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Abstract: The ideal magnetic flux-controlled memristor was introduced into a four-dimensional
chaotic system and combined with fractional calculus theory, and a novel four-dimensional com-
mensurate fractional-order system was proposed and solved using the Adomian decomposition
method. The system orders, parameters, and initial values were studied as independent variables in
the bifurcation diagram and Lyapunov exponents spectrum, and it was discovered that changing
these variables can cause the system to exhibit more complex and rich dynamical behaviors. The
system had an offset boosting, which was discovered by adding a constant term after the decoupled
linear term. Finally, the results of the numerical simulation were verified through the use of analog
circuits and FPGA designs, and a control scheme for the system circuit was also suggested.
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1. Introduction

The first chaotic system was accidentally proposed by Lorenz [1], and scholars began
to investigate various chaotic systems with different types of attractors [2–7] and equilib-
ria [8–11]. The exceptional qualities of chaotic systems, such as their initial sensitivity and
long-term unpredictability, allow for their cross-combination with other scientific disci-
plines, including image encryption [12], finance [13], and so forth. It has therefore become
a priority to figure out how to establish new chaotic systems with improved physical
properties, and the establishment of memristive chaotic system is an effective method [14].
Leon Chua once proposed the fourth fundamental element from a symmetry arguments
memristor, which serves as the link between magnetic flux and charge [15]. In recent years,
memristors have received much attention due to their unique non-volatile performance
and variety of nonlinear characteristics, such as their Lissajous curve’s variation with
frequency and the appearance of the voltage–current’s hysteresis curve shrinking at the
origin [16]. By introducing memristors with different properties into the existing chaotic
circuit systems, scholars have obtained a new class of memristive chaotic circuit systems,
studied their abundantly rich dynamical behaviors [17–21], and used them to establish
nonlinear circuits [22], neural networks [23,24], secure communications [25], and other
engineering fields. However, most of these studies are based on the integer-order calculus
system. Fractional-order calculus can accurately describe the physical model as a gener-
alized description. Therefore, it has drawn the attention of scholars and has become the
focus of nonlinear theory and engineering application studies.

The theoretical development of fractional-order calculus has been very slow due to a
lack of practical engineering experience and the substantial amount of calculations using
traditional pens. However, with the advancement of computer technology in recent years
and the inclusion of variable differences in the range of (0, 1], numerous fields increasingly
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focus on fractional-calculus operators. Meanwhile, the combination of fractional-order
calculus and memristors expands the influence of control parameters on the system per-
formance and exhibits richer dynamical behaviors, including high-dimensional [26] and
variable-order memristive chaotic systems [27]. With an increased study depth, scholars
have begun to shift their original focus from the dynamical behaviors of chaotic memristive
circuits with different parameters [28–30] to the study of memristive chaotic systems with
changing initial values [31,32]. As a result, we can investigate a novel fractional-order mem-
ristor chaotic system and, by altering the initial value, can make the system exhibit extreme
multistability. This can improve the complexity of chaotic pseudo-random sequences and
better satisfy the requirements of code division multiple access and the spread spectrum in
secure communication [33–35].

Meanwhile, a number of non-ideal issues with memristor operation have emerged
in recent years along with the development of memristors, including random variability,
voltage-drift and the aging-induced degradation of the memristor threshold voltage [36,37].
When we designed the memristive chaotic circuit, the integrator was made by the op-
erational amplifier, and the positive input was grounded. The integration function was
obtained by using the virtual short concept of the two inputs of the ideal operational
amplifier, where the negative terminal is also zero. However, the input of the operational
amplifier exists as offset; that is, when the positive input terminal is grounded, the nega-
tive input terminal is not zero, the input offset is also integrated, and the output terminal
has voltage. Thus, the DC voltage integration drift occurs. Consequently, the current
study will concentrate on how to design memristive chaotic circuits to clamp voltage
integration drift. The paper is organized as follows: In Section 2, the mathematical expres-
sion of a fractional memristor is derived through fractional calculus theory. The perfor-
mance of the memristor is studied through numerical research and circuit implementation.
In Section 3, when orders, system parameters, and system initial values are selected as
variables, the bifurcation diagram and Lyapunov exponents (LEs) spectrum are used to
illustrate the characteristics of the system and then the offset boosting phenomenon of the
system is researched. In Section 4, the analog circuit and FPGA design of the multi-type
chaotic attractor are implemented, and the control circuit of the system is designed through
the stability analysis of the equilibrium to satisfy the control requirements. The last section
summarizes the work of this paper and gives prospects for future work.

2. Fractional-Order Chaotic Memristor Circuit and Model
2.1. Fractional-Order Calculus

The operator C
0 Dq

t is generally used to represent fractional-order calculus. D is a
differential operator, d stands for the differential definition, α and t are the boundaries of
the operator, and q is a real number. When q is positive, it is a differentiation, and when
q is negative, it is an integration. Different from integer-order calculus, there are many
definitions of fractional-order calculus, among which, the Caputo definition [38] is more
common, which is as follows:

C
0 Dq

t0
f (t) =





[Γ(k− q)]−1 ∫ t
t0

f (k)(τ)
(t−τ)q−k+1 dτ, k− 1 < q < k,

dk f (t)
dtk , q = k.

(1)

where k ∈ N, q ∈ R+, Γ(L) =
∫ +∞

0 e−ttL−1dt is a gamma function, and C is the Caputo
differential definition. When t ∈ (t0, t1), k− 1 < q < k, the properties of Caputo fractional-
order calculus are

C
0 JC

0 D f (t) = f (t)−
k−1

∑
k=0

f (k)(t0)
(t− t0)

k

k!
. (2)

Jq
t0

is the q-order integral operator, Dq
t0

is the q-order differential operator, and D−q
t0

=

Jq
t0

. When q = 0, Dq
t0

f (t) = Jq
t0

f (t) = f (t). In practical application, the definition of the
fractional-order derivative of time is often defined by Caputo. From [39], we can obtain
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C
−∞Dq

t eλt = λqeλt; then, according to Euler’s equation eit = cos t + i · sin t, we can expand
it as follows:

C
−∞Dq

t eiωt = (iω)qeiωt = ωqeiωt+i qπ
2 = ωq cos

(
ωt +

qπ

2

)
+ iωq sin

(
ωt +

qπ

2

)
. (3)

Thus, Equation (3) can be

{ C
−∞Dq

t sin(ωt) = ωq sin
(
ωt + q

2 π
)
,

C
−∞Dq

t cos(ωt) = ωq cos
(
ωt + q

2 π
)
.

(4)

and, for Equation (4) above, the fractional-order derivative formulae of sine and cosine
functions are obtained by expanding the corresponding real and imaginary parts of Euler’s
Equation (3). Then, from the short-term memory principle [39], when t� 1, Equation (4)
can be approximated as

{
C
0 Dq

t sin(ωt) ≈C
−∞ Dq

t sin(ωt) = ωq sin
(
ωt + q

2 π
)
,

C
0 Dq

t cos(ωt) ≈C
−∞ Dq

t cos(ωt) = ωq cos
(
ωt + q

2 π
)
.

