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Abstract: The present paper aims to demonstrate the combined impact of memory, selling price,
and exhibited stock on a retailer’s decision to maximizing the profit. Exhibited stock endorses
demand and low selling prices are also helpful for creating demand. The proposed mathematical
model considers demand as a linear function of selling price and displayed inventory. This work
utilized fractional calculus to design a memory-based decision-making environment. Following the
analytical theory, an algorithm was designed, and by using the Mathematica software, we produced
the numerical optimization results. Firstly, the work shows that memory negatively influences the
retailer’s goal of maximum profit, which is the most important consequence of the numerical result.
Secondly, raising the selling price will maximize the profit though the selling price, and demand will
be negatively correlated. Finally, compared to the selling price, the influence of the visible stock is
slightly lessened. The theoretical and numerical results ultimately imply that there can be no shortage
and memory restrictions, leading to the highest average profit. The recommended approach may be
used in retailing scenarios for small start-up businesses when a warehouse is required for continuous
supply, but a showroom is not a top concern.

Keywords: Caputo and Riemann–Liouville’s derivative; EOQ model; shortage; selling price; memory;
displayed stock; Laplace transformation

MSC: 90B05

1. Introduction

Demand forecasting and optimal lot-size scheduling are essential issues for a retailing
organization. Retailers have aimed to follow consumer demand since the beginning. More
specifically, the earlier tendency in research on the best course of action for retail businesses
focused only on predicting customer demand. The simple principle was “buy one, sell one.”
Companies quickly realized, however, that employing more effective retailing strategies,
including batch scheduling, could be more standardized, scalable, and could optimize
profit. Batch scheduling organizes retailing operations so that final product components are
created in groups, sometimes called batches, rather than in a continuous stream. Economic
order quantity and production quantity modeling are two popular approaches in decision-
making related to searching for optimal stock to maximize profit. Demand is an essential
keyword in this context. Early literature on EOQ(Economic Order Quantity) models
used constant demands [1–5].On the contrary, several variables may influence the market
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demand for a product. The items’ price, quality and reliability significantly impact demand.
The theory of EOQ models has been evaluated by adding more reliable components in
constructing the demand functions. The product’s price is such an important component
that it has much control over the market demand for an item. Generally, the low-price value
of commodities can act as a booster to create additional demand in the market. On the other
hand, the stock in a retail organization’s showroom might provide a favorable impression
of the organization’s capacity to meet client demand. Additionally, the involvement of
human interactions makes the whole retailing scenario memory-motivated. The retail
procedure cannot be a discrete incident. Both the retailer and the customer must have some
experience due to their communication in the past. The present bargain may be influenced
by the retailer’s and the customer’s prior experiences. Both the retailer and the customer
can optimize their goal by utilizing their earned experience. The earned experience is
termed memory, and the experience’s impact on decision-making phenomena is said to be
the memory effect. We consider fractional calculus to capture the possibility of the iterative
nature of the dynamics of an EOQ model. This paper considers an EOQ model, assuming
that the demand is a function of price and stock, allowing shortages in the lot cycle.
Furthermore, the model is supposed to be memory-sensitive, and a fractional differential
equation is taken to be a working tool to describe it. This model is distinctive because
it estimates the simultaneous effect of pricing, displayed stock, scarcity, and memory on
merchants’ judgments, even though many researchers have previously conducted some
experiments that are similar to this one. The demand is price-and stock-dependent, and
the order quantity model is supposed to go through the fully backlogged shortage in
a memory-based decision-making scenario. The subsections of the present section will
summarize the existing literature, research gaps, and motivations related to the formulation
of the proposed problem of this paper.

1.1. Basic Idea of Fractional Calculus and Memory Effect

Fractional calculus was initially used around three centuries ago, but due to the
lack of a solution technique and a physical interpretation, its evolution in the first two
centuries was relatively slow. The fundamental definition of the fractional derivative
has changed since its inception (see [6,7]). Although the basic notion is evolving, the
researchers have not provided any physical insight regarding the fractional derivative.
It can recall the consequences of the inputs from the past to predict the present value of
the output, which is one of the most valuable physical interpretations later discovered
(see Saeedian et al. [8]; Tarasov and Tarasova, [9]). Furthermore, fractional calculus has
non-Markovian characteristics. In this case, the memory index is represented by the
fractional-order derivative and integration. As a result, fractional calculus is a suitable
method for incorporating the memory effect into mathematical models of economic [10,11]
and biological [8] problems. In light of this, one might say that it is the proper mathematical
way to comprehend the true nature. In the past 30 years, fractional calculus has gained
interest in several mathematics topics [12–16]. Agarwal et al. [17] contributed a pioneering
theory of fractional calculus under uncertainty. Salahshour et al. [18] solved a fractional
differential equation in fuzzy environment using the theory of fuzzy Laplace transformation.
To account for memory effects on the inventory system, why must we need afractional-order
derivative? First-order ODEs regulate traditional inventory models with integer-order
derivatives. However, derivatives of integer orders for a differentiable time function are
defined only in an infinitely small neighborhood of the measured point of time. Due to its
inability to describe the system’s memory impact, the traditional inventory model suffers
from forgetfulness. Amnesia may be removed from any system using the fractional-order
system [19]. The memory effect on the inventory system is something we want to consider
while creating a fractional-order inventory model for the reasons mentioned above. The
order of a fractional derivative determines how strong a memory is.
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1.2. EOQ Models and Fractional Calculus

This subsection provides a brief review of the recent developments of the literature
related to the economic order and production quantity models. The review process has
been carried out based on the keywords: selling price, displayed stocks, deterioration,
preservation, shortage, learning, memory, etc.

