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Abstract: In this paper, we introduce and study fractional versions of the Bell–Touchard process,
the Poisson-logarithmic process and the generalized Pólya–Aeppli process. The state probabilities
of these compound fractional Poisson processes solve a system of fractional differential equations
that involves the Caputo fractional derivative of order 0 < β < 1. It is shown that these processes
are limiting cases of a recently introduced process, namely, the generalized counting process. We
obtain the mean, variance, covariance, long-range dependence property, etc., for these processes.
Further, we obtain several equivalent forms of the one-dimensional distribution of fractional versions
of these processes.
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1. Introduction
Di Crescenzo et al. [1] introduced and studied a fractional counting process that

performs k kinds of jumps of amplitude 1, 2, . . . , k with positive rates λ1, λ2, . . . , λk, re-
spectively. We call it the generalized fractional counting process (GFCP) and denote it
by {Mβ(t)}t≥0, 0 < β ≤ 1. It is defined as a counting process whose state probabilities
pβ(n, t) = Pr{Mβ(t) = n} satisfy the following system of fractional differential equations:

dβ

dtβ
pβ(n, t) = −(λ1 + λ2 + · · ·+ λk)pβ(n, t) +

min{n,k}

∑
j=1

λj pβ(n− j, t), n ≥ 0, (1)

with initial condition

pβ(n, 0) =

{
1, n = 0,
0, n ≥ 1.

Here,
dβ

dtβ
is the Caputo fractional derivative defined as (see [2])

dβ

dtβ
f (t) :=


1

Γ(1− β)

∫ t

0
(t− s)−β f ′(s)ds, 0 < β < 1,

f ′(t), β = 1,

(2)

and its Laplace transform is given by (see [2], Equation (5.3.3))

L
(

dβ

dtβ
f (t); s

)
= sβ f̃ (s)− sβ−1 f (0), s > 0. (3)

For β = 1, the GFCP reduces to the generalized counting process (GCP) {M(t)}t≥0
(see [1]). For k = 1, the GFCP and the GCP reduce to the time fractional Poisson pro-
cess (TFPP) (see [3]) and the Poisson process, respectively. For other recently introduced
fractional stochastic processes, we refer the reader to Khalaf et al. [4,5].
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Let {Yβ(t)}t≥0 be the inverse stable subordinator; that is, the first passage time of a
stable subordinator {Dβ(t)}t≥0. A stable subordinator {Dβ(t)}t≥0 is a one-dimensional
Lévy process with non-decreasing sample paths. It is known that (see [1])

Mβ(t)
d
= M

(
Yβ(t)

)
, t ≥ 0,

where d
= denotes equality in the distribution and {M(t)}t≥0 is independent of {Yβ(t)}t≥0.

Kataria and Khandakar [6] showed that several recently introduced counting processes,
such as the Poisson process of order k, Pólya–Aeppli process of order k, Pólya–Aeppli
process, negative binomial process, etc., are particular cases of the GCP. In Kataria and
Khandakar [7], the authors studied a limiting case of the GFCP, namely, the convoluted
fractional Poisson process.

For j ≥ 1, let {Nj(t)}t≥0 be a Poisson process with intensity λj. Jánossy et al. [8]

considered a composed process
{

∑∞
j=1 jNj(t)

}
t≥0

with ∑∞
j=1 λj < ∞. The probability mass

function (pmf) of {ξ(t)}t≥0 where ξ(t) = ∑∞
j=1 jNj(t) is given by (see [8], Equation (2.18))

Pr{ξ(t) = n} = ∑
Ωn

n

∏
j=1

(tλj)
xj

xj!
e−∑∞

j=1 tλj . (4)

Here,

Ωn =

{
(x1, x2, . . . , xn) :

n

∑
j=1

jxj = n, xj ∈ N∪ {0}
}

. (5)

Its equivalent version is given by (see [8], Equation (2.22))

Pr{ξ(t) = n} = ∑
Ωn

k

k

∏
j=1

λxj

tk

k!
e−∑∞

j=1 tλj , (6)

where

Ωn
k =

{
(x1, x2, . . . , xk) :

k

∑
i=1

xi = n, k ≤ n, xi ≥ 1

}
. (7)

Let {Xi}i≥1 be a sequence of independent and identically distributed random variables
such that Pr{X1 = j} = cj for all j ≥ 1. Consider a compound Poisson process

Y(t) =
N(t)

∑
i=1

Xi, t ≥ 0,

where {N(t)}t≥0 is a Poisson process with intensity λ > 0 that is independent of {Xi}i≥1.
For a suitable choice of λ and cj’s, the compound Poisson process {Y(t)}t≥0 is equal in

distribution to a counting process introduced and studied by Freud and Rodriguez [9], namely,
the Bell–Touchard process (BTP) {M(t)}t≥0. For λ = α(eθ − 1) and cj = θ j/j!(eθ − 1), j ≥ 1
where α > 0, θ > 0 they have shown that

M(t) d
= Y(t). (8)

For λj = αθ j/j!, j ≥ 1, the process {ξ(t)}t≥0 is equal in distribution to BTP (see [9]);

that is, ξ(t) d
=M(t). Therefore, the pmf q(n, t) = Pr{M(t) = n} of BTP is given by

q(n, t) = ∑
Ωn

n

∏
j=1

(αtθ j/j!)xj

xj!
e−αt(eθ−1), (9)

where Ωn is given in (5).
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For cj = −(1 − p)j/j ln p, j ≥ 1 where p ∈ (0, 1), the compound Poisson pro-
cess {Y(t)}t≥0 reduces to a counting process introduced and studied by Sendova and
Minkova [10], namely, the Poisson-logarithmic process (PLP). We denote it by {M̂(t)}t≥0.
It is defined as

M̂(t) = Y(t). (10)

As an application, they considered a risk process in which the PLP is used to model
the claim numbers.

For cj = (r+j−1
j )ρj(1− ρ)r/(1− (1− ρ)r), j ≥ 1 where r > 0, 0 < ρ < 1, the compound

Poisson process {Y(t)}t≥0 reduces to a counting process introduced and studied by Jacob
and Jose [11], namely, the generalized Pólya–Aeppli process (GPAP). We denote it by
{M̄(t)}t≥0. It is defined as

M̄(t) = Y(t). (11)

If r = 1, then the GPAP reduces to the Pólya–Aeppli process (see [12]).
In this paper, we study, in detail, the fractional versions of BTP, PLP and GPAP. We

obtain their Lévy measures. It is shown that these processes are the limiting cases of GCP.
We obtain the probability generating function (pgf), mean, variance, covariance, etc., for
their fractional variants and establish their long-range dependence (LRD) property. It is
known that the process that exhibits an LRD property has applications in several areas,
such as finance, econometrics, hydrology, internet data traffic modelling, etc. Several
equivalent forms of the pmf of fractional versions of these processes are obtained. We have
shown that the fractional variants of these processes are overdispersed and non-renewal.
It is observed that the one-dimensional distributions of their fractional variants are not
infinitely divisible, and their increments have the short-range dependence (SRD) property.
It is shown that these fractional processes are equal in distribution to some particular cases
of the compound fractional Poisson process studied by Beghin and Macci [13].