(5)

the corresponding fractional-order integral is as follows:

C
0 Jq

t f (t) =
1

Γ(q)

∫ t

0

f (τ)
(t− τ)1−q dτ. (6)

Therefore, when q ∈ (0, 1), we can obtain

C
0 D1−q

t

(
C
0 Dq

t f (t)
)
= ḟ (t). (7)

the subsequent derivation of the memristor model will make extensive use of many of the
equations mentioned above that are related to this section.

2.2. Fractional-Order Memristor Model and Circuit
2.2.1. Magnetic Flux-Controlled Memristor Model

The model of the nonlinear fractional-order quadratic memristor is

{
i(t) = W(φ)v(t),
c
0Dq

t f (t) = v(t).
(8)

where q > 0, i(t) is the input current, v(t) is the output voltage, W(φ) is the memristor value,
ζ and ξ are parameters, f (t) is the memristor internal variable, and W(φ) = ζ + ξ f (t)2.
The driving voltage on both sides of the memristor is v(t) = Vm sin(ωt), and through
Equations (7) and (8) simultaneously, we have

ḟ (t) = Vm
C
0 D1−q

t sin(ωt). (9)

where Vm is the amplitude and ω is the angular frequency. Then, from the short-term
memory principle [39], Equation (9) can be approximated as

ḟ (t) ≈ Vmω1−q sin
(

ωt +
1− q

2
π

)
. (10)

and by integrating the two sides of Equation (10), we obtain

f (t) ≈ f (0) +
Vm

ωq

[
cos
(

1− q
2

π

)
− cos

(
ωt +

1− q
2

π

)]
. (11)
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When q = 1, the above expression is simplified to an integer-order memristor equation
and, when 0 < q < 1, Equations (11) and (8) simultaneously become

i(t) =
(

ζ + ξ f (t)2
)

v(t)

=

(
ζ + ξ

(
f (0) + Vm

ωq

[
cos
(

1−q
2 π

)
− cos

(
ωt + 1−q

2 π
)])2

)
Vm sin (ωt).

(12)

According to Equation (12), the system parameters of the memristor, the initial mag-
netic flux of the memristor, and the amplitude and frequency of the sinusoidal voltage
excitation are all related to the current flowing through the quadratic nonlinear magnetic
flux-controlled memristor. When the input voltage is v(t) = Vm sin(ωt), for different
amplitudes and frequencies of sinusoidal voltage excitation and different internal ini-
tial conditions of the memristor, the quadratic nonlinear flux memristor hysteresis loop
on the v − i plane is shown in Figure 1a–c, and Figure 1d–f displays the memristor’s
time-domain waveform.
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Figure 1. Characteristic comparison of fractional-order memristor. (a) Memristor hysteresis loops
of different orders q; (b) memristor hysteresis loops of different frequencies ω; (c) memristor hys-
teresis loops of different voltage amplitudes Vm; (d) time-domain diagram of the change in memris-
tance W(φ) in different orders q; (e) time-domain diagram of output current at different orders q;
(f) time-domain diagram of output power under different orders q;

From above, Figure 1a shows the alter of the area of the hysteresis loop when the
order q of Equation (12) is changed; Figure 1b illustrates how the area of the hysteresis loop
changes when the frequency is altered, and, when the increment is large enough, it becomes
a single-valued function; Figure 1c shows that there is a positive correlation between the
variation in the excitation voltage amplitude Vm at the memristor terminal and the area of
the hysteresis loop. Then, in the subsequent group, Figure 1d is the effect of order on the
memristor, and the memristance W(φ) will be positive or negative. When the fractional-
order memristor degenerates to integer-order, it is found that the integer-order memristance
is always negative; Figure 1e demonstrates that the dynamic range of the current memristor
variation increases with a decreasing order; Figure 1f is the time-domain waveform of
the memristor output power, and when the order changes, the memristor power changes
between positive and negative. When the fractional-order memristor degenerates into an
integer-order, the integer-order memristor power is always less than zero.

Figure 1. Characteristic comparison of fractional-order memristor. (a) Memristor hysteresis loops
of different orders q; (b) memristor hysteresis loops of different frequencies ω; (c) memristor hys-
teresis loops of different voltage amplitudes Vm; (d) time-domain diagram of the change in memris-
tance W(φ) in different orders q; (e) time-domain diagram of output current at different orders q;
(f) time-domain diagram of output power under different orders q;

From above, Figure 1a shows the alter of the area of the hysteresis loop when the
order q of Equation (12) is changed; Figure 1b illustrates how the area of the hysteresis loop
changes when the frequency is altered, and, when the increment is large enough, it becomes
a single-valued function; Figure 1c shows that there is a positive correlation between the
variation in the excitation voltage amplitude Vm at the memristor terminal and the area of
the hysteresis loop. Then, in the subsequent group, Figure 1d is the effect of order on the
memristor, and the memristance W(φ) will be positive or negative. When the fractional-
order memristor degenerates to integer-order, it is found that the integer-order memristance
is always negative; Figure 1e demonstrates that the dynamic range of the current memristor
variation increases with a decreasing order; Figure 1f is the time-domain waveform of
the memristor output power, and when the order changes, the memristor power changes
between positive and negative. When the fractional-order memristor degenerates into an
integer-order, the integer-order memristor power is always less than zero.
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2.2.2. Implementation of Chaotic Circuit

According to the nonlinear magnetic flux-controlled memristor model described in
Equation (12), parameters were set and the equivalent circuit of the fractional-order mem-
ristor was established, as shown in Figure 2, where, different from the traditional active
magnetic flux-controlled memristor, a shunt resistor R2 was added to the integrating capac-
itor to clamp the DC voltage integral drift. Furthermore, the fractional-order memristor
model is 




i =
(
− R5

R4

R7
R6

R9
R8

+ R9
R3

φ2
)

,

0Dq
t ϕ = − v

R1C0
− φ

R2C0
.

(13)

where v and i represent the input voltage and current, respectively, and φ is the voltage at
both ends of the integrating capacitor C0. The circuit unit values involved in the equation
are shown in Table 1.
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Following that, different excitation amplitudes and frequencies of a sinusoidal voltage
source can be chosen in accordance with the parameters in Table 1 to simulate various
hysteresis loops shrinking at the origin in Multism, as shown in Figure 3.

Table 1. Value of circuit elements of fractional-order memristor.

Circuit Element Physical Meaning
of Parameters Parameter Value

R1, R2, R4, R5, R8, R9 resistance 10k
R3 resistance 62k
R6 resistance 100k
R7 resistance 125k
C0 capacitance 1nF

Figure 3a shows that the voltage excited by sinusoidal voltages has not changed,
but the frequencies have changed: this is a “hard” switching condition (large voltage
excursions or long-term bias), and any symmetrical AC voltage bias will cause double-loop
v− i hysteresis and shrink to a line at high frequency (blue line) as long as it remains in the
memristor mechanism. Figure 3b shows that the frequencies have not changed and that the
voltages have changed, and as the voltage decreases, the hysteresis loop of the memristor
tends to be linear.