It is mentioned earlier in this section that demand is a very crucial component in a
production–supply scenario. The initial demand pattern trend is considered a constant
and deterministic one. However, market demand may depend on different features. The
selling price of products is one such crucial issue that is impacting demand. Very often,
it is seen that the high selling price of products hurts the demand. Sometimes retailers
offer the customers small (discounted) selling priced items, creating huge sales of those
items. Many inventory models predict that reduced pricing will result in greater demand.
For an EOQ model with quantity discounts and price-dependent demand, Transchel and
Minner [20] devised optimum solution methods while treating the linear price function as
a particular case. They investigated various approaches, including adjusting the selling
price while calculating the lot size concurrently. Sana [21] experimented with stochastic
price-dependent demand with the fully backlogged shortage for a newsboy problem. In
the case of shortage, an EOQ model with price-dependent demand was investigated by Pal
et al. [22]. The notion of a time-varying holding cost and discount policy in the inventory
model with price-dependent demand was implemented by Alfares and Ghaithan [23]. Das
et al. [24] prescribed the utilization of preservation technology on an inventory model of
deteriorating items, assuming price-dependent demand and partial backlogging. Rahman
et al. [25] discussed an EOQ model with a price-dependent demand rate in uncertain
phenomena, considering all the decision parameters as interval numbers.

Another critical issue is the product’s supply in the inventory cycle. Unsellable items
caused by arbitrary vast amounts of stock may result in the retailer’s final loss. However,
the displayed store in a showroom may help earn customer’s interests and stock can be
incorporated in the list of essential components controlling the demand function. Inventory
models that base demand on item availability or stock levels are popular. Min and Zhou [26]
studied an inventory model for depreciating commodities, considering a demand that
depends on the stock level, some backlogs, and a maximum inventory level cap. Yang
et al. [27] developed another inventory model that incorporates stock-dependent demand
for depreciating items, allows for some backlog, and accounts for inflation. An inventory
model with a stock-dependent demand rate and inflation was given by Singh et al. [28]
for goods sold from primary and secondary stores under single management. Bhunia
and Shaikh [29] considered the effects of various marketing tactics, including price and
advertising, and the visible inventory level on the system’s demand rate. Lee and Dye [30]
created an EOQ model with a partial backlog, stock-dependent demand, and a regulated
deterioration rate; the model chooses the best ordering and deterioration management
strategies to maximize the overall profit. Bhunia et al. [31] analyzed different retailing
scenarios of price-breaking unit discount policies and displayed stock-dependent demand.
Shaikh et al. [32] considered inflation for two warehouses with an inventory problem of
deteriorating items with stock-dependent demand. They developed an uncertain decision-
making policy incorporating interval valued costs.

The collective impact of price and stock on market demand was investigated by many
researchers over the last two decades. Panda et al. [33] used the genetic algorithm to
optimize a deteriorating inventory problem, assuming that the demand is a function of
stock and price. Dye and Hsieh [34] studied a partially backlogged EOQ model with stock
and price-dependent dependencies and customer waiting time depending on shortage.
The optimization was carried out using particle swarm optimization (PSO). Sana [35]
studied a deteriorating inventory model of stock and selling price-controlled demand and
explored the fact that extensive uncontrolled stock negatively impacts the market for the
product. Several more investigations [36–39] had been carried out in this direction. Shaikh
et al. [40] developed an inventory model that considers demand as a function of stock
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and price, allows shortage to be fully backlogged, and uses PSO to optimize the problem.
Mashud et al. [41] extended this work for the case of partial back-ordering. Again, Shaikh
et al. [42] established a study on an inventory model where they considered the demand
to be stock- and price-dependent, holding cost to be time-dependent, shortage to be fully
back-ordered and customer’s waiting time to be dependent. Additionally, they allowed the
deterioration of items and discount policy as presumptions. Khan et al. [43] incorporated
discount opportunities for the retailer through partial and fully advanced payments in
an order quantity model of deteriorating goods with price- and stock-dependent demand
and shortage. Rahaman et al. [44] discussed a fuzzy economic production quantity model
of decaying items, considering demand as a function of price and stock and production
rate as a function of stock. They used the fuzzy differential equation approach to solve
the problem. Later, Rahaman et al. [45] included a preservation management strategy to
discuss a fuzzy EPQ model with the same assumption.

Additionally, the entire retailing setting may be memory-motivated due to interper-
sonal interactions. In this context, physical interpretations of fractional calculus are given to
carry the memory of dynamical systems to the next level, with the iterated kernels involved
in its several definitions in mathematical modeling. A comparison of contributions from
recent publications on EOQ models employing fractional calculus is shown in Table 1. This
table compares the literature based on various demand functions and solution techniques.

Table 1. Comparison among the contributions of recent publications related to the proposed fractional
inventory model.