2. Preliminaries
In this section, we present some known results and definitions that will be used later.

2.1. Mittag–Leffler Function
The three-parameter Mittag–Leffler function is defined as (see [2], p. 45)

Eγ
α,β(x) :=

1
Γ(γ)

∞

∑
j=0

Γ(j + γ)xj

j!Γ(jα + β)
, x ∈ R,

where α > 0, β > 0 and γ > 0.
It reduces to the two-parameter Mittag–Leffler function for γ = 1, and for γ = β = 1

it reduces to the Mittag–Leffler function.
For any real x, the Laplace transform of the function tβ−1Eγ

α,β(xtα) is given by (see [2],
Equation (1.9.13)):

L
(

tβ−1Eγ
α,β(xtα); s

)
=

sαγ−β

(sα − x)γ
, s > |x|1/α. (12)

2.2. Inverse Stable Subordinator
The following result holds for the inverse stable subordinator {Yβ(t)}t≥0 (see [14]):

E
(

e−sYβ(t)
)
= Eβ,1

(
−stβ

)
, s > 0. (13)

The mean and variance of {Yβ(t)}t≥0 are given by (see [14])
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E
(
Yβ(t)

)
=

tβ

Γ(β + 1)
, (14)

Var
(
Yβ(t)

)
=

(
2

Γ(2β + 1)
− 1

Γ2(β + 1)

)
t2β. (15)

For fixed s and large t, the following asymptotic result holds (see [15]):

Cov
(
Yβ(s), Yβ(t)

)
∼ 1

Γ2(β + 1)

(
βs2βB(β, β + 1)− β2sβ+1

(β + 1)t1−β

)
, (16)

where B(β, β + 1) denotes the beta function.

2.3. Poisson-Logarithmic Process

The state probabilities q̂(n, t) = Pr{M̂(t) = n} of PLP satisfy the following (see [10]):

d
dt

q̂(0, t) = −λq̂(0, t),

d
dt

q̂(n, t) = −λq̂(n, t)− λ

ln p

n

∑
j=1

(1− p)j

j
q̂(n− j, t), n ≥ 1,

(17)

with initial conditions q̂(0, 0) = 1 and q̂(n, 0) = 0, n ≥ 1. Its pgf Ĝ(u, t) = E
(

uM̂(t)
)

is
given by

Ĝ(u, t) = exp
(
−λt

(
1− ln(1− (1− p)u)

ln p

))
. (18)

2.4. Generalized Pólya–Aeppli Process
The state probabilities q̄(n, t) = Pr{M̄(t) = n} of GPAP satisfy the following (see [11]):

d
dt

q̄(0, t) = −λq̄(0, t),

d
dt

q̄(n, t) = −λq̄(n, t) +
λ

(1− ρ)−r − 1

n

∑
j=1

(
r + j− 1

j

)
ρj q̄(n− j, t), n ≥ 1,

(19)

with initial conditions q̄(0, 0) = 1 and q̄(n, 0) = 0, n ≥ 1. Its pgf Ḡ(u, t) = E
(

uM̄(t)
)

is
given by

Ḡ(u, t) = exp
(
−λt

(
1− (1− ρu)−r − 1

(1− ρ)−r − 1

))
. (20)

Let r̄1 = rρλ/(1− ρ)(1− (1− ρ)r) and r̄2 = r(1 + rρ)ρλ/(1− ρ)2(1− (1− ρ)r). Its
mean and variance are given by

E
(
M̄(t)

)
= r̄1t, Var

(
M̄(t)

)
= r̄2t. (21)

2.5. LRD and SRD Properties
The LRD and SRD properties for a non-stationary stochastic process {X(t)}t≥0 are

defined as follows (see [15,16]):

Definition 1. Let s > 0 be fixed. The process {X(t)}t≥0 is said to exhibit the LRD property if its
correlation function has the following asymptotic behaviour:

Corr(X(s), X(t)) ∼ c(s)t−θ , as t→ ∞,

for some c(s) > 0 and θ ∈ (0, 1). If θ ∈ (1, 2), then it is said to possess the SRD property.
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3. Bell–Touchard Process and Its Fractional Version
Here, we introduce a fractional version of a recently introduced counting process,

namely, the Bell–Touchard process (BTP) (see [9]).
First, we study some additional properties of BTP, the BTP is defined as follows:

Definition 2. A counting process {M(t)}t≥0 is said to be a BTP with parameters α > 0, θ > 0 if
(a)M(0) = 0;
(b) it has independent and stationary increments;
(c) for m = 0, 1, . . . and h > 0 small enough such that o(h) → 0 as h → 0, its state transition
probabilities are given by

Pr{M(t + h) = n|M(t) = m} =
{

1− α
(
eθ − 1

)
h + o(h), n = m,

αθ jh/j! + o(h), n = m + j, j = 1, 2, . . . .

It follows that the state probabilities q(n, t) = Pr{M(t) = n}, n ≥ 0 of BTP satisfy the
following system of differential equations:

d
dt

q(0, t) = −α
(

eθ − 1
)

q(0, t),

d
dt

q(n, t) = −α
(

eθ − 1
)

q(n, t) + α
n

∑
j=1

θ j

j!
q(n− j, t), n ≥ 1,

(22)

with initial conditions q(0, 0) = 1 and q(n, 0) = 0, n ≥ 1.

Remark 1. On taking β = 1, λj = αθ j/j! for all j ≥ 1 and letting k→ ∞, System (1) reduces to
System (22). Thus, the BTP is a limiting case of the GCP.

In view of Remark 1, we note that several results for BTP can be obtained from the
corresponding results for GCP. Next, we present a few of them.

The next result gives a recurrence relation for the pmf of BTP. It follows from Proposi-
tion 1 of Kataria and Khandakar [6].

Proposition 1. The state probabilities q(n, t) of BTP satisfy

q(n, t) =
αt
n

n

∑
j=1

θ j

(j− 1)!
q(n− j, t), n ≥ 1.