Figure 2. Fractional-order memristor chaotic circuit.

Following that, different excitation amplitudes and frequencies of a sinusoidal voltage
source can be chosen in accordance with the parameters in Table 1 to simulate various
hysteresis loops shrinking at the origin in Multism, as shown in Figure 3.

Table 1. Value of circuit elements of fractional-order memristor.

Circuit Element Physical Meaning of Parameters Parameter Value

R1, R2, R4, R5, R8, R9 resistance 10k
R3 resistance 62 k
R6 resistance 100 k
R7 resistance 125 k
C0 capacitance 1 nF

Figure 3a shows that the voltage excited by sinusoidal voltages has not changed,
but the frequencies have changed: this is a “hard” switching condition (large voltage
excursions or long-term bias), and any symmetrical AC voltage bias will cause double-loop
v− i hysteresis and shrink to a line at high frequency (blue line) as long as it remains in the
memristor mechanism. Figure 3b shows that the frequencies have not changed and that the
voltages have changed, and as the voltage decreases, the hysteresis loop of the memristor
tends to be linear.
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Figure 3. Simulation diagram of fractional-order memristor hysteresis loop circuit in v− i plane.
(a) Different amplitudes A; (b) different frequencies f .

2.2.3. Dynamical Chaotic Circuit Model

According to Figure 2, the dynamical elements, capacitance C1 and C2, inductance L,
and magnetic flux-controlled memristor W(φ) correspond to state variables v1, v2, iL, and
φ, respectively. Therefore, the equations of state can be described by Kirchhoff voltage law
as 




dqv1
dt = v2−v1

RC1
− W(φ)v1

C1
,

dqv2
dt = v1−v2

RC2
− iL

C2
,

dqiL
dt = v2

L ,
dqφ
dt = − v1

R1C0
− φ

R2C0
.

(14)

where q > 0. Let x1 = v1, x2 = v2, x3 = RiL, and x4 = φ. Define nonlinear function W(φ) =

−α + βφ2, and then let a = α−1
RC1

, b = 1
RC1

, c = β
RC1

, R = 1, RC2 = 1, 1
L = d, − 1

R1C0
= e,

1
R2C0

= f , ζ = 1.25, and ξ = 0.16. The normalized representation of Equation (14) can be
rewritten as 




Dq
t x1 = ax1 + bx2 − cx1x4

2,
Dq

t x2 = x1 − x2 − x3,
Dq

t x3 = dx2,
Dq

t x4 = ex1 − f x4.

(15)

where q represents the fractional order of the commensurate system, and a, b, c, d, e, and f
are the system parameters.

2.3. Adomian Decomposition Algorithm and Solution
2.3.1. Adomian Decomposition Algorithm

The Adomian decomposition algorithm is a numerical analysis algorithm with a high
accuracy and fast convergence. Its general method is to decompose the differential equation
into nonlinear terms, linear terms, and constant terms, convert the nonlinear terms into
a special polynomial, and then use the inverse operator method to derive step by step.
Finally, the approximate solution of the differential equation is obtained. It is the best
candidate method for solving fractional-order chaotic systems Dq

t0
x(t) = f (x(t)) at present.

x(t) is the function variable, where x(t) = (x1(t), x2(t), x3(t) · · · xn(t))
T, Dq

t0
represents the

Caputo differential operator of q-order, whereupon its expression, based on the Adomian
decomposition algorithm, is as follows:

{
Dq

t0
x(t) = Lx(t) + Nx(t) + o(x(t)),

x(k)
(
t+0
)
= bk.

(16)

where, m ∈ N, k = 0, 1, 2, · · · , m − 1 and m − 1 < q 6 m, the linear operator of the
system can be represented by L and the nonlinear operator can be represented by N,
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2.2.3. Dynamical Chaotic Circuit Model

According to Figure 2, the dynamical elements, capacitance C1 and C2, inductance
L, and magnetic flux-controlled memristor W(φ) correspond to state variables v1, v2, iL,
and φ, respectively. Therefore, the equations of state can be described by Kirchhoff voltage
law as 




dqv1
dt = v2−v1

RC1
− W(φ)v1

C1
,

dqv2
dt = v1−v2

RC2
− iL

C2
,

dqiL
dt = v2

L ,
dqφ
dt = − v1

R1C0
− φ

R2C0
.

(14)

where q > 0. Let x1 = v1, x2 = v2, x3 = RiL, and x4 = φ. Define nonlinear function W(φ) =

−α + βφ2, and then let a = α−1
RC1

, b = 1
RC1

, c = β
RC1

, R = 1, RC2 = 1, 1
L = d, − 1

R1C0
= e,

1
R2C0

= f , ζ = 1.25, and ξ = 0.16. The normalized representation of Equation (14) can be
rewritten as 




Dq
t x1 = ax1 + bx2 − cx1x4

2,
Dq

t x2 = x1 − x2 − x3,
Dq

t x3 = dx2,
Dq

t x4 = ex1 − f x4.

(15)

where q represents the fractional order of the commensurate system, and a, b, c, d, e, and f
are the system parameters.

2.3. Adomian Decomposition Algorithm and Solution
2.3.1. Adomian Decomposition Algorithm

The Adomian decomposition algorithm is a numerical analysis algorithm with a high
accuracy and fast convergence. Its general method is to decompose the differential equation
into nonlinear terms, linear terms, and constant terms, convert the nonlinear terms into
a special polynomial, and then use the inverse operator method to derive step by step.
Finally, the approximate solution of the differential equation is obtained. It is the best
candidate method for solving fractional-order chaotic systems Dq

t0
x(t) = f (x(t)) at present.

x(t) is the function variable, where x(t) = (x1(t), x2(t), x3(t) · · · xn(t))
T, Dq

t0
represents the

Caputo differential operator of q-order, whereupon its expression, based on the Adomian
decomposition algorithm, is as follows:

{
Dq

t0
x(t) = Lx(t) + Nx(t) + o(x(t)),

x(k)
(
t+0
)
= bk.

(16)

where, m ∈ N, k = 0, 1, 2, · · · , m − 1 and m − 1 < q 6 m, the linear operator of the
system can be represented by L and the nonlinear operator can be represented by N,
the o(t) = [o1(t), o2(t), · · · , on(t)]

T representative constant and the representative initial
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value. From Equation (2), fractional integration operator Jq
t0

on both sides of Equation (16),
and we get

x = Jq
t0

Lx + Jq
t0

Nx + Jq
t0

o +
(t− t0)

k

k!

m−1

∑
k=0

bk. (17)

where t ∈ (t0, t1). From the properties of fractional integral operators [38], the nonlinear
term in Equation (17) can be decomposed according to Equation (18):

Ai
j =

1
i!

