The Caputo fractional-order
derivative is defined by

C
t0

Dᾱ
t φ̄(t) =

1
Γ(1− ᾱ)

∫ t

t0

φ̄′(s)
(t− s)ᾱ

ds, 0 < ᾱ < 1.

Definition 3 ( [38]). Let ᾱ, β̄ > 0. The Mittag–Leffler function Eᾱ,β̄ is defined by

Eᾱ,β̄(z) =
+∞

∑
k=0

zk

Γ(ᾱk + β̄)
.

When β̄ = 1, the one-parameter form of it is defined by

Eᾱ(z) =
+∞

∑
k=0

zk

Γ(ᾱk + 1)
.

Lemma 1 ( [38]). If function φ̄(t) : [t0,+∞)→ R is continuously differentiable, then

t0
I ᾱ
t

C
t0

Dᾱ
t φ̄(t) = φ̄(t)− φ̄(t0), 0 < ᾱ < 1.

Lemma 2 ( [39]). Assume that ψ̄(t) ∈ R is continuously differentiable; then, for any t ≥ t0,

1
2

C
t0

Dᾱ
t ψ̄2(t) ≤ ψ̄(t)C

t0
Dᾱ

t ψ̄(t), 0 < ᾱ < 1.

In addition, when ψ̄(t) ∈ Rn, then for any t ≥ t0,

1
2

C
t0

Dᾱ
t ψ̄T(t)ψ̄(t) ≤ ψ̄T(t)C

t0
Dᾱ

t ψ̄(t), 0 < ᾱ < 1.

2.2. Model Description

This article will investigate a type of FOOCMN, which has M layers and N nodes
in each layer. Let T κ = {V , εκ , Gκ} be a undirected graph corresponding to the κth layer
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with the node set V = {1, 2, . . . ,N}, the edge set εκ ⊆ V × V , and the adjacency matrix
Gκ =

(
Gκ

ı

)
N×N

. Here, Gκ
ı > 0 if the ıth node and the th node are communicated at the

κth layer; otherwise, the value of it is 0.
The dynamics of FOOCMN are depicted as the following differential model:

C
t0

Dᾱ
t x(κ)ı (t) = f̄ (x(κ)ı (t))− ā

N

∑
=1

l(κ)ı Hz(κ) (t)− b̄
M

∑
ῑ=1

dκῑPz(ῑ)ı (t) + u(κ)
ı (t),

z(κ)ı (t) = Γx(κ)ı (t), ı ∈ Ñ, κ ∈ M̃,
(1)

where 0 < ᾱ < 1, x(κ)ı (t) =
(

x(κ)ı1 (t), x(κ)ı2 (t), . . . , x(κ)ın (t)
)T
∈ Rn denotes the state of the

ıth node in the κth layer, z(κ)ı (t) =
(

z(κ)ı1 (t), z(κ)ı2 (t), . . . , z(κ)ım (t)
)T
∈ Rm is the output vector

of the ıth node, and f̄ (·) : Rn → Rn is a smooth nonlinear vector function. ā and b̄ are
the intra-layer and inter-layer coupling strengths, respectively. H ∈ Rn×m represents an
internal coupling matrix in each layer, P ∈ Rn×m is an internal coupling matrix among
nodes in the cross-layer, Γ ∈ Rm×n is the output matrix, and u(κ)

ı (t) denotes the adaptive
feedback controller. L(κ) = (l(κ)ı )N×N denotes the Laplacian matrix of nodes in the κth

layer, and D = (dκῑ)M×M denotes the inter-layer Laplacian matrix. Elements l(κ)ı and dκῑ

are defined as follows:
l(κ)ı = −1(ı 6= ), if the ıth node is connected with the th node in the κth layer,
l(κ)ı = 0(ı 6= ), otherwise,

l(κ)ıı = −
N
∑

=1, 6=ı
l(κ)ı , ı ∈ Ñ, κ ∈ M̃,


dκῑ = −1(κ 6= ῑ), if the node in layer κ is linked to its corresponding node in layer ῑ,
dκῑ = 0(κ 6= ῑ), otherwise,

dκκ = −
M
∑

ῑ=1,ῑ 6=κ
dκῑ, κ ∈ M̃.

The target model of FOOCMN (1) is depicted as{
C
t0

Dᾱ
t s(κ)(t) = f̄ (s(κ)(t)),

y(κ)(t) = Γs(κ)(t), κ ∈ M̃,
(2)

where s(κ)(t) = (s(κ)1 (t), s(κ)2 (t), · · · , s(κ)n (t))T ∈ Rn can be deemed as the synchronization
state of the isolated node.