It is known that the GCP is equal in distribution to the following weighted sum of k
independent Poisson processes (see [6]):

M(t) d
=

k

∑
j=1

jNj(t),

where {Nj(t)}t≥0’s are independent Poisson processes with intensity λj’s. On taking
λj = αθ j/j! for all j ≥ 1 and letting k→ ∞, we get

M(t) d
=

∞

∑
j=1

jNj(t),

which agrees with the result obtained by Freud and Rodriguez [9]. As lim
t→∞

Nj(t)/t = αθ j/j!,

j ≥ 1 almost surely, we have
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lim
t→∞

M(t)
t

d
=

∞

∑
j=1

j lim
t→∞

Nj(t)
t

= αθeθ , in probability. (23)

The next result gives a martingale characterisation for the BTP, whose proof follows
from Proposition 2 of Kataria and Khandakar [6].

Proposition 2. The process
{
M(t)− αθeθt

}
t≥0 is a martingale with respect to a natural filtration

Ft = σ(M(s), s ≤ t).

From (8), it follows that the BTP is a Lévy process as it is equal in distribution to a
compound Poisson process. Therefore, its mean, variance and covariance are given by

E(M(t)) = αθeθt, (24)

Var(M(t)) = αθ(θ + 1)eθt, (25)

Cov(M(s),M(t)) = αθ(θ + 1)eθ min{s, t},

respectively. The BTP exhibits the overdispersion property as Var(M(t))− E(M(t)) =
αθ2eθt > 0 for t > 0.

The characteristic function of BTP can be obtained by taking λj = αθ j/j! for all j ≥ 1
and letting k→ ∞ in Equation (12) of Kataria and Khandakar [6]. It is given by

E
(

eωξM(t)
)
= exp

(
−αt

(
eθ − eθeωξ

))
, ω =

√
−1, ξ ∈ R.

Therefore, its Lévy measure is given by µ(dx) = α
∞

∑
j=1

θ j

j!
δjdx, where δj’s are Dirac

measures.

Remark 2. For fixed s and large t, the correlation function of BTP has the following asymptotic
behaviour:

Corr(M(s),M(t)) ∼
√

st−1/2.

Thus, it exhibits the LRD property.

Fractional Bell–Touchard Process
Here, we introduce a fractional version of the BTP, namely, the fractional Bell–Touchard

process (FBTP). We define it as the stochastic process {Mβ(t)}t≥0, 0 < β ≤ 1 whose
state probabilities qβ(n, t) = Pr{Mβ(t) = n} satisfy the following system of fractional
differential equations:

dβ

dtβ
qβ(0, t) = −α

(
eθ − 1

)
qβ(0, t),

dβ

dtβ
qβ(n, t) = −α

(
eθ − 1

)
qβ(n, t) + α

n

∑
j=1

θ j

j!
qβ(n− j, t), n ≥ 1,

(26)

with initial conditions qβ(0, 0) = 1 and qβ(n, 0) = 0, n ≥ 1.
Note that the system of Equation (26) is obtained by replacing the integer order

derivative in (22) with the Caputo fractional derivative defined in (2).

Remark 3. On taking λj = αθ j/j! for all j ≥ 1 and letting k → ∞, System (1) reduces to
System (26). Thus, the FBTP is a limiting case of the GFCP.
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Using (26), it can be shown that the pgf Gβ(u, t) = E
(

uMβ(t)
)

, |u| ≤ 1 of
FBTP satisfies

dβ

dtβ
Gβ(u, t) = −α

(
eθ − eθu

)
Gβ(u, t),

with Gβ(u, 0) = 1. On taking the Laplace transform in the above equation and using (3),
we get

sβG̃β(u, s)− sβ−1Gβ(u, 0) = −α
(

eθ − eθu
)

G̃β(u, s), s > 0,

where G̃β(u, s) denotes the Laplace transform of Gβ(u, t). Thus,

G̃β(u, s) =
sβ−1

sβ + α
(
eθ − eθu

) .

On taking the inverse Laplace transform and using (12), we get

Gβ(u, t) = Eβ,1

(
−α
(

eθ − eθu
)

tβ
)

. (27)

Remark 4. On taking β = 1 in (27), we get the pgf G(u, t) = exp
(
−α
(
eθ − eθu)t) of BTP.

Further, from (27), we can verify that the pmf qβ(n, t) sums up to one; that is, ∑∞
n=0 qβ(n, t) =

Gβ(u, t)|u=1 = Eβ,1(0) = 1.

The next result gives a time-changed relationship between the BTP and its fractional
variant, FBTP.

Theorem 1. Let {Yβ(t)}t≥0, 0 < β < 1, be an inverse stable subordinator independent of the
BTP {M(t)}t≥0. Then

Mβ(t)
d
=M(Yβ(t)), t ≥ 0. (28)

Proof. Let hβ(x, t) be the density of {Yβ(t)}t≥0. Then,

E
(

uM(Yβ(t))
)
=
∫ ∞

0
G(u, x)hβ(x, t)dx

=
∫ ∞

0
exp

(
−α
(

eθ − eθu
)

x
)

hβ(x, t)dx, (using Remark 4)

= Eβ,1

(
−α
(

eθ − eθu
)

tβ
)
(using (13)),

which agrees with (27). This completes the proof.

Remark 5. Let {T2β(t)}t>0 be a random process whose distribution is given by the folded solution
of the following Cauchy problem (see [17]):

d2β

dt2β
u(x, t) =

∂2

∂x2 u(x, t), x ∈ R, t > 0, (29)

with u(x, 0) = δ(x) for 0 < β ≤ 1 and ∂
∂t u(x, 0) = 0 for 1/2 < β ≤ 1. It is known that the

density functions of Yβ(t) and T2β(t) coincide (see [18]). Hence,

Mβ(t)
d
=M(T2β(t)), t > 0, (30)

where {T2β(t)}t>0 is independent of the BTP.
The random process {T2β(t)}t>0 becomes a reflecting Brownian motion {|B(t)|}t>0 for

β = 1/2 as Equation (29) reduces to the following heat equation:{
∂
∂t u(x, t) = ∂2

∂x2 u(x, t), x ∈ R, t > 0,

u(x, 0) = δ(x).
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Therefore,M1/2(t) is equal in distribution to BTP at a Brownian time; that is,M(|B(t)|),
t > 0.

In view of (8) and (28), it follows that the FBTP is equal in distribution to the following
compound fractional Poisson process:

Mβ(t)
d
=

N(Yβ(t))

∑
i=1

Xi
d
=

Nβ(t)

∑
i=1

Xi, t ≥ 0, (31)

where {Nβ(t)}t≥0 is a TFPP with intensity α
(
eθ − 1

)
independent of the sequence of inde-

pendent and identically distributed random variables {Xi}i≥1. Thus, it is neither Markovian
nor a Lévy process (see [19]).