[
di

dλi N

(
i

∑
k=0

(λ)kxk
j

)]

λ=0

. (18)

where i = 0, 1, · · ·∞, j = 0, 1, · · · , n. Then, the nonlinear term is

Nx =
∞

∑
i=0

Ai
(

x0, x1, x2, · · · , xi
)

. (19)

Therefore, the numerical solution of Equation (16) is as follows:




x0 = Jq
t0

o + (t−t0)
k

k! ∑m−1
k=0 bk,

x1 = Jq
t0

Lx0 + Jq
t0

A0(x0),
x2 = Jq

t0
Lx1 + Jq

t0
A1(x0, x1),

· · ·
xi = Jq

t0
Lxi−1 + Jq

t0
Ai−1(x0, x1, · · · , xi−1),

· · ·

(20)

The derivation times of Equation (20) approach infinity; that is, when the derivation
terms approach infinity, its value is closer to the analytic solution.

2.3.2. Decomposition Form of Solution

According to the decomposition algorithm in Section 2.3.1 above, the fractional-
order chaotic system (15) is decomposed, and the linear terms, nonlinear terms, and con-
stant terms are obtained as L(x1, x2, x3, x4)

T = (ax1 + bx2, x1 − x2 − x3, dx2, ex1 − f x4)
T,

N(x1, x2, x3, x4)
T = (cx1x4x4, 0, 0, 0)T, (0, 0, 0, 0)T = O. Thus, from Equation (17), the

solution of this system is expressed by




x1(t)
x2(t)
x3(t)
x4(t)


 = Jq

t0




ax1 + bx2
x1 − x2 − x3

dx2
ex1 − f x4


+ Jq

t0




cx1x4x4
0
0
0


+ O +




x1(t0)
x2(t0)
x3(t0)
x4(t0)


. (21)

The nonlinear term of Equation (21) is x1x4x4, and we can obtain the nonlinear term
decomposition from Equation (18), as shown in the Appendix A section. As a consequence,
the form of the solution of the system after taking the finite-term iteration is as follows:

x̃i(t) = x0
i + x1

i + x2
i + x3

i + x4
i + x5

i

= c0
i + c1

i
(t−t0)

q

Γ(q+1) + c2
i
(t−t0)

2q

Γ(2q+1) + c3
i
(t−t0)

3q

Γ(3q+1) + c4
i
(t−t0)

4q

Γ(4q+1) + c5
i
(t−t0)

5q

Γ(5q+1) .
(22)

where i = 1, 2, 3, 4. Based on this approximate analytical solution, the parameter f is
selected as the system variable. The others parameter values are a = 3, b = 12, c = 2,
d = 32, e = −37, q = 0.9, and the initial condition (0.1, 0.1, 0.1, 0.1). By changing the
parameter f , the system phase diagram of Figure 4 can be obtained.
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Figure 4. The system plane phase diagram of changing the parameter f of system (15). (a) f = 23; (b)
f = 19; (c) f = 13; (d) f = 9.

Figure 4d depicts a single-scroll symmetric chaotic attractor with f = 9, and when
f = 23, f = 19, and f = 13, we can obtain the periodic-1 attractor, periodic-2 attractor, and
single-scroll chaotic attractor as shown in Figure 4a–c, respectively.

3. Dynamical Analysis
3.1. Dynamical Analysis with Fractional Orders q

To study the dynamical behaviors of system (15), we set q ∈ [0.7, 1], and the other
system parameters were a = 3, b = 12, c = 2, d = 32, e = −37 , f = 12, and (0.1, 0.1, 0.1, 0.1).
Figure 5 shows the bifurcation diagram, LEs diagram, and that order q is the variable.

From Figure 5a, there are three distinct periodic windows, i.e., q ∈ [0.70, 0.76],
q ∈ [0.77, 0.78], and q ∈ [0.91, 1] can be found, and, except for the periodic, the others
regions are in a chaotic state. The same result can be obtained from LEs in Figure 5b. We
list the state of the system (15) under different orders q in Table 2, and the corresponding
dynamical behaviors are shown in Figure 6.

Figure 4. The system plane phase diagram of changing the parameter f of system (15). (a) f = 23;
(b) f = 19; (c) f = 13; (d) f = 9.

Figure 4d depicts a single-scroll symmetric chaotic attractor with f = 9, and when
f = 23, f = 19, and f = 13, we can obtain the periodic-1 attractor, periodic-2 attractor, and
single-scroll chaotic attractor as shown in Figure 4a–c, respectively.

3. Dynamical Analysis
3.1. Dynamical Analysis with Fractional Orders q

To study the dynamical behaviors of system (15), we set q ∈ [0.7, 1], and the other
system parameters were a = 3, b = 12, c = 2, d = 32, e = −37, f = 12, and (0.1, 0.1, 0.1, 0.1).
Figure 5 shows the bifurcation diagram, LEs diagram, and that order q is the variable.

From Figure 5a, there are three distinct periodic windows, i.e., q ∈ [0.70, 0.76],
q ∈ [0.77, 0.78], and q ∈ [0.91, 1] can be found, and, except for the periodic, the others
regions are in a chaotic state. The same result can be obtained from LEs in Figure 5b. We
list the state of the system (15) under different orders q in Table 2, and the corresponding
dynamical behaviors are shown in Figure 6.

Figure 6 shows the dynamical behaviors with different orders q of the system (15),
which are consistent with the corresponding dynamical properties in Table 2. When
fractional-order q is taken as a variable, the system can produce richer and more com-
plex attractors.
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Table 2. Dynamical behaviors of system (15) as the order q changes .

q Dynamical Properties Phase Diagrams

(0.700,0.748) periodic-1 Figure 6a
(0.748,0.754) periodic-2 Figure 6b
(0.754,0.780) periodic-4 Figure 6c
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Figure 6. Phase diagrams of system (15) in x1 − x2 − x3 plane. (a) Period-1 of q = 0.71; (b) period-2
of q = 0.75; (c) period-4 of q = 0.758; (d) single-scroll attractor of q = 0.80; (e) double-scroll chaotic
attractor of q = 0.90; (f) period-2 of q = 0.95.
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fractional-order q is taken as a variable, the system can produce richer and more complex attractors.

Figure 6. Phase diagrams of system (15) in x1 − x2 − x3 plane. (a) Period-1 of q = 0.71; (b) period-2
of q = 0.75; (c) period-4 of q = 0.758; (d) single-scroll attractor of q = 0.80; (e) double-scroll chaotic
attractor of q = 0.90; (f) period-2 of q = 0.95.
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3.2. Dynamical Analysis with Parameters
3.2.1. Parameter a as the Variable

We fixed the order q = 0.9, the parameter a is used as a variable and selected the system
parameters as b = 12, c = 2, d = 32, e = −37, f = 12, the initial value as (0.1, 0.1, 0.1, 0.1),
similarly. Then we obtained the bifurcation diagram and LEs diagram as show in Figure 7.
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In Figure 7, it can be found that the system changes back and forth between a chaotic
and periodic state, and that the dynamical behaviors are very rich.

3.2.2. Parameter d as the Variable

Likewise, we fixed the order q, used the parameter d as a variable, and selected the
system parameters as a = 3, b = 12, c = 2, e = −37, f = 12 and the initial value as
(0.1, 0.1, 0.1, 0.1), similarly. Then, we obtained the bifurcation diagram and LEs diagram,
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Regarding studying the dynamical behaviors of d ∈ (28, 32), Figure 8 shows the
bifurcation diagram and LEs when selecting parameter d as the variable, and the nu-
merical research of the system (15) indicates that, in addition to three periodic windows,
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In Figure 7, it can be found that the system changes back and forth between a chaotic
and periodic state, and that the dynamical behaviors are very rich.