Let e(κ)ı (t) = x(κ)ı (t)− s(κ)(t) and θ
(κ)
ı (t) = z(κ)ı (t)− y(κ)(t) be the synchronization

error and output error. Tshe error model is governed as
C
t0

Dᾱ
t e(κ)ı (t) = f̃ (e(κ)ı (t))− ā

N

∑
=1

l(κ)ı Hθ
(κ)
 (t)− b̄

M

∑
ῑ=1

dκῑPθ
(ῑ)
ı (t) + u(κ)

ı (t),

θ
(κ)
ı (t) = Γe(κ)ı (t), ı ∈ Ñ, κ ∈ M̃,

(3)

where f̃ (e(κ)ı (t)) = f̄ (x(κ)ı (t))− f̄ (s(κ)(t)).

Definition 4. FOOCMN (1) is said to be asymptotically synchronized if

lim
t→+∞

∥∥∥e(κ)ı (t)
∥∥∥ = 0, ı ∈ Ñ, κ ∈ M̃.
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Assumption 1. For any xı, x ∈ Rn, there exists a positive constant ` f̄ such that∥∥ f̄ (xı)− f̄
(

x

)∥∥ ≤ ` f̄
∥∥xı − x

∥∥, ı,  ∈ Ñ.

3. Main Results

In this section, some theorems and corollaries are proposed for the synchronization of
FOOCMNs by the following controllers.

3.1. Adaptive Synchronization

Firstly, the adaptive controller u(κ)
ı (t) is designed by u(κ)

ı (t) = −g(κ)ı (t)ΓTθ
(κ)
ı (t),

C
t0

Dᾱ
t g(κ)ı (t) = β

(κ)
ı

∥∥∥θ
(κ)
ı (t)

∥∥∥2
, ı ∈ Ñ, κ ∈ M̃,

(4)

where β
(κ)
ı > 0, g(κ)ı (0) ≥ 0.

Theorem 1. Based on Assumption 1, FOOCMN (1) achieves asymptotic synchronization under
Controller (4).

Proof. Construct the following Lyapunov function

V(t) =
1
2

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))Te(κ)ı (t) +
1
2

M

∑
κ=1

N

∑
ı=1

1

β
(κ)
ı

(
g(κ)ı (t)− g∗

)2,

where g∗ is an adaptive constant.
From Lemma 2, one obtains that

C
t0

Dᾱ
t V(t) ≤

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))TC
t0

Dᾱ
t e(κ)ı (t) +

M

∑
κ=1

N

∑
ı=1

1

β
(κ)
ı

(g(κ)ı (t)− g∗)C
t0

Dᾱ
t g(κ)ı (t)

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T
[

f̃ (e(κ)ı (t))− ā
N

∑
=1

l(κ)ı Hθ
(κ)
 (t)

− b̄
M

∑̄
ι=1

dκῑPθ
(ῑ)
ı (t) + u(κ)

ı (t)
]
+

M

∑
κ=1

N

∑
ı=1

(g(κ)ı (t)− g∗)
∥∥∥θ

(κ)
ı (t)

∥∥∥2

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T f̃ (e(κ)ı (t))− ā
M

∑
κ=1

N

∑
ı=1

N

∑
=1

(e(κ)ı (t))T l(κ)ı Hθ
(κ)
 (t)

− b̄
M

∑
κ=1

N

∑
ı=1

M

∑̄
ι=1

(e(κ)ı (t))TdκῑPθ
(ῑ)
ı (t)−

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))TΓT g(κ)ı (t)θ(κ)ı (t)

+
M

∑
κ=1

N

∑
ı=1

(g(κ)ı (t)− g∗)
∥∥∥θ

(κ)
ı (t)

∥∥∥2

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T f̃ (e(κ)ı (t))− ā
M

∑
κ=1

N

∑
ı=1

N

∑
=1

(e(κ)ı (t))T l(κ)ı Hθ
(κ)
 (t)

− b̄
M

∑
κ=1

N

∑
ı=1

M

∑̄
ι=1

(e(κ)ı (t))TdκῑPθ
(ῑ)
ı (t)−

M

∑
κ=1

N

∑
ı=1

g∗
∥∥∥θ

(κ)
ı (t)

∥∥∥2
. (5)
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According to Assumption 1, one obtains

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T f̃ (e(κ)ı (t))

≤
M

∑
κ=1

N

∑
ı=1

` f e(κ)ı (t)Te(κ)ı (t). (6)

By defining

e(κ)(t) = (e(κ)1 (t)T , e(κ)2 (t)T . . . , e(κ)N (t)T)T , e(t) = (e(1)(t)T , e(2)(t)T , . . . , e(M)(t)T)T ,

eı(t) = (e(1)ı (t)T , e(2)ı (t)T . . . , e(M)
ı (t)T)T , ẽ(t) = (e1(t)T , e2(t)T , . . . , eN(t)T)T ,

it follows that

− ā
M

∑
κ=1

N

∑
ı=1

N

∑
=1

(e(κ)ı (t))T l(κ)ı Hθ
(κ)
 (t)

=− ā
M

∑
κ=1

N

∑
ı=1

N

∑
=1

(e(κ)ı (t))T l(κ)ı HΓe(κ) (t)