Authors Year Demand Function Methodology

Das and Roy [46] 2014 Constant demand Primal geometric programming for
optimization

Das and Roy [47] 2015 Lineartime-dependent
demand

Primal geometric programming for
optimization

Pakhira et al. [48] 2018 Linear time-dependent
demand

Primal geometric programming for
optimization

Pakhira et al. [49] 2018 Linear time-dependent
demand

Primal geometric programming for
optimization

Pakhira et al. [50] 2019 Quadratic time-dependent
demand

Primal geometric programming for
optimization

Pakhira et al. [51] 2019 Linear time-dependent fuzzy
demand

Primal geometric programming for
optimization and signed distance

method for defuzzification

Pakhira et al. [52] 2020
Time and order of fractional

derivative dependent
demand

Primal geometric programming for
optimization

Pakhira et al. [53] 2020
Time-dependent

Mittag–Leffler function
distributed demand

Primal geometric programming for
optimization

Rahaman et al. [54] 2021 Time-dependent decreasing
fuzzy demand

Fractional differential equation and
dense fuzzy environment

optimization

Rahaman et al. [55] 2021 Fuzzy price dependent
demand

Fuzzy fractional differential
equation and lock fuzzy dense
environment of optimization

Rahaman et al. [56] 2022 Fuzzy constant demand
Fuzzy fractional differential

equation and trapezoidal fuzzy
environment of optimization

This paper Price and displayed stock
dependent demand

Mathematical analysis using
fractional calculus and numerical
optimization through a proposed
algorithm by using Mathematica

software(Company Name:
Wolfram Research, Inc.

Headquarter: Champaign, IL,
United States)
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1.3. Motivation of the Work

The following are several gaps identified in recent work on lot-size modeling and their
applications for the field of fractional calculus applications. The proposed work is intended
to fill these gaps below:

1. A massive volume of literature exists that is related to the EOQ/EPQ(Economic
Production Quantity) model. However, there is no such significant number of papers
to date dealing with the impact of memory on the decision-making procedure.

2. There are enough reasons to consider the EOQ/EPQ models in memory-sensitive
situations. In reality, a decision-making phenomenon involving human’s association
cannot be memory-free.

3. To date, most of the memory-sensitive model discussed in the light of fractional calcu-
lus is developed on the assumptions of constant demand, price, or time-dependent
demand. Furthermore, they are inferior in numbers compared to the whole literature
on the theories of EOQ and EPQ models.

4. Consequently, there are motives for including the memory sense in lot-size modelling,
but the literature is still in its infancy. The analysis of fractional calculus is complicated,
which might be the cause.

1.4. Novelties of the Work

An EOQ model with selling price and stock-dependent demand rate under a fully back-
logged shortage has been taken in a memory-sensitive situation to fill the aforementioned
gaps. The significant contributions of this paper are as follows:

1. This paper manifests the collective impact of pricing, displayed stock, shortage, and
memory on retailers’ decisions. This paper uses demand as a function of selling price
and displayed stock to formulate the model. The model is discussed for both the
cases of shortage and without shortage. It also incorporates memory sense in theory
utilizing fractional calculus tools. Several earlier studies addressed the mentioned
features separately. But, no literature discussed the impacts simultaneously.

2. An algorithm for solving the optimization model that corresponds to the proposed
EOQ is created for quantitative analysis by using the Mathematica software.

3. The given mathematical model provides significant management insight into a busi-
ness phenomenon. This concept can be used for freshly established retail businesses
when the showroom is still being constructed. The proposedmodel in this research
might be applied to the small-scale retailing of bakeries and poultry slaughtering.

1.5. Structure of the Paper

The rest of the paper is also organized with different sections and subsections. The
whole paper contains seven sections and several subsections which are visually represented
in Figure 1.
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Figure 1. Visual representation of the construction of the present paper with different sections and
subsections.

For the above Figure 1, the box in the right of each section’s name contains the title of
their subsections. “Conclusions and future scope” section contains no subsections.

2. Notations, Assumptions and Hypothesis

This paper tries to formulate a more realistic model in the sense of memory sensitivity.
Here, the demand is considered a linear stock and price function. With more displayed
stock in the showroom, the demand can be increased. According to the polar opposite of
how much an item’s selling price is, the demand for that specific commodity in a developing
country’s culture must rise or fall. Additionally, both the customers and the retailer have
some memory of past consumption and dealing attitudes, respectively. The customers are
motivated by the experience with the retailers’ dealing behavior and the quality of the
products they used earlier. On the counterpart, the retailer gained knowledge from the
previous demand pattern. Thus, the entire situation must be memory affected. This paper
incorporates these real concerns into modeling the proposed problem.



Fractal Fract. 2022, 6, 531 7 of 27

2.1. Notations and Assumptions

Several notations are used to describe the EOQ model. Table 2 lists the notations used
in this article, their units, and their meanings.

Table 2. Symbols and notations with their units and meanings which are representing the objective
functions, decision variables, different costs and revenues and coefficients in this paper.

Notations Units Descriptions

hc USD Holding cost per unit stock

Sup USD Setup cost as initial investment for basic infrastructure

sc USD Shortage cost as penalty per unit shortage

p USD Selling price per unit sold items

D Unit Demand rate which is a linear function of selling price and
displayed stock

T Month Complete lot cycle which includes both of the retailing and
shortage phase (a decision variable)

T1 Month Active retailing cycle (a decision variable)

Q Unit Optimal lot size for a retailing cycle (a decision variable)

S1 Unit Size of inventories at the beginning of a lot cycle (a decision
variable)

q(t) Unit Stock as a function of timet

s(t) Unit Shortage as a function of timet

α Unit Order of fractional derivative which is called differential memory
index

β Unit Order of fractional integral which is called integral memory index

a Unit Demand potential which is a positive constant

b Unit Proportional constant for the relation between demand and selling
price

C Unit Proportional constant for the relation between demand and
displayed

TAPα,β USD Total average profit for the memory-motivated model (objective
function)

TAP USD Total average profit for the memory-free model (objective function)

2.2. Hypothesis

The model is framed on the below mentioned hypothesis:

(i) Demand is linear function of selling price and displayed stock., i.e., D(p, q(t)) ={
a− bp + cq(t), where 0 ≤ t ≤ T1

a− bp, where T1 ≤ t ≤ T,
where a, b, c are positive constants and p is the

selling price of the product.
(ii) Shortage is allowed and completely backlogged.
(iii) Replenishment rate is spontaneous and lead time is zero.
(iv) Lot size and time horizon are finite.
(v) The retailing phenomenon is memory-motivated.