3.2.2. Parameter d as the Variable

Likewise, we fixed the order q, used the parameter d as a variable, and selected the
system parameters as a = 3, b = 12, c = 2, e = −37, f = 12 and the initial value as
(0.1, 0.1, 0.1, 0.1), similarly. Then, we obtained the bifurcation diagram and LEs diagram,
as shown in Figure 8.
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Regarding studying the dynamical behaviors of d ∈ (28, 32), Figure 8 shows the
bifurcation diagram and LEs when selecting parameter d as the variable, and the nu-
merical research of the system (15) indicates that, in addition to three periodic windows,
i.e., d ∈ (28.61, 28.82), d ∈ (29.23, 29.43) and d ∈ (30.68, 31.01), the system is in a chaotic
state in most of the other parameter ranges.
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3.2.3. Parameter f as the Variable

Under the same parameters and conditions as the above analysis, f ∈ (8, 12) is selected
as the variable, and the bifurcation diagram and LEs diagram are shown in Figure 9.
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From the above Figure 9, it can be found thatm when parameter f is a variable,
the dynamical behaviors of the system (15) exhibit alternating chaotic and periodic states.

3.3. Dynamical Analysis with Initial Value

Like before, we fixed the order q = 0.9, the parameter was selected as a = 3, b =
12, c = 2, d = 32, e = −37, and f = 12, and then we changed the initial value x1 ∈ [0.2, 0.2]
and x2 ∈ [0.2, 0.2], whereas x3 and x4 were not changed. Figure 10 and 11 show the
bifurcation diagram and LEs diagram of system (15) with x1 and x2 as variables.

Figures 10 and 11 show that the system (15) has symmetrical changes, i.e., when
other conditions remain constant and the initial value changes, the system can emerge with
coexisting attractors, as shown in Figure 12.

When some initial values of system (15) change, it can be found that the position of
the attractor changes. This illustrates the multiple stability of the system, where it is just a
dynamical property exhibited by the initial value space.
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(b) LEs.

From the above Figure 9, it can be found thatm when parameter f is a variable,
the dynamical behaviors of the system (15) exhibit alternating chaotic and periodic states.

3.3. Dynamical Analysis with Initial Value

Like before, we fixed the order q = 0.9, the parameter was selected as a = 3, b = 12,
c = 2, d = 32, e = −37, and f = 12, and then we changed the initial value x1 ∈ [0.2, 0.2] and
x2 ∈ [0.2, 0.2], whereas x3 and x4 were not changed. Figures 10 and 11 show the bifurcation
diagram and LEs diagram of system (15) with x1 and x2 as variables.

Figures 10 and 11 show that the system (15) has symmetrical changes, i.e., when other
conditions remain constant and the initial value changes, the system can emerge with
coexisting attractors, as shown in Figure 12.
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Figure 10. Dynamical behaviors with changes in initial value x1(0) of system (15). (a) Bifurcation
diagram; (b) LEs.

When some initial values of system (15) change, it can be found that the position of
the attractor changes. This illustrates the multiple stability of the system, where it is just a
dynamical property exhibited by the initial value space.
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3.4. Offset Boosting

For a nonlinear system, adding a constant term after the uncoupled linear term of the
variable that occurs only once in the system can offset the system (15). The constant is used
as the control quantity, and the offset boosting can control the system offset. In Equation (15),
variable x2 satisfies the conditions of phase offset boosting. The constant term p̄ is added to
the second dimension so we can obtain





Dq
t x1 = ax1 + bx2 − cx1x4

2,
Dq

t x2 = x1 − x2 − (x3 + p̄),
Dq

t x3 = dx2,
Dq

t x4 = ex1 − f x4.

(23)

For the study of the offset boosting phenomenon, the parameters are consistent with
the above, the initial values are (0.1, 0.1, 0.1, 0.1), and the offset p̄ is set to 0, 0.2, and 0.4,
respectively. When we change the fractional-orders q, we can find the offset boosting shown
in Figure 13.

The system exhibits rich dynamical behaviors. To further study the offset boosting
of system (15), under the same conditions, we only changed the value of f , in which, the
offset p̄ was set to 0, 0.2, 0.4, and 0.6, and Figure 14 shows the position offset of the attractor
under different parameters f .

As shown in Figure 14, when f = 9, the system is shown as being in a double-scroll
chaotic state. When f = 11, the system remains in a double-scroll periodic state. When
f = 14, the system is shown as being in a single-scroll chaotic state. When f = 17,
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the system remains in a single-scroll periodic state. Similarly, if we change the other
parameters, we can find more offset boosting, indicating the rich and complex dynamical
behaviors of the system.
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4. System Circuit Implementation
4.1. Laplace Transform of Fractional-Order Memristor Circuit

Since it is impossib;le to perform a fractional differential calculation of a function or
system directly in the time-domain, we can approximate the fractional-order operator using
an integer-order operator as follows:

L
{

0Dq
t x(t)

}
=

∞∫

0

e−z
0Dq

t x(t)dt = sqX(s)−
n−1

∑
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sk( 0Dq−k−1
t x(t)

∣∣∣
t=0

) (24)

where the order n − 1 ≤ q < n, the initial value of the fractional-order system (15) is
zero, and, in the time-domain transformation, the transfer function H(s) = H(0)

sq can be
used to replace the fractional operator q. The Laplace transform can be used for system
identification by using q = 0.9, where the maximum approximation error is 2 dB, and by
considering the 1

sq Bode diagram of the system (15). Thus, we can obtain





s0.9X1(s) = aX1(s) + bX2(s)− cX1(s)X4
2(s)

s0.9X2(s) = X1(s)− X2(s)− X3(s)
s0.9X3(s) = dX2(s)
s0.9X4(s) = eX1(s)− f X4(s)

(25)

Figure 14. Offset boosting (p̄ = 0 (red), p̄ = 0.2 (green), p̄ = 0.4 (blue), p̄ = 0.6 (yellow)) with
parameter f change. (a) f = 9; (b) f = 11; (c) f = 14; (d) f = 17.
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4. System Circuit Implementation
4.1. Laplace Transform of Fractional-Order Memristor Circuit

Since it is impossib;le to perform a fractional differential calculation of a function or
system directly in the time-domain, we can approximate the fractional-order operator using
an integer-order operator as follows:

L
{

0Dq
t x(t)

}
=

∞∫

0

e−z
0Dq

t x(t)dt = sqX(s)−
n−1

∑
k=0

sk( 0Dq−k−1
t x(t)