Remark 6. The system of differential equations that governs the state probabilities of the compound
fractional Poisson process was obtained by Beghin and Macci [13]. In view of (31), System (26) can
alternatively be obtained using Proposition 1 of Beghin and Macci [13].

Next, we obtain the pmf of FBTP and some of its equivalent versions.
The solution u2β(x, t) of (29) is given by (see [3]):

u2β(x, t) =
1

2tβ
W−β,1−β

(
−|x|

tβ

)
, t > 0, x ∈ R, (32)

where Wν,γ(·) is the Wright function defined as follows:

Wν,γ(x) =
∞

∑
k=0

xk

k!Γ(kν + γ)
, ν > −1, γ > 0, x ∈ R.

Let

ū2β(x, t) =

{
2u2β(x, t), x > 0,

0, x < 0,
(33)

be the folded solution to (29).

Theorem 2. The pmf qβ(n, t) = Pr{Mβ(t) = n} of FBTP is given by

qβ(n, t) =


Eβ,1

(
−α(eθ − 1)tβ

)
, n = 0,

∑
Ωn

n

∏
j=1

(
αθ j/j!

)xj

xj!
zn!tzn βEzn+1

β,zn β+1

(
−α(eθ − 1)tβ

)
, n ≥ 1,

(34)

where zn = x1 + x2 + · · ·+ xn and Ωn is given in (5).

Proof. From (30) and (33), we have

qβ(n, t) =
∫ ∞

0
q(n, x)ū2β(x, t)dx.

We use (9) and (32) in the above equation to obtain

qβ(n, t) = ∑
Ωn

n

∏
j=1

(
αθ j/j!

)xj

xj!
t−β

∫ ∞

0
e−αx(eθ−1)xznW−β,1−β

(
− x

tβ

)
dx

= ∑
Ωn

n

∏
j=1

(
αθ j/j!

)xj

xj!
t−β(

α(eθ − 1)
)zn+1

∫ ∞

0
e−yyznW−β,1−β

(
− y

α(eθ − 1)tβ

)
dy.
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On using the following result (see [20], Equation (2.13)):

Ezn+1
β,zn β+1

(
−α(eθ − 1)tβ

)
=

t−β(zn+1)

zn!
(
α(eθ − 1)

)zn+1

∫ ∞

0
e−yyznW−β,1−β

(
− y

α(eθ − 1)tβ

)
dy,

the proof follows.

Remark 7. An equivalent form of the pmf of BTP can be obtained from (6). It is given by

q(n, t) = ∑
Ωn

k

k

∏
j=1

θxj

xj!
(αt)k

k!
e−αt(eθ−1), n ≥ 0, (35)

where Ωn
k is given in (7). If we use (35) in the proof of Theorem 2, then we can obtain the following

alternate form of the pmf of FBTP:

qβ(n, t) = ∑
Ωn

k

k

∏
j=1

θxj

xj!

(
αtβ
)k

Ek+1
β,kβ+1

(
−α(eθ − 1)tβ

)
. (36)

The pmf of TFPP with intensity α
(
eθ − 1

)
is given by (see [20], Equation (2.5))

Pr{Nβ(t) = n} =
(

α(eθ − 1)tβ
)n

En+1
β,nβ+1

(
−α(eθ − 1)tβ

)
, n ≥ 0.

From (31), we have

qβ(0, t) = Pr{Nβ(t) = 0} = Eβ,1

(
−α(eθ − 1)tβ

)
.

We recall that Xi’s are independent of Nβ(t) in (31). Thus, for n ≥ 1, we have

qβ(n, t) =
n

∑
k=1

Pr{X1 + X2 + · · ·+ Xk = n}Pr{Nβ(t) = k} (37)

=
n

∑
k=1

∑
Θk

n

k!
n

∏
j=1

(θ j/j!)xj

xj!

(
αtβ
)k

Ek+1
β,kβ+1

(
−α(eθ − 1)tβ

)
, (38)

where xj is the total number of claims of j units and

Θk
n =

{
(x1, x2, . . . , xn) :

n

∑
j=1

xj = k,
n

∑
j=1

jxj = n, xj ∈ N∪ {0}
}

. (39)

Again, as Xi’s are independent and identically distributed, we have

Pr{X1 + X2 + · · ·+ Xk = n} = ∑
m1+m2+···+mk=n

mj∈N

Pr{X1 = m1, X2 = m2, . . . , Xk = mk}

= ∑
m1+m2+···+mk=n

mj∈N

k

∏
j=1

Pr{Xj = mj}

= ∑
m1+m2+···+mk=n

mj∈N

1
(eθ − 1)k

k

∏
j=1

θmj

mj!
, (40)



Fractal Fract. 2023, 7, 15 10 of 20

where we have used (8). On substituting (40) into (37), we get an equivalent expression for
the pmf of FBTP in the following form:

qβ(n, t) =
n

∑
k=1

∑
m1+m2+···+mk=n

mj∈N

k

∏
j=1

θmj

mj!

(
αtβ
)k

Ek+1
β,kβ+1

(
−α(eθ − 1)tβ

)
. (41)

The pmf (38) can be written in the following equivalent form by using Lemma 2.4 of
Kataria and Vellaisamy [21]:

qβ(n, t) =
n

∑
k=1

∑
Λk

n

k!
n−k+1

∏
j=1

(θ j/j!)xj

xj!

(
αtβ
)k

Ek+1
β,kβ+1

(
−α(eθ − 1)tβ

)
. (42)

where

Λk
n =

{
(x1, x2, . . . , xn−k+1) :

n−k+1

∑
j=1

xj = k,
n−k+1

∑
j=1

jxj = n, xj ∈ N∪ {0}
}

. (43)

Thus, we have obtained the five alternate forms of the pmf of FBTP given in (34), (36),
(38), (41) and (42).

By using (24), (25) and Theorem 2.1 of Leonenko et al. [14], the mean, variance and
covariance of FBTP can be obtained in the following forms:

E
(
Mβ(t)

)
= αθeθE

(
Yβ(t)

)
,

Var
(
Mβ(t)

)
= αθ(θ + 1)eθE

(
Yβ(t)

)
+
(

αθeθ
)2

Var
(
Yβ(t)

)
, (44)

Cov
(
Mβ(s),Mβ(t)

)
= αθ(θ + 1)eθE

(
Yβ(min{s, t})

)
+
(

αθeθ
)2

Cov
(
Yβ(s), Yβ(t)

)
. (45)

The FBTP exhibits overdispersion as Var
(
Mβ(t)

)
−E

(
Mβ(t)

)
> 0 for all t > 0.