=− ā
M

∑
κ=1

[
(e(κ)(t))T(L(κ) ⊗ (HΓ))e(κ)(t)

]
=āeT(t)(−L⊗ (

HΓ + (HΓ)T

2
))e(t)

≤āλ1‖e(t)‖2, (7)

and

− b̄
M

∑
κ=1

N

∑
ı=1

M

∑̄
ι=1

(e(κ)ı (t))TdκῑPθ
(ῑ)
ı (t)

=− b̄
M

∑
κ=1

N

∑
ı=1

M

∑̄
ι=1

(e(κ)ı (t))TdκῑPΓe(ῑ)i (t)

=b̄ẽT(t)(−IN ⊗ D⊗ (
PΓ + (PΓ)T

2
))ẽ(t)

≤b̄λ2‖ẽ(t)‖2

=b̄λ2‖e(t)‖2, (8)

where L = diag(L(1), L(2), . . . , L(M)), λ1 = λmax(−L⊗ (HΓ+(HΓ)T

2 )) and λ2 = λmax(−IN⊗
D⊗ ( PΓ+(PΓ)T

2 )).

Substituting Inequalities (6)–(8) into (5), and choosing g∗ =
` f +āλ1+b̄λ2+1

λ3
, it can be

deduced that

C
t0

Dᾱ
t V(t) ≤(` f + āλ1 + b̄λ2)‖e(t)‖2 −

M

∑
κ=1

N

∑
ı=1

g∗
∥∥∥θ

(κ)
ı (t)

∥∥∥2

=(` f + āλ1 + b̄λ2)‖e(t)‖2 − g∗eT(t)(IMN ⊗ (ΓTΓ))e(t)

≤(` f + āλ1 + b̄λ2 − g∗λ3)‖e(t)‖2

=− ‖e(t)‖2

=− 2M(t), (9)
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where λ3 = λmin(IMN ⊗ (ΓTΓ)) and M(t) =
1
2

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))Te(κ)ı (t). By means of

Lemma 1, one obtains
M(t) 6 V(t) + 2C

t0
I ᾱ
t M(t) 6 V(t0),

which implies that M(t) and C
t0

I ᾱ
t M(t) are bounded for t > t0. Furthermore,

lim
t→+∞

M(t) = 0,

which is derived by the proof of Theorem 2 in [28]. From the definition of M(t),
lim

t→+∞
‖e(κ)ı (t)‖ = 0. Thus, System (1) is asymptotically synchronized.

Remark 1. When b̄ = 0, System (1) is reduced to
C
t0

Dᾱ
t x(κ)ı (t) = f̄ (x(κ)ı (t)) + ā

N

∑
=1

l(κ)ı Hz(κ) (t) + u(κ)
ı (t),

z(κ)ı (t) = Γx(κ)ı (t), ı ∈ Ñ, κ ∈ M̃.
(10)

From the analysis of Theorem 1, it is easy to conclude that the FOOCMN without inter-layer
coupling (10) is also asymptotically synchronized under Assumption 1 and Controller (4).

Remark 2. Similarly, ā = 0, System (1) is reduced as
C
t0

Dᾱ
t x(κ)ı (t) = f̄ (x(κ)ı (t)) + b̄

M

∑
ῑ=1

dκῑPz(ῑ)ı (t) + u(κ)
ı (t),

z(κ)ı (t) = Γx(κ)ı (t), ı ∈ Ñ, κ ∈ M̃.
(11)

Under Assumption 1 and Controller (4), the FOOCMN without intra-layer coupling (11) can
achieve asymptotic synchronization.

Remark 3. At present, the models of the multiplex network in most articles are two-layer networks,
such as in [40–42]. In contrast, the model in this paper can contain multiple layers, which is more
complex and realistic.

If ᾱ = 1, System (1) becomes the following integer-order network: ẋ(κ)ı (t) = f̄ (x(κ)ı (t))− ā
N

∑
=1

l(κ)ı Hz(κ) (t)− b̄
M

∑
ῑ=1

dκῑPz(ῑ)ı (t) + u(κ)
ı (t),

z(κ)ı (t) = Γx(κ)ı (t), ı ∈ Ñ, κ ∈ M̃.
(12)

In light of this, Adaptive Controller (4) assumes the following form: u(κ)
ı (t) = −g(κ)ı (t)ΓTθ

(κ)
ı (t),

ġ(κ)ı (t) = β
(κ)
ı

∥∥∥θ
(κ)
ı (t)

∥∥∥2
, ı ∈ Ñ, κ ∈ M̃.