∣∣∣
t=0

) (24)

where the order n − 1 ≤ q < n, the initial value of the fractional-order system (15) is
zero, and, in the time-domain transformation, the transfer function H(s) = H(0)

sq can be
used to replace the fractional operator q. The Laplace transform can be used for system
identification by using q = 0.9, where the maximum approximation error is 2 dB, and by
considering the 1

sq Bode diagram of the system (15). Thus, we can obtain





s0.9X1(s) = aX1(s) + bX2(s)− cX1(s)X4
2(s)

s0.9X2(s) = X1(s)− X2(s)− X3(s)
s0.9X3(s) = dX2(s)
s0.9X4(s) = eX1(s)− f X4(s)

(25)

According to the 1
sq Bode diagram (the maximum approximation error is 2 dB), we have

1
s0.9 ≈

2.2675(s + 1.292)(s + 215.4)
(s + 0.01292)(s + 2.154)(s + 359.4)

(26)

Here, let g = 2.2675, k = 216.692, l = 278.2968, m = 361.567, n = 778.819, p = 10,

i.e.,
g(s2+ks+l)

s3+ms2+ns+p = 2.2675(s+1.292)(s+215.4)
(s+0.01292)(s+2.154)(s+359.4) , and, by Equation (25), we can obtain





X1(s) =
g(s2+ks+l)

s3+ms2+ns+p

(
aX1(s) + bX2(s)− cX1(s)X4

2(s)
)

X2(s) =
g(s2+ks+l)

s3+ms2+ns+p (X1(s)− X2(s)− X3(s))

X3(s) =
g(s2+ks+l)

s3+ms2+ns+p dX2(s)

X4(s) =
g(s2+ks+l)

s3+ms2+ns+p (eX1(s)− f X4(s))

(27)

Let χ1 = x, χ2 = ẋ, χ3 = ẍ, χ4 =
...
x , χ5 = y, χ6 = ẏ, χ7 = ÿ, χ8 =

...
y , χ9 = z, χ10 = ż,

χ11 = z̈, χ12 =
...
z , χ13 = w, χ14 = ẇ, χ15 = ẅ, χ16 =

...
w; then, Equation (27) can be further

integrated into a 16-order integer-order differential equation, as shown in Table 3.

Table 3. Sixteen-order integer-order differential equation of system (27).

dχ1
dt = χ2

dχ2
dt = χ3

dχ3
dt = χ4

dχ4
dt = (ag−m)χ3 + (agk− n)χ2
+(agl − p)χ1 + bgχ7 + bgkχ6 + bglχ5
−cgχ3χ2

15 − cgkcgχ2χ2
14 − cgχ1χ13

dχ5
dt = χ6

dχ6
dt = χ7

dχ7
dt = χ8

dχ8
dt = gχ3 − (g−m)χ7 − gχ11 + gkχ2
−(gk− n)χ6 − gkχ10 + gχ1 − (g− p)χ5 − gχ9

dχ9
dt = χ10

dχ10
dt = χ11

dχ11
dt = χ12

dχ12
dt = dgχ7 + dkχ6 + dlχ5 −mχ11 − nχ10 − pχ9

dχ13
dt = χ14

dχ14
dt = χ15

dχ15
dt = χ16

dχ16
dt = geχ3 + gkeχ2 + gleχ1
−(g f −m)χ15 − (gk f − n)χ14 − (gl f − p)χ3



Fractal Fract. 2023, 7, 2 15 of 23

The initial values of x(t), dx(t)
dt ; y(t), dy(t)

dt ; z(t), dz(t)
dt ; w(t), dw(t)

dt are considered as
zero throughout time-domain transformations, i.e., χ1(0) = 0, χ2(0) = 0, χ3(0) = 0,
χ4(0) = 0.1, χ5(0) = 0, χ6(0) = 0, χ7(0) = 0, χ8(0) = 0.1, χ9(0) = 0, χ10(0) = 0,
χ11(0) = 0, χ12(0) = 0.1, χ13(0) = 0, χ14(0) = 0, χ15(0) = 0, χ16(0) = 0.1 in Table 3.

Therefore, a fractional-order system (15) can be converted into an integer-order system
by time-frequency domain conversion and setting the step size to 0.1. It is a useful method
for calculating fractional-order circuit systems using the Laplace transform. The fractional-
order memristor analog circuit will then be implemented using the aforementioned method
to validate the previous numerical simulation.

4.2. Circuit Simulation and FPGA Implementation
4.2.1. Analog Circuit Simulation

The analog circuit was designed as shown in Figure 15 in order to verify that the
system (15) is functioning correctly. Multiplication was implemented by the AD633 multi-
plier, and the integral and addition operational amplifiers were implemented by TL082. All
of the chips needed in the circuit were powered by ±15 V DC.
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Figure 15. Circuit diagram of fractional-order memristor system (15).

The principle equation of fractional-order memristor circuit is given according to the
equivalent approximate fractional-order operator. According to the system (15), the equiva-
lent circuit equation can be obtained as follows:





dqx1
dt = RS

R1
1

RBC0
RA
RA1

x1 +
RS
R2

1
RBC0

RA
RA1

x2 +
RS
R3

1
RBC0

RA
RA1

x4
2(−x1),

dqx2
dt = RS1

R4
1

RB1C0

RA2
RA3

x1 +
RS1
R5

1
RB1C0

RA2
RA3

(−x2) +
RS1
R6

1
RB1C0

RA2
RA3

(−x3),
dqx3

dt = RS2
R7

1
RB2C0

RA4
RA5

x2,
dqx4

dt = RS3
R8

1
RB3C0

RA6
RA7

(−x1) +
RS3
R9

1
RB3C0

RA4
RA5

(−x4).

(28)

where Ri, RA, RAi, RB, RBi, RS, RSi, and so on are variable resistors corresponding to
variable parameters in system (15). In Equation (28), C0 represents the fractional-order
modules in parallel on operational amplifiers U2, U5, U8, and U11. The circuit simulation
results under different resistances R9 are shown in Figure 16, and the resistance values,

Figure 15. Circuit diagram of fractional-order memristor system (15).
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The principle equation of fractional-order memristor circuit is given according to the
equivalent approximate fractional-order operator. According to the system (15), the equiva-
lent circuit equation can be obtained as follows:





dqx1
dt = RS

R1
1

RBC0
RA
RA1

x1 +
RS
R2

1
RBC0

RA
RA1

x2 +
RS
R3

1
RBC0

RA
RA1

x4
2(−x1),

dqx2
dt = RS1

R4
1

RB1C0

RA2
RA3

x1 +
RS1
R5

1
RB1C0

RA2
RA3

(−x2) +
RS1
R6

1
RB1C0

RA2
RA3

(−x3),
dqx3

dt = RS2
R7

1
RB2C0

RA4
RA5

x2,
dqx4

dt = RS3
R8

1
RB3C0

RA6
RA7

(−x1) +
RS3
R9

1
RB3C0

RA4
RA5

(−x4).