Theorem 3. The FBTP exhibits the LRD property.

Proof. From (44) and (45), we get

Corr
(
Mβ(s),Mβ(t)

)
=

αθ(θ + 1)eθE
(
Yβ(min{s, t})

)
+ (αθeθ)2 Cov

(
Yβ(s), Yβ(t)

)√
Var
(
Mβ(s)

)√
αθ(θ + 1)eθE

(
Yβ(t)

)
+ (αθeθ)2 Var

(
Yβ(t)

) .

On using (14)–(16) for fixed s and large t, we get

Corr(Mβ(s),Mβ(t))

∼
αθ(θ + 1)eθΓ2(β + 1)E

(
Yβ(s)

)
+ (αθeθ)2

(
βs2βB(β, β + 1)− β2sβ+1

(β+1)t1−β

)
Γ2(β + 1)

√
Var
(
Mβ(s)

)√ αθ(θ+1)eθ tβ

Γ(β+1) + 2(αθeθ)2t2β

Γ(2β+1) −
(αθeθ)2t2β

Γ2(β+1)

∼ c0(s)t−β,

where

c0(s) =
(θ + 1)Γ2(β + 1)E

(
Yβ(s)

)
+ αθeθ βs2βB(β, β + 1)

Γ2(β + 1)
√

Var
(
Mβ(s)

)√ 2
Γ(2β+1) −

1
Γ2(β+1)

.

As 0 < β < 1, it follows that the FBTP has the LRD property.
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Remark 8. For a fixed h > 0, the increment process of FBTP is defined as

Zh
β(t) :=Mβ(t + h)−Mβ(t), t ≥ 0.

It can be shown that the increment process {Zh
β(t)}t≥0 exhibits the SRD property. The proof

follows similar lines to that of Theorem 1 of Maheshwari and Vellaisamy [15].

The factorial moments of the FBTP can be obtained by taking λj = αθ j/j! for all j ≥ 1
and letting k→ ∞ in Proposition 4 of Kataria and Khandakar [6].

Proposition 3. Let ψβ(r, t) = E(Mβ(t)(Mβ(t)− 1) · · · (Mβ(t)− r + 1)), r ≥ 1 be the rth
factorial moment of FBTP. Then,

ψβ(r, t) = r!
r

∑
n=1

(
αeθtβ

)n

Γ(nβ + 1) ∑
∑n

i=1 mi=r
mi∈N

n

∏
`=1

θm`

m`!
.

The proof of the next result follows on using (23), the self-similarity property of
{Yβ(t)}t≥0 in (28) and the arguments used in Proposition 3 of Kataria and Khandakar [6].

Proposition 4. The one-dimensional distributions of FBTP are not infinitely divisible.

Remark 9. Let the random variableW1 be the first waiting time of FBTP. Then, the distribution of
W1 is given by

Pr{W1 > t} = Pr{Mβ(t) = 0} = Eβ,1

(
−α(eθ − 1)tβ

)
,

which coincides with the first waiting time of TFPP with intensity α(eθ − 1) (see [22], Remark 3.3).
However, the one-dimensional distributions of TFPP and FBTP differ. Thus, the fact that the TFPP
is a renewal process (see [18]) implies that the FBTP is not a renewal process.

4. Poisson-Logarithmic Process and Its Fractional Version
Here, we introduce a fractional version of the PLP. First, we give some additional

properties of it.
On taking β = 1, λj = −λ(1− p)j/j ln p for all j ≥ 1 and letting k→ ∞, the governing

system of differential Equation (1) for GCP reduces to the governing system of differential
Equation (17) of PLP. Thus, the PLP is a limiting case of the GCP. Thus, we note that several
results for PLP can be obtained from the corresponding results for GCP.

The next result gives a recurrence relation for the pmf of PLP that follows from
Proposition 1 of Kataria and Khandakar [6].

Proposition 5. The state probabilities q̂(n, t) = Pr{M̂(t) = n}, n ≥ 1 of PLP satisfy

q̂(n, t) = − λt
n ln p

n

∑
j=1

(1− p)j q̂(n− j, t).

The pgf (18) can be rewritten as

Ĝ(u, t) =
∞

∏
j=1

exp
(
− λt

ln p
(1− p)j

j
(uj − 1)

)
.

It follows that the PLP is equal in distribution to a weighted sum of independent
Poisson processes; that is,

M̂(t) d
=

∞

∑
j=1

jNj(t), (46)
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where {Nj(t)}t≥0 is a Poisson process with intensity λj = −λ(1− p)j/j ln p. Thus,

lim
t→∞

M̂(t)
t

d
=

∞

∑
j=1

j lim
t→∞

Nj(t)
t

=
λ(p− 1)

p ln p
, in probability, (47)

where we have used limt→∞ Nj(t)/t = −λ(1− p)j/j ln p, j ≥ 1 almost surely.
In view of (4) and (46), the pmf of PLP is given by

q̂(n, t) = ∑
Ωn

n

∏
j=1

(
(1− p)j/j

)xj

xj!

(
−λt
ln p

)zn

e−λt,

where zn = x1 + x2 + · · ·+ xn and Ωn is given in (5).
Using (6), the pmf of PLP can alternatively be written as

q̂(n, t) = ∑
Ωn

k

k

∏
j=1

(1− p)xj

xjk!

(
− λt

ln p

)k
e−λt, (48)

where Ωn
k is given in (7).

The next result gives a martingale characterisation for the PLP.

Proposition 6. The process
{
M̂(t)− λ(p− 1)

p ln p
t
}

t≥0
is a martingale with respect to a natural

filtration Ft = σ
(
M̂(s), s ≤ t

)
.