(13)

Corollary 1. Under Assumption 1, Network (12) achieves asymptotic synchronization via Adaptive
Controller (13).
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Proof. Constructing the same Lyapunov function as in Theorem 1, one has

V̇(t) ≤
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T ė(κ)ı (t) +
M

∑
κ=1

N

∑
ı=1

1

β
(κ)
ı

(g(κ)ı (t)− g∗)ġ(κ)ı (t)

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T
[

f̃ (e(κ)ı (t))− ā
N

∑
=1

l(κ)ı Hθ
(κ)
 (t)

− b̄
M

∑̄
ι=1

dκῑPθ
(ῑ)
ı (t) + u(κ)

ı (t)
]
+

M

∑
κ=1

N

∑
ı=1

(g(κ)ı (t)− g∗)
∥∥∥θ

(κ)
ı (t)

∥∥∥2

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T f̃ (e(κ)ı (t))− ā
M

∑
κ=1

N

∑
ı=1

N

∑
=1

(e(κ)ı (t))T l(κ)ı Hθ
(κ)
 (t)

− b̄
M

∑
κ=1

N

∑
ı=1

M

∑̄
ι=1

(e(κ)ı (t))TdκῑPθ
(ῑ)
ı (t)−

M

∑
κ=1

N

∑
ı=1

g∗
∥∥∥θ

(κ)
ı (t)

∥∥∥2

≤(` f + āλ1 + b̄λ2 − g∗λ3)‖e(t)‖2.

We choose g∗ ≥ ` f +āλ1+b̄λ2+1
λ3

, which leads to V̇(t) ≤ 0. Thus, System (12) is asymp-
totically synchronized.

If m = n and Γ = I, System (1) becomes the following fractional-order multiplex network:

C
t0

Dᾱ
t x(κ)ı (t) = f̄

(
x(κ)ı (t)

)
− ā

N

∑
=1

l(κ)ı Hx(κ) (t)

− b̄
M

∑̄
ι=1

dκῑPx(ῑ)ı (t) + u(κ)
ı (t), ı ∈ Ñ, κ ∈ M̃. (14)

The error system is described as

C
t0

Dᾱ
t e(κ)ı (t) = f̃ (e(κ)ı (t))− ā

N

∑
=1

l(κ)ı He(κ) (t)

− b̄
M

∑̄
ι=1

dκῑPe(ῑ)ı (t) + û(κ)
ı (t), ı ∈ Ñ, κ ∈ M̃. (15)

Accordingly, the adaptive controller is designed as û(κ)
ı (t) = −ĝ(κ)ı (t)e(κ)ı (t),

C
t0

Dᾱ
t ĝ(κ)ı (t) = β̂

(κ)
ı

∥∥∥e(κ)ı (t)
∥∥∥2

, ı ∈ Ñ, κ ∈ M̃.
(16)

Corollary 2. Under Assumption 1 and Adaptive Law (16), Network (14) achieves asymptotic synchronization.

Proof. Construct a Lyapunov function

V(t) =
1
2

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))Te(κ)ı (t) +
1
2

M

∑
κ=1

N

∑
ı=1

1

β̂
(κ)
ı

(
ĝ(κ)ı (t)− ĝ∗

)2
,

where ĝ∗ is an adaptive constant.
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Similar to the proof of Theorem 1, one has

C
t0

Dᾱ
t V(t) ≤

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))TC
t0

Dᾱ
t e(κ)ı (t) +

M

∑
κ=1

N

∑
ı=1

1

β̂
(κ)
ı

(
ĝ(κ)ı (t)− ĝ∗

)
C
t0

Dᾱ
t ĝ(κ)ı (t)

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T
[

f̃ (e(κ)ı (t))− ā
N

∑
=1

l(κ)ı He(κ) (t)

− b̄
M

∑̄
ι=1

dκῑPe(ῑ)ı (t) + u(κ)
ı (t)

]
+

M

∑
κ=1

N

∑
ı=1

(
ĝ(κ)ı (t)− ĝ∗

)∥∥∥e(κ)ı (t)
∥∥∥2

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T f̃ (e(κ)ı (t))− ā
M

∑
κ=1

N

∑
ı=1

N

∑
=1

(e(κ)ı (t))T l(k)ı He(κ) (t)

− b̄
M

∑
κ=1

N

∑
ı=1

M

∑̄
ι=1

(e(κ)ı (t))TdκῑPe(ῑ)ı (t)−
M

∑
κ=1

N

∑
ı=1

ĝ∗(e(κ)ı (t))Te(κ)ı (t)

≤(` f + āλ1 + b̄λ2 − ĝ∗)‖e(t)‖2.

We choose ĝ∗ = ` f + āλ1 + b̄λ2 + 1, which leads to C
t0

Dᾱ
t V(t) ≤ −‖e(t)‖2. The rest of

the proof is similar to that of Theorem 1.

Remark 4. Obviously, Network (14) is a special case of Network (1), and the coupling term is state
coupling. The coupling term in the fractional multiplex network models studied in [29,30] are also
state coupling, but Network (1) has the item of output coupling, which is more general.

3.2. Adaptive Quantized Synchronization

The process of quantization can be thought as the process of coding, which maps a
continuous signal to a piecewise constant signal.