(28)

where Ri, RA, RAi, RB, RBi, RS, RSi, and so on are variable resistors corresponding to
variable parameters in system (15). In Equation (28), C0 represents the fractional-order
modules in parallel on operational amplifiers U2, U5, U8, and U11. The circuit simulation
results under different resistances R9 are shown in Figure 16, and the resistance values,
capacitance values, and corresponding parameters are shown in Figure 15. The simulation
results of the circuit verify the symmetric and multistability of the system (15) well.
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Figure 16. Circuit simulation under different resistances R9 in x1− x2 plane. (a) Single-scroll periodic-
1 limit cycle with R9 = 4.3 k; (b) single-scroll periodic-2 limit cycle with R9 = 5.8 k; (c) single-scroll
chaotic attractor with R9 = 7.6 k; (d) symmetric single-scroll chaotic attractor with R9 = 11.1 k.

The numerical simulation results under different parameters f are consistent with
the simulation results of the analog circuit under different resistances R9, which proves
that the digital circuit can verify the chaotic behaviors of this system, including symmet-
ric multi-stability.

4.2.2. FPGA System Implementation

The selected system’s parameters are consistent with those of the aforementioned dy-
namics study: the step is h = 0.01, and the initial value is (x1(0), x2(0), x3(0),
x4(0)) = (0.1, 0.1, 0.1, 0.1). The FPGA digital circuit of the system (15) was realized using
the FPGA chip EPLC6Q240 of the Altera Cyclone4 series. To capture the system’s phase di-
agram on the digital oscilloscope, the only change was to the system parameter f , as shown
in Figure 17.

Figure 16. Circuit simulation under different resistances R9 in x1− x2 plane. (a) Single-scroll periodic-
1 limit cycle with R9 = 4.3 k; (b) single-scroll periodic-2 limit cycle with R9 = 5.8 k; (c) single-scroll
chaotic attractor with R9 = 7.6 k; (d) symmetric single-scroll chaotic attractor with R9 = 11.1 k.

The numerical simulation results under different parameters f are consistent with
the simulation results of the analog circuit under different resistances R9, which proves
that the digital circuit can verify the chaotic behaviors of this system, including symmet-
ric multi-stability.
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4.2.2. FPGA System Implementation

The selected system’s parameters are consistent with those of the aforementioned dy-
namics study: the step is h = 0.01, and the initial value is (x1(0), x2(0), x3(0),
x4(0)) = (0.1, 0.1, 0.1, 0.1). The FPGA digital circuit of the system (15) was realized using
the FPGA chip EPLC6Q240 of the Altera Cyclone4 series. To capture the system’s phase di-
agram on the digital oscilloscope, the only change was to the system parameter f , as shown
in Figure 17.
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Figure 17. Experimental results of FPGA digital circuits of the fractional-order memristor system (15).
(a) Single-scroll periodic-1 limit cycle with f = 23; (b) single-scroll periodic-2 limit cycle with f = 19;
(c) single-scroll chaotic attractor with f = 13; (d) symmetric single-scroll chaotic attractor with f = 9.

In practice, the FPGA-based system design has received more and more attention.
During the design of a fractional-order memristor system, modules are divided according
to their functions at the top-level, and the relationship and cooperation mode between
modules are planned. Verilog hardware is used at the bottom to realize the functions of
each module. The clock frequency is 51.13 MHz, and the proportion of registers used is
11%. The attractor phase diagram displayed by the oscilloscope in Figure 17 further verifies
the existence of the system and the possibility of engineering applications.

4.3. Fractional-Order Memristor Control Circuit

Consider the master system of fractional-order memristor circuit (28). The slave system
can be written as




dqy1

dt
=

RS
R1

1
RB · C0

RA
RA1

y1 +
RS
R2

1
RB · C0

RA
RA1

y2 +
RS
R3

1
RB · C0

RA
RA1

y2
4(−y1) + U1,

dqy2

dt
=

RS1

R4

1
RB1 · C0

RA2

RA3
y1 +

RS1

R5

1
RB1 · C0

RA2

RA3
(−y2) +

RS1

R6

1
RB1 · C0

RA2

RA3
(−y3) + U2,

dqy3

dt
=

RS2

R7

1
RB2 · C0

RA4

RA5
y2 + U3,

dqy4

dt
=

RS3

R8

1
RB3 · C0

RA6

RA7
(−y1) +

RS3

R9

1
RB3 · C0

RA4

RA5
(−y4) + U4.

(29)

Figure 17. Experimental results of FPGA digital circuits of the fractional-order memristor system (15).
(a) Single-scroll periodic-1 limit cycle with f = 23; (b) single-scroll periodic-2 limit cycle with f = 19;
(c) single-scroll chaotic attractor with f = 13; (d) symmetric single-scroll chaotic attractor with f = 9.

In practice, the FPGA-based system design has received more and more attention.
During the design of a fractional-order memristor system, modules are divided according
to their functions at the top-level, and the relationship and cooperation mode between
modules are planned. Verilog hardware is used at the bottom to realize the functions of
each module. The clock frequency is 51.13 MHz, and the proportion of registers used is
11%. The attractor phase diagram displayed by the oscilloscope in Figure 17 further verifies
the existence of the system and the possibility of engineering applications.

4.3. Fractional-Order Memristor Control Circuit

Consider the master system of fractional-order memristor circuit (28). The slave system
can be written as
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



dqy1
dt

=
RS
R1

1
RB · C0

RA
RA1

y1 +
RS
R2

1
RB · C0

RA
RA1

y2 +
RS
R3

1
RB · C0

RA
RA1

y2
4(−y1) + U1,

dqy2
dt

=
RS1
R4

1
RB1 · C0

RA2
RA3

y1 +
RS1
R5

1
RB1 · C0

RA2
RA3

(−y2) +
RS1
R6

1
RB1 · C0

RA2
RA3

(−y3) + U2,

dqy3
dt

=
RS2
R7

1
RB2 · C0

RA4
RA5

y2 + U3,

dqy4
dt

=
RS3
R8

1
RB3 · C0

RA6
RA7

(−y1) +
RS3
R9

1
RB3 · C0

RA4
RA5

(−y4) + U4.

(29)

Then, the error system can be written as ei = yi− xi(i = 1, 2, 3, 4). Thus, we can obtain




dqe1
dt = RS

R1
1

RB·C0
RA
RA1

(y1 − x1) +
RS
R2

1
RB·C0

RA
RA1

(y2 − x1)− RS
R3

1
RB·C0

RA
RA1

(
y1y4

2 − x1x4
2)+ U1,

dqe2
dt = RS1

R4
1

RB1 ·C0

RA2
RA3

(y1 − x1)− RS1
R5

1
RB1 ·C0

RA2
RA3

(y2 − x2)− RS1
R6

1
RB1 ·C0

RA2
RA3

(y3 − x3) + U2,
dqe3
dt = RS2

R7
1

RB2 ·C0

RA4
RA5

(y2 − x2) + U3,
dqe4
dt = − RS3

R8
1

RB3 ·C0

RA6
RA7

(y1 − x1)− RS3
R9

1
RB3 ·C0

RA4
RA5

(y4 − x4) + U4.