Remark1.If one looks at Table 1 and considers the presumptions stated in Section 2.2,
it is clear that the contribution is unique compared to earlier works. Research on fractional
calculus and inventory management is not new. Still, it is new from the standpoint of
considering the assumption mentioned above while using fractional calculus to solve the
inventory management problem.
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Remark 2. Looking closely, we can observe that demand in some inventory man-
agement situations is a non-linear stock and selling price function. In contrast, demand
depends linearly on stock and selling prices in other cases. This article explores a specific
inventory issue where demand is linearly correlated with stocks and selling prices. Fu-
ture studies may consider the demand function’s logistic reliance on the stores [57]. In
such a situation where memory is a factor in decision-making, the fractional-order logistic
differential equation [58] may contribute to the inventory model.

3. Formulation of Proposed Model

Here, the establishment of the proposed model mathematically on the earlier men-
tioned assumptions is described in detail. The present section is organized with two
subsections representing the formulation of the model and reformulation of the model in
the fractional arena.

3.1. Basic Ideology about the Proposed EOQ Model

The lot cycle is started with the initial stock level S1.The stock level decreases uniformly
by adjusting demand during the whole inventory run period (0 ≤ t ≤ T1). At time t = T1,
the stock level becomes zero and the inventory run phase is stopped. The shortage phase
(T1 ≤ t ≤ T) starts with the initial shortage amount zero unit at t = T1. For unfulfilled
demand during this time, the shortage level gradually increases. The overall inventory
cycle is stopped at t = T with its highest level of shortage Q− S1.

Traditionally, the memory-free dynamical system of stock management can be de-
scribed by the following differential equation:

Inventory run phase (0 ≤ t ≤ T1): The differential equation representing gradual
declination of the inventory level during the active inventory run phase is

dq(t)
dt

= −D(p, q(t)). (1)

The negative sign in Equation (1) represents the negative proportionality of the stock
growth dq(t)

dt to the price and stock-dependent demand rate D(p, q(t)).
Shortage phase (T1 ≤ t ≤ T): The differential equation representing the gradual

ascending nature of the shortage level is

ds(t)
dt

= D(p). (2)

At the beginning of the inventory run period, the initial inventory level is S1 and
it is completely diminished to 0 at the end of the active phase. The terminal conditions
regarding the stocks in the active inventory run phase are given by{

q(0) = S1,
q(T1) = 0.

(3)

There is no shortage when the active inventory phase is just ended. Therefore, the
shortage level is zero at the very early stage t = T1 of the shortage phase. Then, the
highest level of shortage Q− S1 is at the end of the decision cycle. The terminal conditions
regarding the shortages are given by{

s(T1) = 0,
s(T) = Q− S1.

(4)

3.2. Reformulation of the EOQ Model in Memory-Motivated Arena

Suppose the system described in the earlier sub-section is considered memory-sensitive.
In that case, the system can be reformulated in the light of the fractional calculus (see
Appendix A) as follows:
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Inventory run phase (0 ≤ t ≤ T1):
The sense of memory can be incorporated in the differential equation letting to be given

in terms of differ-integral equation with iterated kernel. Thus, the differential Equation (1)
representing the inventory run phase (0 ≤ t ≤ T1) takes the form

dq(t)
dt

= −
t∫

0

k(t, v)D(p, q(v))dv. (5)

In Equation (5), k(t, v) is an iterative kernel that inherits memory from the previous
deals. The standard delta function, k(t, s) = δ(t, s), represents a memory-less model in

the classical differential equation. We take the kernel k(t, v) = (t−v)α−1

Γ(α) to receive the
corresponding fractional analogue of Equation (1). Then, from Equation (5),

dq(t)
dt = −

t∫
0

(t−v)α−1

Γ(α) D(p, q(v))dv,

i.e., dq(t)
dt = −RL I α−1

t {D(p, q(t))}
(6)

whereRL I α−1
t is the Riemann–Liouville integral operator of order α − 1 in Equation (6).

Taking the Riemann–Liouville integral operator RL I1−α
t of order 1− α in both sides of

Equation (6), it can be reduced to the following Caputo fractional differential equation of
order α

CapDα
t q(t) = −{a− bp + cq(t)}. (7)

Shortage phase (T1 ≤ t ≤ T):
Similarly, the differential equation given by Equation (2) describing shortage phase

(T1 ≤ t ≤ T) can be reduced to its fractional representative

CapDα
t s(t) = {a− bp}. (8)

Thus, the Caputo fractional differential Equations (7) and (8), along with the Equa-
tions (3) and (4) represent the memory-sensitive inventory scenario with price and stock-
dependent demand with a fully backlogged shortage. In the following subsection, we will
solve Equations (7) and (8) with the tools of fractional calculus and construct a correspond-
ing optimization problem.

4. Solution of the Proposed Fractional EOQ Model

In this section, we utilized primarily the Laplace transformation and inverse Laplace
transformation to solve the Caputo fractional differential equation. Additionally, fractional
integration is defined in first subsection to compute the relevant costs and revenue (see
Appendix A). Additionally, the deduction of a simpler lot-size model from the proposed
model has been discussed in subsequent subsections.