The adaptive quantized control protocol here ū(κ)
ı (t) is developed as{

ū(κ)
ı (t) = −ḡ(κ)ı (t)ΓTq(θ(κ)ı (t)),

C
t0

Dᾱ
t ḡ(κ)ı (t) = β̄

(κ)
ı ‖θı(t)‖2, ı ∈ Ñ, κ ∈ M̃,

(17)

where β̄
(κ)
ı > 0, ḡ(κ)ı (t) > 0, q(θ(κ)ı (t)) =

(
q̃(θ(κ)ı1 (t)), q̃(θ(κ)ı2 (t)), . . . , q̃(θ(κ)ım (t))

)T .
The quantizer q̃(·) : R→ V is defined as follows:

q̃(τ) =


ξς, 1

1+δ ξς < τ ≤ 1
1−δ ξς,

0, τ = 0,
−q̃(−τ), τ < 0,

where V = {±ξς : ξς = ρςξ0, ς = 0,±1,±2, . . .} ∪ {0}with ξ0 > 0, and δ = 1−ρ
1+ρ , 0 < ρ < 1.

In the sense of Filippov, there exists ∆ ∈ [−δ, δ] such that q̃(τ) = (1 + ∆)τ, τ ∈ R.

Theorem 2. Based on Assumption 1, FOOCMN (1) achieves synchronization under Adaptive
Quantized Controller (17).

Proof. Construct a Lyapunov function as follows:

V̄(t) =
1
2

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))Te(κ)ı (t) +
1
2

M

∑
κ=1

N

∑
ı=1

1− δ

β̄
(κ)
ı

(
ḡ(κ)ı (t)− ḡ∗

)2
,

where ḡ∗ is an adaptive number.
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Similarly to Theorem 1, one obtains that

C
t0

Dᾱ
t V̄(t) ≤

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))TC
t0

Dᾱ
t e(κ)ı (t) +

M

∑
κ=1

N

∑
ı=1

1− δ

β̄
(κ)
ı

(
ḡ(κ)ı (t)− ḡ∗

)
C
t0

Dᾱ
t ḡ(κ)ı (t)

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T
[

f̄ (x(κ)ı (t))− f̄ (s(t))− ā
N

∑
=1

l(κ)ı Hθ
(κ)
 (t)

− b̄
M

∑̄
ι=1

dκῑPθ
(ῑ)
ı (t) + ū(κ)

ı (t)
]

+ (1− δ)
M

∑
κ=1

N

∑
ı=1

(
ḡ(κ)ı (t)− ḡ∗

)
‖e(κ)ı (t)‖2

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T f̃ (e(κ)ı (t))− ā
M

∑
κ=1

N

∑
ı=1

N

∑
=1

(e(κ)ı (t))T l(κ)ı He(κ) (t)

− b̄
M

∑
κ=1

N

∑
ı=1

M

∑̄
ι=1

(e(κ)ı (t))TdκῑPe(ῑ)ı (t)−
M

∑
κ=1

N

∑
ı=1

ḡ(κ)ı (t)(e(κ)ı (t))TΓTq(θ(κ)ı (t))

+ (1− δ)
M

∑
κ=1

N

∑
ı=1

(
ḡ(κ)ı (t)− ḡ∗

)
‖θ(κ)ı (t)‖2.

By the property of quantization, we have

−
M

∑
κ=1

N

∑
ı=1

ḡ(κ)ı (t)(e(κ)ı (t))TΓTq(θ(κ)ı (t))

=−
M

∑
κ=1

N

∑
ı=1

ḡ(κ)ı (t)(θ(κ)ı (t))Tq(θ(κ)ı (t))

=−
M

∑
κ=1

N

∑
ı=1

m

∑̄
$=1

ḡ(κ)ı (t)(θ(κ)ı$̄ (t))T q̃(θ(κ)ı$̄ (t)). (18)

When θ
(κ)
ı$̄ (t) ≥ 0,

M

∑
κ=1

N

∑
ı=1

m

∑̄
$=1

ḡ(κ)ı (t)(θ(κ)ı$̄ (t))T q̃(θ(κ)ı$̄ (t))

≥(1− δ)
M

∑
κ=1

N

∑
ı=1

m

∑̄
$=1

ḡ(κ)ı (t)(θ(κ)ı$̄ (t))Tθ
(κ)
ı$̄ (t), (19)

When θ
(κ)
ı$̄ (t) < 0,

M

∑
κ=1

N

∑
ı=1

m

∑̄
$=1

ḡ(κ)ı (t)(θ(κ)ı$̄ (t))T q̃(θ(κ)ı$̄ (t))

=−
M

∑
κ=1

N

∑
ı=1

m

∑̄
$=1

ḡ(κ)ı (t)(θ(κ)ı$̄ (t))T q̃(−θ
(κ)
ı$̄ (t))

>(1− δ)
M

∑
κ=1

N

∑
ı=1

m

∑̄
$=1

ḡ(κ)ı (t)(−θ
(κ)
ı$̄ (t))T(−θ

(κ)
ı$̄ (t))

=(1− δ)
M

∑
κ=1

N

∑
ı=1

m

∑̄
$=1

ḡ(κ)ı (t)(θ(κ)ı$̄ (t))Tθ
(κ)
ı$̄ (t). (20)
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From (19)–(20), it follows that

−
M

∑
κ=1

N

∑
ı=1

ḡ(κ)ı (t)(θ(κ)ı (t))Tq(θ(κ)ı (t))

≤− (1− δ)
M

∑
κ=1

N

∑
ı=1

ḡ(κ)ı (t)(θ(κ)ı (t))Tθ
(κ)
ı (t).