Let r̂1 = λ(p− 1)/p ln p and r̂2 = λ(p− 1)/p2 ln p. From (10), it follows that the PLP
is a Lévy process. Its Lévy measure can be obtained by taking λj = −λ(1− p)j/j ln p for
all j ≥ 1 and letting k→ ∞ in Equation (13) of Kataria and Khandakar [6]. It is given by

µ̂(dx) = − λ

ln p

∞

∑
j=1

(1− p)j

j
δjdx,

where δj’s are Dirac measures. Its mean, variance and covariance are given by

E(M̂(t)) = r̂1t, Var(M̂(t)) = r̂2t, Cov(M̂(s),M̂(t)) = r̂2 min{s, t}. (49)

Fractional Poisson-Logarithmic Process
Here, we introduce a fractional version of the PLP, namely, the fractional Poisson-

logarithmic process (FPLP). We define it as the stochastic process {M̂β(t)}t≥0, 0 < β ≤
1, whose state probabilities q̂β(n, t) = Pr{M̂β(t) = n} satisfy the following system of
differential equations:

dβ

dtβ
q̂β(0, t) = −λq̂β(0, t),

dβ

dtβ
q̂β(n, t) = −λq̂β(n, t)− λ

ln p

n

∑
j=1

(1− p)j

j
q̂β(n− j, t), n ≥ 1,

(50)

with initial conditions q̂β(0, 0) = 1 and q̂β(n, 0) = 0, n ≥ 1.
Note that the system of Equation (50) is obtained by replacing the integer order

derivative in (17) with a Caputo fractional derivative.

Remark 10. On taking λj = −λ(1− p)j/j ln p for all j ≥ 1 and letting k→ ∞, the System (1)
reduces to System (50). Thus, the FPLP is a limiting case of the GFCP.



Fractal Fract. 2023, 7, 15 13 of 20

Further, on taking λ = − ln p, System (50) reduces to the system of differential equations that
governs the state probabilities of fractional negative binomial process (see [23], Equation (66)).

Using (50), it can be shown that the pgf Ĝβ(u, t) = E
(

uM̂β(t)
)

, |u| ≤ 1 of FPLP
satisfies

dβ

dtβ
Ĝβ(u, t) = −λ

(
1− ln(1− (1− p)u)

ln p

)
Ĝβ(u, t),

with Ĝβ(u, 0) = 1. On taking the Laplace transform in the above equation and using (3),
we get

sβ ˜̂Gβ(u, s)− sβ−1Ĝβ(u, 0) = −λ

(
1− ln(1− (1− p)u)

ln p

)
˜̂Gβ(u, s), s > 0.

Thus,
˜̂Gβ(u, s) =

sβ−1

sβ + λ
(

1− ln(1−(1−p)u)
ln p

) .

On taking inverse Laplace transform and using (12), we get

Ĝβ(u, t) = Eβ,1

(
−λ

(
1− ln(1− (1− p)u)

ln p

)
tβ

)
. (51)

Remark 11. On taking β = 1 in (51), we get the pgf of PLP given in (18). Further, from (51) we can
verify that the pmf q̂β(n, t) sums up to one; that is, ∑∞

n=0 q̂β(n, t) = Ĝβ(u, t)|u=1 = Eβ,1(0) = 1.

The following time-changed relationship between the PLP and FPLP holds, whose
proof follows similar lines to that of Theorem 1:

M̂β(t)
d
= M̂(Yβ(t)), t ≥ 0, (52)

where the PLP is independent of the inverse stable subordinator {Yβ(t)}t≥0, 0 < β < 1. In
view of Remark 5, we have

M̂β(t)
d
= M̂(T2β(t)), t > 0,

where {T2β(t)}t>0 is independent of {M̂(t)}t>0.

Remark 12. In view of (10) and (52), we note that the FPLP is equal in distribution to the following
compound fractional Poisson process:

M̂β(t)
d
=

Nβ(t)

∑
i=1

Xi, t ≥ 0, (53)

where {Nβ(t)}t≥0 is a TFPP with intensity λ independent of the sequence of independent and
identically distributed random variables {Xi}i≥1. Therefore, it is neither Markovian nor a Lévy
process. In view of (53), System (50) can alternatively be obtained using Proposition 1 of Beghin
and Macci [13].

The proof of the next result follows similar lines to that of Theorem 2.

Theorem 4. The pmf q̂β(n, t) = Pr{M̂β(t) = n} of FPLP is given by

q̂β(n, t) =


Eβ,1

(
−λtβ

)
, n = 0,

∑
Ωn

n

∏
j=1

(
(1− p)j/j

)xj

xj!
zn!
(
−λtβ

ln p

)zn

Ezn+1
β,zn β+1

(
−λtβ

)
, n ≥ 1,

(54)
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where zn = x1 + x2 + · · ·+ xn and Ωn is given in (5).

Remark 13. If we use (48) in the proof of Theorem 4, then we can obtain the following alternate
form of the pmf of FPLP:

q̂β(n, t) = ∑
Ωn

k

k

∏
j=1

(1− p)xj

xj

(
−λtβ

ln p

)k

Ek+1
β,kβ+1

(
−λtβ

)
, (55)

where Ωn
k is given in (7).

From (53), we have

q̂β(0, t) = Pr{Nβ(t) = 0} = Eβ,1(−λtβ).

For n ≥ 1, we get

q̂β(n, t) =
n

∑
k=1

Pr{X1 + X2 + · · ·+ Xk = n}Pr{Nβ(t) = k} (56)

=
n

∑
k=1

∑
Θk

n

k!
n

∏
j=1

((1− p)j/j)xj

xj!

(
−λtβ

ln p

)k

Ek+1
β,kβ+1(−λtβ), (57)

where Θk
n is given in (39).

As Xi’s are independent and identically distributed, we have

Pr{X1 + X2 + · · ·+ Xk = n} = ∑
m1+m2+···+mk=n

mj∈N

k

∏
j=1

Pr{Xj = mj}

= ∑
m1+m2+···+mk=n

mj∈N

(
−1
ln p

)k k

∏
j=1

(1− p)mj

mj
, (58)

where we have used (10). Substituting (58) in (56), we get an equivalent expression for the
pmf of the FPLP in the following form:

q̂β(n, t) =
n

∑
k=1

∑
m1+m2+···+mk=n

mj∈N

k

∏
j=1

(1− p)mj

mj!

(
−λtβ

ln p

)k

Ek+1
β,kβ+1(−λtβ). (59)

The pmf (57) can be written in the following equivalent form by using Lemma 2.4 of
Kataria and Vellaisamy [21]:

q̂β(n, t) =
n

∑
k=1

∑
Λk

n

k!
n−k+1

∏
j=1

((1− p)j/j)xj

xj!

(
−λtβ

ln p

)k

Ek+1
β,kβ+1(−λtβ), (60)

where Λk
n is given in (43).

Thus, we have obtained the five alternate forms of the pmf of FPLP given in (54), (55),
(57), (59) and (60). Note that the one-dimensional distributions of FPLP are not infinitely
divisible, whose proof follows on similar lines to that of Proposition 4.

Remark 14. The distribution of the first waiting time Ŵ1 of FPLP is given by

Pr{Ŵ1 > t} = Pr{M̂β(t) = 0} = Eβ,1

(
−λtβ

)
.
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By using the same arguments as used in Remark 9, we conclude that the FPLP is not a
renewal process.