Inventory run phase (0 ≤ t ≤ T1):
Taking Laplace transformation on Equation (7) and using the initial condition q(0) =

S1 we receive the following expression:

q̃(u) =
uαS1

u(uα + c)
− (a− bp)

u(uα + c)
. (9)

In Equation (9), q̃(u) represents the Laplace transformation of the function q(t).
Taking the inverse Laplace transformation of Equation (9),

q(t) = S1Eα(−ctα)− (a− bp)
c

{1− Eα(−ctα)}. (10)
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In Equation (10), Eα(−ctα) is the one parameter Mittag–Leffler function (see Appendix A)
about −ctα. Using the terminal value of stock in the inventory run phase, q(T1) = 0, the
value of the initial stock level can be obtained explicitly as

S1 =
(a− bp)

c

[
{Eα(−cT1

α)}−1 − 1
]
. (11)

The initial inventory level S1 in memory-motivated phenomena is given by Equa-
tion (11).Then, using Equation (11), Equation (10) can be rewritten as

q(t) =
(a− bp)

c

[
{Eα(−cT1

α)}−1Eα(−ctα)− 1
]

(12)

where q(t) represents the stock function of time during inventory run phase in Equa-
tion (12).

Shortage phase (T1 ≤ t ≤ T):
Taking Laplace transformation on Equation (8) and using the initial condition s(T1) = 0

we receive the following expression:

s̃(u) =
(a− bp)

uα+1 . (13)

In Equation (13), s̃(u) represents the Laplace transformation of the function s(t).
Taking the inverse Laplace transformation of Equation (13) we receive

s(t) =
(a− bp)(t− T1)

α

Γ(α + 1)
. (14)

In Equation (14), Γ(α + 1) is the traditional Gamma function about α + 1. Using the
terminal value of shortage, s(T) = Q− S1, the value of the total shortage can be estimated
explicitly as

Q− S1 =
(a− bp)(T − T1)

α

Γ(α + 1)
. (15)

Equation (15) represents the highest possible shortage in the decision cycle. From the
Equations (11) and (15), the lot size of retailing phenomena is obtained as

Q = (a− bp)

[
{Eα(−cT1

α)}−1 − 1
c

+
(T − T1)

α

Γ(α + 1)

]
(16)

4.1. Some Relevant Costs and Revenue Calculations

(i) Set up cost: This is onetime investment. It also includes the ordering cost and is taken
as a constant Sup.
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(ii) Total holding cost: The holding cost per unit is hc and span of stock is [0, T1]. Thus,
the total holding cost HCα,β can be obtained by the following fractional integration of
order β

HCα,β = hc
Γ(β)

∫ T1
0 (T1 − t)β−1q(t)dt

= hc(a−bp)
Γ(β)c

∫ T1
0 (T1 − t)β−1

[
{Eα(−cT1

α)}−1Eα(−ctα)− 1
]
dt

= hc(a−bp)
Γ(β)c

[
{Eα(−cT1

α)}−1 ∫ T1
0 (T1 − t)β−1Eα(−ctα)dt− T1

β

β

]
= hc(a−bp)

Γ(β)c

[
{Eα(−cT1

α)}−1 ∫ T1
0 (T1 − t)β−1 ∞

∑
k=0

(−ctα)k

Γ(αk+1)dt− T1
β

β

]
= hc(a−bp)

Γ(β)c

[
{Eα(−cT1

α)}−1 ∞
∑

k=0

(−c)k

Γ(αk+1)

∫ T1
0 (T1 − t)β−1tαkdt− T1

β

β

]
= hc(a−bp)

Γ(β)c

[
{Eα(−cT1

α)}−1 ∞
∑

k=0

(−c)kT1
αk+βΓ(β)

Γ(αk+β+1) − T1
β

β

]
= hc(a−bp)T1

β

c

[
{Eα(−cT1

α)}−1Eα,β+1(−cT1
α)− 1

Γ(β+1)

]
.

(iii) Total shortage cost: The system is taken to be with shortage. Thus, there is a shortage
cost per unit which is sc and the total shortage cost SCα,β on the time span [T1, T] as

SCα,β = sc
Γ(β)

∫ T
T1
(T − t)β−1s(t)dt

= sc(a−bp)
Γ(β)Γ(α+1)

∫ T
T1
(T − t)β−1(t− T1)

αdt

= sc(a−bp)(T−T1)
α+βB(α+1,β)

Γ(β)Γ(α+1)

= sc(a−bp)(T−T1)
α+β

Γ(α+β+1) .

(iv) Sales revenue: The selling price per unit is p and span of stock is [0, T1]. Thus, the
tota sales revenue SRα,β can be

SRα,β = p
Γ(β)

∫ T1
0 (T1 − t)β−1{a− bp + cq(t)}dt

= p(a−bp)
Γ(β)

∫ T1
0 (T1 − t)β−1dt +

c.pHCα,β
hc

= p(a−bp)T1
β

Γ(β+1) +
c.pHCα,β

hc
.

(v) Total profit: Total profit can be obtained by subtracting all the relevant costs from the
total earned revenue. Thus, total profit TPα,β from the whole lot cycle can be obtained
as

TPα,β = SRα,β −
{

Sup + HCα,β + SCα,β
}

= (a− bp)T1
β
[

p
Γ(β+1) +

(
p− hc

c

){ Eα,β+1(−cT1
α)

Eα(−cT1
α)
− 1

Γ(β+1)

}
− sc(T−T1)

α+β

Γ(α+β+1)T1
β

]
− Sup.

(vi) Average profit: To optimize the profitability, the retailer’s main concern will be on the
optimization of the average profit which can be obtained as

TAPα,β =
TPα,β

T

= (a−bp)T1
β

T

[
p

Γ(β+1) +
(

p− hc
c

){ Eα,β+1(−cT1
α)

Eα(−cT1
α)
− 1

Γ(β+1)

}
− sc(T−T1)

α+β

Γ(α+β+1)T1
β

]
− Sup

T .