From the above analysis, one has

C
t0

Dα
t V̄(t) ≤(` f + āλ1 + b̄λ2)‖e(t)‖2

− (1− δ)
M

∑
κ=1

N

∑
ı=1

ḡ(κ)ı (t)(θ(κ)ı (t))Tθ
(κ)
ı (t)

+ (1− δ)
M

∑
κ=1

N

∑
ı=1

(
ḡ(κ)ı (t)− ḡ∗

)
‖θ(κ)ı (t)‖2

=(` f + āλ1 + b̄λ2)‖e(t)‖2 − (1− δ)ḡ∗eT(t)(IMN ⊗ (ΓTΓ))e(t)

≤(` f + āλ1 + b̄λ2 − (1− δ)ḡ∗λ3)‖e(t)‖2.

Choosing ḡ∗ =
` f +āλ1+b̄λ2+1

(1−δ)λ3
, we can also obtain C

t0
Dα

t V̄(t) ≤ −eT(t)e(t). Therefore,
FOOCMN (1) is asymptotically synchronized.

Remark 5. Under Assumption 1 and Controller (17), the FOOCMN without inter-layer coupling
(10) or without intra-layer coupling (11) can also achieve synchronization. Note that Systems (10)
and (11) are special cases of multiplex networks, which has been studied in [43,44]. Therefore, the
FOOCMNs studied in this article are more general.

If ᾱ = 1, Adaptive Quantized Controller (17) assumes the following form:{
ū(κ)

ı (t) = −ḡ(κ)ı (t)ΓTq(θ(κ)ı (t)),
˙̄g(κ)ı (t) = β̄

(κ)
ı ‖θı(t)‖2, ı ∈ Ñ, κ ∈ M̃.

(21)

Corollary 3. Under Assumption 1, the integer-order network (12) achieves asymptotic synchro-
nization via the adaptive quantized control (21).

Proof. Constructing the same Lyapunov function as Theorem 2, one has

˙̄V(t) ≤
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T ė(κ)ı (t) +
M

∑
κ=1

N

∑
ı=1

1− δ

β̄
(κ)
ı

(
ḡ(κ)ı (t)− ḡ∗

)
˙̄ ıg(κ)(t)

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T f̃ (e(κ)ı (t))− ā
M

∑
κ=1

N

∑
ı=1

N

∑
=1

(e(κ)ı (t))T l(κ)ı He(κ) (t)

− b̄
M

∑
κ=1

N

∑
ı=1

M

∑̄
ι=1

(e(κ)ı (t))TdκῑPe(ῑ)ı (t)−
M

∑
κ=1

N

∑
ı=1

ḡ(κ)ı (t)(e(κ)ı (t))TΓTq(θ(κ)ı (t))

+ (1− δ)
M

∑
κ=1

N

∑
ı=1

(
ḡ(κ)ı (t)− ḡ∗

)
‖θ(κ)ı (t)‖2

≤(` f + āλ1 + b̄λ2 − (1− δ)ḡ∗λ3)‖e(t)‖2.

We choose ḡ∗ ≥ ` f +āλ1+b̄λ2+1
(1−δ)λ3

, which leads to V̇(t) ≤ −‖e(t)‖2, and System (12) is
asymptotically synchronized.
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Remark 6. Compared with the results in [45,46], where the dynamic behaviors are described
by the integer-order systems, the systems in this article are fractional-order models. According
to Corollary 1 and Corollary 3, the results of this paper are also applicable for the integer-order
multiplex networks, so it can be considered a valuable extension from integer-order multiplex
networks to fractional-order ones.

If m = n and Γ = I, Controller (17) assumes the following form:{
ū(κ)

ı (t) = −ḡ(κ)ı (t)q(e(κ)ı (t)),
C
0 Dᾱ

t ḡ(κ)ı (t) = β̄
(κ)
ı ‖eı(t)‖2, ı ∈ Ñ, κ ∈ M̃.

(22)

Corollary 4. Based on Assumption 1 and Controller (22), FOOCMN (14) achieves asymptotic synchronization.

Proof. We construct a Lyapunov function of the following form:

V̄(t) =
1
2

M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))Te(κ)ı (t) +
1
2

M

∑
κ=1

N

∑
ı=1

1− δ

β̄
(κ)
ı

(ḡ(κ)ı (t)− ḡ∗)2.