(30)

In this case, we give U1 = RS·RA·y1
C0·RB·RA1·Rr

while setting the other controls U2, U3, U4 to 0.
Consequently, the system equation of the circuit controlled by a fractional-order memristor
is as follows:




dqy1
dt = RS

R1
1

RB·C0
RA
RA1

y1 +
RS
R2

1
RB·C0

RA
RA1

y2 +
RS
R3

1
RB·C0

RA
RA1

y2
4(−y1) +

RS·RA
C0·RB·RA1·Rr

y1,
dqy2

dt = RS1
R4

1
RB1·C0

RA2
RA3

y1 +
RS1
R5

1
RB1·C0

RA2
RA3

(−y2) +
RS1
R6

1
RB1·C0

RA2
RA3

(−y3),
dqy3

dt = RS2
R7

1
RB2·C0

RA4
RA5

y2,
dqy4

dt = RS3
R8

1
RB3·C0

RA6
RA7

(−y1) +
RS3
R9

1
RB3·C0

RA4
RA5

(−y4).

(31)

The values of each device in Figure 15 can be determined using the system parameters
a = 3, b = 12, c = 2, d = 32, e = −37, and q = 0.9. Naturally, O = (0, 0, 0, 0) is the system’s
equilibrium, and the Jacobian matrix following the circuit system’s linearization is

J =




RS
R1

1
RBC0

RA
RA1
− RS·RA

C0·RB·RA1·Rr
RS
R2

1
RBC0

RA
RA1

0 0
1 −1 −1 0
0 RS2

R7
1

RB2C0

RA4
RA5

0 0
RS3
R8

1
RB3C0

RA6
RA7

0 0 RS3
R9

1
RB3C0

RA4
RA5


. (32)

where U1 = RS·RA
C0·RB·RA1·Rr

= 3.3. Then, we can determine that the eigenvalues are λ1 =
13.7868, λ2 = −1.2396 + 3.4949i, λ3 = −1.2396− 3.4949i, and λ4 = −0.6076, respectively.

Lemma 1. The stability lemma of fractional-order systems [40].
The commensurate system is stable if the following condition is satisfied:

|arg(λi)| = |arg(Re(λi) + Im(λi))| >
qπ

2
. (33)

where λi(i = 1, 2, · · · , n) are eigenvalues, and the order q must satisfy

q < 2
π arctan

( |Im(λi)|
|Re(λi)|

)
. (34)

Accordingly, from Lemma 1, |arg(λi)| = 2.8, i.e., |arg(λi)| > qπ
2 = 1.41, which satisfies

Equation (33), occurs when the system is at zero equilibrium O. As a result, the system
with Ui(i = 1, 2, 3, 4) can gradually stabilize to the equilibrium, and the fractional-order
memristor feedback control circuit is designed as shown in Figure 18.

From the first channel of the feedback control circuit of Figure 18, when the resistance
Rr = 30 kΩ and the switch S1 on the control circuit is closed at time t = 30, the time-domain
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waveform of the state variable of the circuit experiment simulation of the memristor chaotic
system feedback control circuit system is designed as shown in Figure 19.
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According to the circuit experiment results of the time-domain waveform diagram
of state variables (time responses of error system) in Figure 19, it can be found that its
trajectory asymptotically converges to the origin by adding a feedback controller, which
shows the control effect of the designed controller.
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According to the circuit experiment results of the time-domain waveform diagram
of state variables (time responses of error system) in Figure 19, it can be found that its
trajectory asymptotically converges to the origin by adding a feedback controller, which
shows the control effect of the designed controller.

Figure 19. Time-domain waveforms of state variables of the system (28). (a) t− x1 plane; (b) t− x2

plane; (c) t− x3 plane; (d) t− x4 plane.

According to the circuit experiment results of the time-domain waveform diagram
of state variables (time responses of error system) in Figure 19, it can be found that its
trajectory asymptotically converges to the origin by adding a feedback controller, which
shows the control effect of the designed controller.
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5. Conclusions

In this work, a novel fractional-order memristor system was established by integrating
the fractional-order memristor into Chua’s circuit. Following that, the bifurcation diagram
and LEs with system order, parameters, and initial values as independent variables were
studied. The study revealed that altering these variables can cause the system to produce
dynamical characteristics that are richer and more complex. In particular, the system
exhibits periodic limit cycles and a single-scroll chaotic attractor; when the parameters
and order of the system are changed, the system can generate a symmetric single-scroll
chaotic attractor when the initial value is changed. Then, by adding a constant term after
the decoupled linear term of the system, it was found that there is an offset boosting
phenomenon in the system. Finally, the designed FPGA and analog circuit were established
in accordance with the circuit equation to verify the numerical calculation results. The
control circuit of the system was designed through the stability analysis of the equilibrium
to satisfy the control requirements.

Based on the results obtained, the dynamics of a novel fractional-order memristor
chaotic system studied in this paper are very rich due to the fractional-order operator,
memristor, and offset boosting control, which provide a theoretical foundation for spread
spectrum communication, pseudo-random sequence generators, and other practical en-
gineering applications. Meanwhile, the possibility of the next work was further verified
through the implementation of FPGA and analog circuits. Therefore, in the following work,
we will summarize the shortcomings of this work, design and implement a fractional-order
chaotic signal generator (floating point multiplier, floating point adder, fractional-order
chaotic operation controller), and explore a novel fractional-order memristor chaotic system
control scheme.
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Appendix A

The nonlinear term of the Equation (21) is decomposition, which can be obtained as





A0
1 = x0

1
(

x0
4
)2,

A1
1 = x1

1
(

x0
4
)2

+ x0
1x1

4x0
4 + x0

1x0
4x1

4,
A2

1 = x2
1x0

4x0
4 + x0

1x2
4x0

4 + x0
1x0

4x2
4 + x1

1x1
4x0

4 + x1
1x0

4x1
4 + x0

1x1
4x1

4,

A3
1 = x3

1
(

x0
4
)2

+ 2x2
1x1

4x0
4 + x1

1
(
x0

4
)2

+ 2x1
1x2

4x0
4 + 2x0

1x3
4x0

4 + 2x0
1x1

4x2
4,

A4
1 = x4

1
(

x0
4
)2

+ 2x3
1x1

4x0
4 + x2

1
(
x0

4
)2

+ 2x2
1x2

4x0
4 + 2x1

1x2
4x1

4 + 2x1
1x3

4x0
4

+2x0
1x4

4x0
4 + 2x0

1x3
4x1

4 + x0
1
(
x0

4
)2.

(A1)

where x0
i (i = 1, 2, 3, 4) is the initial value of Equation (A1), and x0

1 = x1(t0), x0
2 = x2(t0),

x0
3 = x3(t0). Let c0

1 = x0
1, c0

2 = x0
2, c0

3 = x0
3, c0

4 = x0
4; then, from x1 = Jq

t0
Lx0 + Jq

t0
A0(x0) of

Equation (20) and the properties of fractional integral operators, the x1
i (i = 1, 2, 3, 4) is
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Assign the coefficient to the variable, i.e.,



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Then, from x2 = Jq
t0

Lx1 + Jq
t0

A1(x0, x1) of Equation (20) and the properties of fractional
integral operators, we can obtain the equation for x2

i (i = 1, 2, 3, 4), and, in the same way,
we obtain 
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and the coefficients of the next three terms are

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