Thus, the corresponding optimization problem will be of the form
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{
Maximize TAPα,β,

where TAPα,β = (a−bp)T1
β

T

[
p

Γ(β+1) +
(

p− hc
c

){ Eα,β+1(−cT1
α)

Eα(−cT1
α)
− 1

Γ(β+1)

}
− sc(T−T1)

α

Γ(α+β+1)

]
S1 = (a−bp)

c

[
{Eα(−cT1

α)}−1 − 1
]
,

Q = (a− bp)
[
{Eα(−cT1

α)}−1−1
c + (T−T1)

α

Γ(α+1)

]
,

Subject to 0 < T1 < T, 0 < α, β ≤ 1.

(17)

Equation (17) represents a single objective decision scenario in which total average
profit TAPα,β is the objective function to be minimized. Furthermore, initial inventory
level (S1), lot size (Q), active inventory run phase (T1), total lot cycle (T) are the decision
variables in Equation (17). It is customary to take the values of the orders of derivative
and integration to identical for inventory problems. Thus, α = β in the system given by
Equation (17) reduces it to the form

{
Maximize TAPα,α,

where TAPα,α = (a−bp)
T

[
pT1

α

Γ(α+1) +
(

p− hc
c

){
1
(c)

(
1

Eα(−cT1
α)
− 1− cT1

α

Γ(α+1)

)}
− sc(T−T1)

2α

Γ(2α+1)

]
− Sup

T

S1 = (a−bp)
c

[
1

Eα(−cT1
α)
− 1
]
,

Q = (a− bp)
[

1
c

{
1

Eα(−cT1
α)
− 1
}
+ (T−T1)

α

Γ(α+1)

]
,

Subject to 0 < T1 < T, 0 < α ≤ 1.

(18)

Equation (18) gives the optimization problem for numerical simulation of the proposed
memory-affected EOQ model with the shortage. In particular, when T1 = T, then S1 = Q
in Equation (18), it will be case of no shortage. The equivalent optimization problem for no
shortage case can be described by the following system:

{ Maximize TAPα,α,
where TAPα,α = (a−bp)

T

[
pTα

Γ(α+1) +
(

p− hc
c

){
1
(c)

(
1

Eα(−cTα)
− 1− cTα

Γ(α+1)

)}]
− Sup

T

Q = (a−bp)
c

[
1

Eα(−cTα)
− 1
]
,

Subject to T > 0, 0 < α ≤ 1.

(19)

Therefore, the Equations (18) and (19) represent the proposed model in memory-
motivated system under cases of with and without shortage, respectively.

4.2. Deduction of Memory-Free Models Connected to the Proposed Model

Greater fractional values of the differential and integral memory index imply lesser
memory and vice versa. In particular, α = 1 and β = 1 in theprimary model gives
the corresponding memory-free model. From Equation (18), the optimization problem
corresponding to the memory-free model is obtained as follows:

{
Maximize TAP,

where TAP = (a−bp)
T

pT1 +
(

p− hc
c

){
ecT1−cT1−1

c

}
− sc(T−T1)

2

2

− Sup
T ,

S1 = (a−bp)
c
[
ecT1 − 1

]
,

Q = (a− bp)
[

1
c
{

ecT1 − 1
}
+ (T − T1)

]
,

Subject to 0 < T1 < T.

(20)
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Equation (20) describes the optimization problem for the memory-free integer-order
EOQ model with shortage. Further, the memory-free model without no shortage can be
obtained from Equation (19) as follows:

{ Maximize TAP,
where TAP = (a− bp)

[
p +

(
p− hc

c

){
ecT−cT−1

cT

}]
− Sup

T ,

Q = (a−bp)
c
[
ecT − 1

]
,

Subject to T > 0.

(21)

4.3. More EOQ Models as Particular Cases of the Proposed Model

From the discussion of the preceding subsections, it is perceived that the proposed
model is the most generalized one as three other models can be derived from it. Further,
the following Table 3 will show that simpler models including the classical EOQ model can
be obtained as particular cases of the proposed model.

Table 3. Different existing economic order quantity models in literature as particular cases of the
proposed model in this paper.

Models Conditions Initial Stock (S1) Lot Size (Q Total Average Profit (TAPα,β/TAP)

With memory
and shortage

Demand does
not depend

on stock, i.e.,
c→ 0

(a−bp)T1
α

Γ(α+1)
(a−bp)[(T−T1)

α+T1
α]

Γ(α+1)

p(a−bp)T1
β

Γ(β+1) T −
Sup
T −

hc(a− bp) T1
α+β

T

[
1

Γ(β+1)Γ(α+1) −
1

Γ(α+β+1)

]
−

sc(a−bp)(T−T1)
α+β

Γ(α+β+1)T

Demand
depends on
neither stock
nor price, i.e.,
c→ 0 , b→ 0

aT1
α

Γ(α+1)
a[(T−T1)

α+T1
α]

Γ(α+1)

paT1
β

Γ(β+1) T −
Sup
T −

hca T1
α+β

T

[
1

Γ(β+1)Γ(α+1) −
1

Γ(α+β+1)

]
−

sca(T−T1)
α+β

Γ(α+β+1)T

With memory
and without

shortage

Demand does
not de-pend
on stock., i.e.,

c→ 0

(a−bp)Tα

Γ(α+1)
(a−bp)Tα

Γ(α+1)

p(a−bp)Tβ−1

Γ(β+1) − Sup
T −

hc(a− bp)Tα+β−1
[

1
Γ(β+1)Γ(α+1) −

1
Γ(α+β+1)