Similar to Theorem 2, choosing ḡ∗ = 1
1−δ (` f + āλ1 + b̄λ2 + 1), one obtains that

C
0 Dᾱ

t V̄(t) ≤
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))TC
0 Dᾱ

t e(κ)ı (t) +
M

∑
κ=1

N

∑
ı=1

1− δ

β̄
(κ)
ı

(ḡ(κ)ı (t)− ḡ∗)C
0 Dᾱ

t ḡ(κ)ı (t)

=
M

∑
κ=1

N

∑
ı=1

(e(κ)ı (t))T f̃ (e(κ)ı (t))− ā
M

∑
κ=1

N

∑
ı=1

N

∑
=1

l(κ)ı (e(κ)ı (t))T He(κ) (t)

− b̄
M

∑
κ=1

N

∑
ı=1

M

∑̄
ι=1

dκῑ(e
(κ)
ı (t))T Pe(ῑ)ı (t)−

M

∑
κ=1

N

∑
ı=1

ḡ(κ)ı (t)(e(κ)ı (t))Tq(e(κ)ı (t))

+ (1− δ)
M

∑
κ=1

N

∑
ı=1

(ḡ(κ)ı (t)− ḡ∗)‖e(κ)ı (t)‖2

≤(` f + āλ1 + b̄λ2 − (1− δ)ḡ∗)‖e(t)‖2

=− ‖e(t)‖2.

The rest of the proof is similar to that of Theorem 2.

Remark 7. In fact, quantization is a process of discretizing continuous signals, which can effectively
reduce the load on the communication channel during signal transmission. Although there are some
research achievements on quantitative control [32,33], there are few studies on the quantitative
control of FOOCMNs. In this paper, the synchronization problem of FOOCMNs is studied by
introducing adaptive quantitative control.

4. Numerical Example

Two numerical examples are shown in this section to support the theoretical analysis.
Consider a FOOCMN consisting of 3 layers, in which each layer consists of 3 nodes,

whose topology is depicted in Figure 1. Selecting the chaotic Lü’s system, Lorenz system,
and Rössler system as the synchronization state of each layer, they can be described as

C
0 Dᾱ

t s(1)(t) =

 f (1)1 (s(t))
f (1)2 (s(t))
f (1)3 (s(t))

 =

 12s(1)2 (t)− 10s(1)1 (t)
20s(1)1 (t)− 2.5s(1)1 (t)s(1)3 (t)
4s(1)1 (t)s(1)1 (t)− 3s(1)3 (t)

, (23)
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C
0 Dᾱ

t s(2)(t) =

 f (2)1 (s(t))
f (2)2 (s(t))
f (2)3 (s(t))

 =

 10(s(2)2 (t)− s(2)1 (t))
28s(2)1 (t)− s(2)2 (t)− s(2)1 (t)s(2)3 (t)
s(2)2 (t)s(2)1 (t)− 8

3 s(2)3 (t)

, (24)

C
0 Dᾱ

t s(3)(t) =

 f (3)1 (s(t))
f (3)2 (s(t))
f (3)3 (s(t))

 =

 −(s
(3)
2 (t) + s(3)3 (t))

s(3)1 (t) + 0.2s(3)2 (t)
s(3)1 (t)s(3)3 (t)− 18s(3)3 (t) + 0.2

. (25)

Choosing ᾱ = 0.98, the dynamical behavior of Systems (23)−(25) are simulated in
Figures 2–4 with initial values s(0) = (1, 2.5, 6)T .

Figure 1. Topology of the multiplex network (1).
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Figure 2. The chaotic behavior of System (23).
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Figure 3. The chaotic behavior of System (24).
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Figure 4. The chaotic behavior of System (25).

Example 1. Consider FOOCMN (1), where N = M = 3, x(κ)ı =
(

x(κ)ı1 , x(κ)ı2 , x(κ)ı3
)T ∈ R3, and

z(κ)ı =
(
z(κ)ı1 , z(κ)ı2

)T ∈ R2, ā = 0.02, b̄ = 0.01.
The other parameters are given as follows:

L(1) =

 2 −1 −1
−1 1 0
−1 0 1

, L(2) =

 1 0 −1
0 1 −1
−1 −1 2

, L(3) =

 2 −1 −1
−1 2 −1
−1 −1 2

,

H =

 1 0.1
0 1
0 1

, P =

 1 0.1
0 1
0 1

, D =

 1 −1 0
−1 2 −1
0 −1 1

, Γ =

(
1 1 0
0 1 1

)
.

For our numerical simulation, we impose Adaptive Control Strategy (4) on FOOCMN (1)
and choose the control parameters β

(κ)
ı ∈ [1, 1.2] and gκ

ı (0) ∈ [0, 0.1], ı ∈ M̃, κ ∈ Ñ. The corre-
sponding simulation results are depicted in Figures 5–7, which demonstrate that the asymptotical
synchronization of FOCMN (1) can be achieved.
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Figure 5. Synchronization error in the first layer under Controller (4).
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Figure 6. Synchronization error in the second layer under Controller (4).
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Figure 7. Synchronization error in the third layer under Controller (4).