By using (49) and Theorem 2.1 of Leonenko et al. [14], we obtain the mean, variance
and covariance of FPLP as follows:

E
(
M̂β(t)

)
= r̂1E

(
Yβ(t)

)
,

Var
(
M̂β(t)

)
= r̂2E

(
Yβ(t)

)
+ r̂2

1 Var
(
Yβ(t)

)
,

Cov
(
M̂β(s),M̂β(t)

)
= r̂2E

(
Yβ(min{s, t})

)
+ r̂2

1 Cov
(
Yβ(s), Yβ(t)

)
.

The FPLP exhibits overdispersion as Var
(
M̂β(t)

)
−E

(
M̂β(t)

)
> 0 for all t > 0.

Remark 15. The FPLP exhibits the LRD property and, as in Remark 8, the increment process of
FPLP exhibits the SRD property.

5. Generalized Pólya–Aeppli Process and Its Fractional Version
Here, we introduce a fractional version of the GPAP. First, we give some additional

properties of it.

On taking β = 1, λj = λ

(
r + j− 1

j

)
ρj(1− ρ)r/(1− (1− ρ)r) for all j ≥ 1 and letting

k→ ∞, the governing system of differential Equation (1) for GCP reduces to the governing
system of differential Equation (19) of GPAP. Thus, the GPAP is a limiting case of the GCP.

The next result gives a recurrence relation for the pmf of GPAP, whose proof follows
from Proposition 1 of Kataria and Khandakar [6].

Proposition 7. The state probabilities q̄(n, t) = Pr{M̄(t) = n}, n ≥ 1 of GPAP satisfy

q̄(n, t) =
λt(1− ρ)r

n(1− (1− ρ)r)

n

∑
j=1

jρj
(

r + j− 1
j

)
q̄(n− j, t).

The pgf (20) can be expressed as

Ḡ(u, t) =
∞

∏
j=1

exp
(

λt
ρj(1− ρ)r

1− (1− ρ)r

(
r + j− 1

j

)
(uj − 1)

)
.

It follows that the GPAP is equal in distribution to a weighted sum of independent
Poisson processes; that is,

M̄(t) d
=

∞

∑
j=1

jNj(t), (61)

where {Nj(t)}t≥0 is a Poisson process with intensity λj = λ

(
r + j− 1

j

)
ρj(1− ρ)r/(1−

(1− ρ)r). Thus,

lim
t→∞

M̄(t)
t

d
=

∞

∑
j=1

j lim
t→∞

Nj(t)
t

=
λrρ

(1− ρ)(1− (1− ρ)r)
, in probability, (62)

where we have used limt→∞ Nj(t)/t = λ

(
r + j− 1

j

)
ρj(1− ρ)r/(1− (1− ρ)r), j ≥ 1 almost

surely. On substituting r = 1 in (62), we get the corresponding limiting result for the Pólya–
Aeppli process (see [6], Section 4.3).
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In view of (61), the pmf of GPAP can be obtained from (4), and it is given by

q̄(n, t) = ∑
Ωn

n

∏
j=1

(
ρj(r+j−1

j )
)xj

xj!

(
λt(1− ρ)r

1− (1− ρ)r

)zn

e−λt, (63)

where zn = x1 + x2 + · · ·+ xn and Ωn is given in (5).
Using (6), the pmf of GPAP can alternatively be written as

q̄(n, t) = ∑
Ωn

k

k

∏
j=1

ρxj

(
r + xj − 1

xj

)(
λt(1− ρ)r

1− (1− ρ)r

)k e−λt

k!
, (64)

where Ωn
k is given in (7).

From (11), it follows that the GPAP is a Lévy process. Its Lévy measure can be obtained

by taking λj = λ

(
r + j− 1

j

)
ρj(1− ρ)r/(1− (1− ρ)r) for all j ≥ 1 and letting k → ∞ in

Equation (13) of Kataria and Khandakar [6]. It is given by

µ̄(dx) =
λ(1− ρ)r

1− (1− ρ)r

∞

∑
j=1

(
r + j− 1

j

)
ρjδjdx.

Fractional Generalized Pólya–Aeppli Process
Here, we introduce a fractional version of the GPAP, namely, the fractional generalized

Pólya–Aeppli process (FGPAP). We define it as the stochastic process {M̄β(t)}t≥0, 0 <

β ≤ 1, whose state probabilities q̄β(n, t) = Pr{M̄β(t) = n} satisfy the following system of
differential equations:

dβ

dtβ
q̄β(0, t) = −λq̄β(0, t),

dβ

dtβ
q̄β(n, t) = −λq̄β(n, t) +

λ

(1− ρ)−r − 1

n

∑
j=1

(
r + j− 1

j

)
ρj q̄β(n− j, t), n ≥ 1,

(65)

with initial conditions q̄β(0, 0) = 1 and q̄β(n, 0) = 0, n ≥ 1.
Note that the system of Equation (65) is obtained by replacing the integer order

derivative in (19) by Caputo fractional derivative.

Remark 16. On taking λj = λ

(
r + j− 1

j

)
ρj(1− ρ)r/(1− (1− ρ)r) for all j ≥ 1 and letting

k→ ∞, System (1) reduces to System (65). Thus, the FGPAP is a limiting case of the GFCP.
Further, on taking r = 1, System (65) reduces to the system of differential equations that

governs the state probabilities of the fractional Pólya–Aeppli process (see [13], Equation (19)).

Using (65), it can be shown that the pgf Ḡβ(u, t) = E
(

uM̄β(t)
)

, |u| ≤ 1 of
FGPAP satisfies

dβ

dtβ
Ḡβ(u, t) = −λ

(
1− (1− ρu)−r − 1

(1− ρ)−r − 1

)
Ḡβ(u, t),

with Ḡβ(u, 0) = 1. On taking the Laplace transform in the above equation and using (3),
we get

sβ ˜̄Gβ(u, s)− sβ−1Ḡβ(u, 0) = −λ

(
1− (1− ρu)−r − 1

(1− ρ)−r − 1

)
˜̄Gβ(u, s), s > 0.
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Thus,
˜̄Gβ(u, s) =

sβ−1

sβ + λ
(

1− (1−ρu)−r−1
(1−ρ)−r−1

) .

On taking the inverse Laplace transform and using (12), we get

Ḡβ(u, t) = Eβ,1

(
−λ

(
1− (1− ρu)−r − 1

(1− ρ)−r − 1

)
tβ

)
. (66)

Remark 17. On taking β = 1 in (66), we get the pgf of GPAP given in (20). Further, from (66)
we can verify that the pmf q̄β(n, t) sums up to one; that is, ∑∞

n=0 q̄β(n, t) = Ḡβ(u, t)|u=1 =
Eβ,1(0) = 1.