]
Demand

depends on
neither stock
nor price, i.e.,
c→ 0 , b→ 0

aTα

Γ(α+1)
aTα

Γ(α+1)

paTβ−1

Γ(β+1) −
Sup
T −

hcaTα+β−1
[

1
Γ(β+1)Γ(α+1) −

1
Γ(α+β+1)

]

Without
memory but

with shortage

Demand does
not de-pend
on stock, i.e.,

c→ 0
(a− bp)T1 (a− bp)T

p(a−bp)T1
T − Sup

T − hc(a− bp) T1
2

2T

− sc(a−bp)(T−T1)
2

2T

Demand
depends on
neither stock
nor price, i.e.,
c→ 0 , b→ 0

aT1 aT paT1
T −

Sup
T −

hcaT1
2

2T − sca(T−T1)
2

2T

Without
memory and

shortage

Demand does
not de-pend
on stock, i.e.,

c→ 0
(a− bp)T (a− bp)T p(a− bp)− Sup

T − hc(a− bp) T
2

Demand
depends on
neither stock
nor price, i.e.,
c→ 0 , b→ 0

aT aT pa− Sup
T −

hcaT
2
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Remark 3. At the top of Table 3, two memory-impacted fractional EOQ models with
price-dependent demand and constant demand under shortage consideration are deduced
from the proposed model given by Equation (17). Next, two more fractional EOQ models
with the same characteristics are also obtained for the case of no shortage. The last four
EOQ models represent memory-free retail phenomena with price-dependent demand and
constant demand, respectively, for both the case of shortage and no shortage. The most
straightforward scenario is represented by the conventional EOQ model, which is given at
the bottom of Table 3 and derived from the recommended model.

5. Solution Methodology and Numerical Simulation

This section has solved the optimization problem corresponding to the proposed
model. This current section consists of the following four subsections.

5.1. Solution Methodology

Here, the solution algorithm is first structured before going for the numerical simula-
tion of the proposed model. The below is the algorithm in brief to solve the problem.

Algorithm 1

Step 1: Start
Step 2: Initialize input variable a, b, c, hc, sc, Sup and p
Step 3: Set α = β
Step 4: Check “for” condition
Step 5: If “for” condition is validated go to Step 5, otherwise go to Step 9

Step 6: Evaluate A1 = Eα(−cT1
α), A2 = Γ(α + 1), A3 =

(
1

A1
− cT1

α

A2
−1
)

c , A4 = sc(T−T1)
2α

Γ(2α+1) and

TAPα,α = (a−bp)
T

[
pT1

α

Γ(α+1) +
(

p− hc
c

)
A3 − A4

]
− Sup

T
Step 7: Find Maximum value of TAPα,α and optimal value of Q, S1, T and T1
Step 8: Store Solutionα = { TAPα,α, Q , S1T, T1}
Step 9: Go to Step 3
Step 10: TAPBest = max

α
TAPα,α

Step 11: Store SolutionBest = {TAPBest, QBest, S1BestTBest, T1Best}
Step 12: Sensitivity analysis of SolutionBest with respect to input variables

Figure 2 depicts the solution methodology in a flow chart which would be used in
next sub sections for the numerical optimization of the proposed economic order quantity
model.

5.2. Numerical Simulation

The algorithm mentioned in the preceding subsection is coded in the Mathematica
software. For numerical illustration, let us take the values of the parameters involved in
defining the proposed inventory as follows:

a = 200, b = 1.5, c = 0.005, hc = 0.5, sc = 0.25, Sup = 1000 and p = 5.
The solutions to the optimization problems are given in tabular forms. Here, the

model’s two cases, namely, shortage and without shortage, are described. Table 4 represents
the optimal solution concerning different memory index values for the proposed model
with the shortage. Table 5 depicts the same for the model without shortage.
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Figure 2. Flow chart of the solution algorithm for numerical simulation of the proposed model.

Table 4. Impact memory on optimum values of the objective function total average profit (TAP∗),
and decision variables, namely.initial inventory level (S1), lot size (Q), active inventory run phase
(T1), total lot cycle (T) for the model with shortage.

Memory Index T* T1
* Q* S1

* TAP*

1 3.762 3.762 731.02 731.02 432.51
0.9 6.303 3.373 603.02 1128.65 187.98
0.8 6.303 3.373 549.73 1038.12 174.83
0.7 6.303 3.373 498.35 947.94 157.93
0.6 6.303 3.373 448.26 856.87 137.81
0.5 3.392 3.392 400.95 400.95 256.84
0.4 6.303 3.373 419.03 752.54 90.41
0.3 6.303 3.373 309.14 605.26 64.51
0.2 6.303 3.373 267.46 527.40 38.10
0.1 5.120 3.574 229.85 441.20 17.41

Remark 4. The value of the memory index near 0 and 1 represent strong and weak
memory senses, respectively. Therefore, the memory sense is becoming firmer from top
to bottom in Table 4. The total average profit gradually decreases as memory strengthens.
The optimal lot size is also following the same trend. However, the whole lot cycle, active
lot cycle, and initial stock level have no uniform tendency from top to bottom in Table 4.



Fractal Fract. 2022, 6, 531 16 of 27

The shortage phase is diminishing for the corresponding memory index values equal to 1
and 0.5.

Table 5. Impact memory on optimum values of the objective function total average profit (TAP∗),
and decision variables, namely,lot size (Q), total lot cycle (T) for the model without shortage.