Figure 8 shows the trajectories of the control gain function g(κ)ı (t), and it is easy to observe that
they tend to be some numbers when System (1) achieves synchronization. From Figures 9–11, it can
be seen nodes’ dynamics are consistent with the target states under Controller (4). Figures 12 and 13
show the correctness of Remark 1 and Remark 2, respectively.
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Figure 8. Evolutions of control gains g(κ)ı (t) under Controller (4).
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Figure 9. Trajectories of x(1)ı (t) and s(1)(t) under Controller (4).
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Figure 10. Trajectories of x(2)ı (t) and s(2)(t) under Controller (4).
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Figure 11. Trajectories of x(3)ı (t) and s(3)(t) under Controller (4).
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Figure 12. Synchronization error without inter-layer couplings under Controller (4).

0 1 2 3 4 5

t

-15

-10

-5

0

5

10

15

ek i(t)
,i=

1,
2,

3,
k=

1,
2,

3

e1
1
(t)

e1
2
(t)

e1
3
(t)

e2
1
(t)

e2
2
(t)

e2
3
(t)

e3
1
(t)

e3
2
(t)

e3
3
(t)

Figure 13. Synchronization error without intra-layer couplings under Controller (4).

Example 2. Consider Adaptive Quantized Control Strategy (17) on FOOCMN (1) and choose
ξ0 = 1, ρ = 0.3; the other parameters are same as Example 1. The simulation results are depicted in
Figures 14−19, and the varying control gains ḡi

(k)(t) are shown in Figure 20.
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Figure 14. Synchronization error in the first layer under Controller (17).
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Figure 15. Synchronization error in the second layer under Controller (17).
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Figure 16. Synchronization error in the third layer under Controller (17).
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Figure 17. Trajectories of x(1)ı (t) and s(1)(t) under Controller (17).
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Figure 18. Trajectories of x(2)ı (t) and s(2)(t) under Controller (17).
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Figure 19. Trajectories of x(3)ı (t) and s(3)(t) under Controller (17).



Fractal Fract. 2023, 7, 22 20 of 24

0 1 2 3 4 5

t

0

5

10

15

20

25

gk i(t)
,i=

1,
2,

3,
k=

1,
2,

3

g1
1
(t)

g1
2
(t)

g1
3
(t)

g2
1
(t)

g2
2
(t)

g2
3
(t)

g3
1
(t)

g3
2
(t)

g3
3
(t)

Figure 20. Evolutions of control gains ḡ(κ)ı (t) under Controller (17).

Figures 21–23 show the adaptive quantized controller ū(κ)
ı (t) (ı ∈ M̃, κ ∈ Ñ) in each

layer. Obviously, the continuous signals are translated as piecewise continuous forms via Quan-
tized Controller (17), and the communication burden and the control cost are greatly reduced.
Figures 24 and 25 show the correctness of Remark 5.
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Figure 21. Quantized controller ū(1)
ı (t) in the first layer.
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Figure 22. Quantized controller ū(2)
ı (t) in the second layer.
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Figure 23. Quantized controller ū(3)
ı (t) in the third layer.
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Figure 24. Synchronization error without inter-layer couplings under Controller (17).
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Figure 25. Synchronization error without intra-layer couplings under Controller (17).

As pointed out in Remarks 1, 2, and 5, the designed controllers and the synchronization criteria
are applicable for the fractional-order multiplex networks without intra-layer coupling and inter-
layer coupling. To validate this statement, Figures 12, 13, 24, and 25 are provided. It can be seen that
the degraded multiplex networks without inter-layer coupling or intra-layer coupling require less
synchronization time compared with the networks containing inter-layer and intra-layer coupling.
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5. Conclusions

This paper investigated the synchronization problem of fractional-order output-
coupling multiplex networks. Firstly, in the modelling of fractional-order multiplex net-
works, both intra-layer communication and inter-layer communication were considered
based on nodes’ dynamic outputs. Secondly, two kinds of adaptive control schemes were
developed to realize the asymptotic synchronization of FOOCMNs. Note that the syn-
chronized state of each layer is different, which is distinguished from the existing results.
The developed control schemes and the synchronization criteria in this paper are more
generic since they are also applicable when the fractional-order system is reduced to the
integer-order multiplex model. Finally, several numerical examples were given to verify
the theoretical analysis.

It is well known that the time delay is inevitable for large-scale complex networks in
view of the limited information transmission and processing speed among nodes [30,47,48],
so further research work would try to study the synchronization of FOOCMNs with time
delays. Meanwhile, it is also interesting to reveal the effects of the number of layers on the
synchronization of FOOCMNs, which will be considered in our latest research.
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