The following time-changed relationship holds between the GPAP and FGPAP:

M̄β(t)
d
= M̄(Yβ(t)), t ≥ 0, (67)

where the GPAP is independent of {Yβ(t)}t≥0, 0 < β < 1. Further,

M̄β(t)
d
= M̄(T2β(t)), t > 0,

where {T2β(t)}t>0 is independent of {M̄(t)}t>0.

Remark 18. In view of (11) and (67), we note that the FGPAP is equal in distribution to the
following compound fractional Poisson process:

M̄β(t)
d
=

Nβ(t)

∑
i=1

Xi, t ≥ 0, (68)

where {Nβ(t)}t≥0 is a TFPP with intensity λ independent of {Xi}i≥1. Therefore, it is neither
Markovian nor a Lévy process. In view of (68), System (65) can alternatively be obtained using
Proposition 1 of Beghin and Macci [13].

On using the pmf of GPAP (see [11], Equation (3)), we get the following pmf of FGPAP.

Theorem 5. The pmf q̄β(n, t) = Pr{M̄β(t) = n} of FGPAP is given by

q̄β(n, t) =


Eβ,1

(
−λtβ

)
, n = 0,

ρn
n

∑
j=1

j

∑
m=1

(−1)m
(

j
m

)(
−λtβ

(1− ρ)−r − 1

)j(rm + n− 1
n

)
Ej+1

β,jβ+1

(
−λtβ

)
, n ≥ 1.

(69)

Remark 19. If we use (63) in the proof of Theorem 5, then we can obtain the following alternate
form of the pmf of FGPAP:

q̄β(n, t) =


Eβ,1

(
−λtβ

)
, n = 0,

∑
Ωn

n

∏
j=1

(
ρj(r+j−1

j )
)xj

xj!
zn!
(

λtβ(1− ρ)r

1− (1− ρ)r

)zn

Ezn+1
β,zn β+1

(
−λtβ

)
, n ≥ 1.

(70)

Again, if we use (64) in the proof of Theorem 5, then we can obtain the following:

q̄β(n, t) = ∑
Ωn

k

k

∏
j=1

ρxj

(
r + xj − 1

xj

)(
λtβ(1− ρ)r

1− (1− ρ)r

)k

Ek+1
β,kβ+1

(
−λtβ

)
. (71)
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From (68), we have

q̄β(0, t) = Pr{Nβ(t) = 0} = Eβ,1(−λtβ).

For n ≥ 1, we get

q̄β(n, t) =
n

∑
k=1

Pr{X1 + X2 + · · ·+ Xk = n}Pr{Nβ(t) = k} (72)

=
n

∑
k=1

∑
Θk

n

k!
n

∏
j=1

(
ρj(r+j−1

j )
)xj

xj!

(
λtβ(1− ρ)r

1− (1− ρ)r

)k

Ek+1
β,kβ+1(−λtβ), (73)

where Θk
n is given in (39).

As Xi’s are independent and identically distributed, we have

Pr{X1 + X2 + · · ·+ Xk = n} = ∑
m1+m2+···+mk=n

mj∈N

k

∏
j=1

Pr{Xj = mj}

= ∑
m1+m2+···+mk=n

mj∈N

(
(1− ρ)r

1− (1− ρ)r

)k k

∏
j=1

ρmj

(
r + mj − 1

mj

)
, (74)

where we have used (11). Substituting (74) into (72), we get an equivalent expression for
the pmf of FGPAP in the following form:

q̄β(n, t) =
n

∑
k=1

∑
m1+m2+···+mk=n

mj∈N

(
λtβ(1− ρ)r

1− (1− ρ)r

)k k

∏
j=1

ρmj

(
r + mj − 1

mj

)
Ek+1

β,kβ+1(−λtβ). (75)

The pmf (73) can be written in the following equivalent form by using Lemma 2.4 of
Kataria and Vellaisamy [21]:

q̄β(n, t) =
n

∑
k=1

∑
Λk

n

k!
n−k+1

∏
j=1

(
ρj(r+j−1

j )
)xj

xj!

(
λtβ(1− ρ)r

1− (1− ρ)r

)k

Ek+1
β,kβ+1(−λtβ), (76)

where Λk
n is given in (43).

Thus, we have obtained the six alternate forms of the pmf of FGPAP given in (69)–(71),
(73), (75) and (76). On substituting r = 1 in these pmfs, we get the equivalent versions of
the pmf of fractional Pólya–Aeppli process. Note that the one-dimensional distributions of
FGPAP are not infinitely divisible.

Remark 20. The distribution of the first waiting time W̄1 of FGPAP is given by

Pr{W̄1 > t} = Pr{M̄β(t) = 0} = Eβ,1

(
−λtβ

)
.

By using the same arguments as used in Remark 9, we conclude that the FGPAP is not a
renewal process.

By using (21) and Theorem 2.1 of Leonenko et al. [14], we obtain the mean, variance
and covariance of FGPAP as follows:

E
(
M̄β(t)

)
= r̄1E

(
Yβ(t)

)
,

Var
(
M̄β(t)

)
= r̄2E

(
Yβ(t)

)
+ r̄2

1 Var
(
Yβ(t)

)
,

Cov
(
M̄β(s),M̄β(t)

)
= r̄2E

(
Yβ(min{s, t})

)
+ r̄2

1 Cov
(
Yβ(s), Yβ(t)

)
.
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The FGPAP exhibits overdispersion as Var
(
M̄β(t)

)
−E

(
M̄β(t)

)
> 0 for all t > 0.

Remark 21. The FGPAP has the LRD property, and the increment process of FGPAP exhibits the
SRD property.

6. Concluding Remarks
In this paper, we obtain some additional results for three recently introduced counting

processes: BTP, PLP and GPAP. We study their fractional versions and observe that they
are equal in distribution to some particular cases of the compound fractional Poisson pro-
cess. We obtain several distributional properties for their fractional variants and establish
their LRD property. Therefore, these processes have potential applications in modelling
high-frequency financial data. Several equivalent forms of the pmf of FBTP, FPLP and
FGPAP are obtained. We have shown that these fractional processes are overdispersed
and non-renewal. It is observed that their one-dimensional distributions are not infinitely
divisible, and their increment process has an SRD property. As an application in risk
theory, FBTP, FPLP and FGPAP can be used to model the number of claims received by an
insurance company.
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