Memory Index T* Q* TAP*

1 3.762 731.02 432.51
0.9 3.971 698.10 415.29
0.8 4.085 641.35 387.56
0.7 4.016 563.39 350.12
0.6 3.755 478.17 305.56
0.5 3.392 400.95 256.84
0.4 3.024 338.24 205.86
0.3 2.710 289.47 153.29
0.2 2.498 251.86 98.91
0.1 2.607 222.71 42.50

Remark 5. From Table 5, it is perceived that the total average profit gradually decreases
as memory strengthens. The optimal lot size is also following the same trend. However,
the lot cycle has no uniform tendency from top to bottom in Table 5.

Remark 6.Using the tabular data from Tables 4 and 5, the variation of total average
profit, lot cycle, and lot size concerning the variation of the memory index is plotted in
Figures 3–5, respectively, for both the cases of shortage and without shortage. On the other
hand, the relational dependences of the total average profit and lot cycle for the shortage
and without shortage are depicted in Figures 6 and 7, respectively. The three-dimensional
dependencies among the memory index, lot size and total average profit for the cases of
shortage and without shortage are shown in Figures 8 and 9, respectively. Figures 10 and 11
depict the relational dependence of lot cycle, lot size and total average profit for the cases
of shortage and without shortage, respectively.

Figure 3. Impact memory on optimum values of the objective function total average profit (TAP∗)
for the model with and without shortage (from left to right in the horizontal axis memory sense
increases).
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Figure 4. Impact memory on optimum values of the decision variable lot cycle (Q∗) for the model
with and without shortage (from left to right in the horizontal axis memory sense increases).

Figure 5. Impact memory on optimum values of the decision variable lot size (T∗) for the model with
and without shortage (from left to right in the horizontal axis memory sense increases).
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Figure 6. Variation of optimum values of the objective function total average profit (TAP∗) with
respect to the decision variable lot cycle (Q∗) for the model without shortage.

Figure 7. Variation of optimum values of the objective function total average profit (TAP∗) with
respect to the decision variable lot cycle (Q∗) for the model with shortage.
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Figure 8. Three-dimensional dependency among total average profit, lot cycle and memory index for
the case of no shortage.

Figure 9. Three-dimensional dependency among total average profit, lot cycle and memory index for
the case of shortage.

Figure 10. Three-dimensional dependency among total average profit, lot cycle and lot size for the
case of no shortage.
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Figure 11. Three-dimensional dependency among total average profit, lot cycle and lot size for the
case of shortage.

Note 1. The lower value of the memory index stands for the strong memory sense
of the system. As the memory index approaches 1, the system becomes memory-free.
If we focus on the profit maximization objective of the retailer, from the tabular and
graphical representation in the present subsection, it has been established that the memory-
free phenomenon is most desirable to attain the maximum gain. The system memory
causes the retailing activities negatively. The most desirable phenomenon is obtained for
α = β = 1 and then the optimal values of the objective function and decision parameters are
TAP∗ = USD 432.51, Q∗ = S1

∗ = 731.02 unit and T∗ = T1
∗ = 3.762 months. Additionally,

it is seen that for α = β, the optimal values of the objective function and decision parameters
coincide.

5.3. Sensitivity Analysis

In this subsection, we make a sensitive analysis of the best-desired result according
to the retailer’s perspective to the different input parameters. In Table 6, the values of the
onetime setup, unit holding cost, unit shortage cost, selling price and stock coefficient vary
from −50% to +50% and the effect of the variations on the optimal solution is displayed.
The total average profit is the most significant issue for the retailers.

Table 6. Sensitivity analysis on optimum values of the objective function total average profit (TAP∗),
and decision variables, namely.initial inventory level (S1), lot size (Q), active inventory run phase
(T1), total lot cycle (T) for the model with shortage with respect to the input variables (Sup, hc, p, sc, c)
varying them from −50% to +50% of their values.

Parameters Percentage T1
* T* Q* S1

* TAP*

Sup

+50 4.601 4.601 895.34 895.34 312.94
+30 4.285 4.285 833.85 833.85 357.96
+10 3.994 3.994 766.81 766.81 406.56
−10 3.570 3.570 693.39 693.39 459.79
−30 3.151 3.151 611.30 611.30 515.31
−50 2.665 2.665 516.43 516.43 588.09

hc

+50 3.058 3.058 593.12 593.12 310.07
+30 3.289 3.289 638.35 638.35 356.06
+10 3.582 3.582 695.80 695.80 405.86
−10 3.972 3.972 772.17 772.17 460.59
−30 4.524 4.524 880.82 880.82 522.09
−50 5.399 5.399 1053.56 1053.56 593.75
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Table 6. Cont.

Parameters Percentage T1
* T* Q* S1

* TAP*

p

+50 3.832 3.832 730.23 730.23 895.34
+30 3.804 3.804 730.55 730.55 712.46
+10 3.776 3.776 730.86 730.86 512.58
−10 3.748 3.748 731.17 731.17 337.70
−30 3.721 3.721 731.48 731.48 145.82
−50 4.550 3.658 724.58 899.60 −43.76

sc

+50 3.762 3.762 731.02 731.02 432.51
+30 3.762 3.762 731.02 731.02 432.51
+10 3.762 3.762 731.02 731.02 432.51
−10 3.762 3.762 731.02 731.02 432.51
−30 3.762 3.762 731.02 731.02 432.51
−50 3.762 3.762 731.02 731.02 432.51

c

+50 3.783 3.783 738.59 738.59 436.26
+30 3.774 3.774 735.53 735.53 434.75
+10 3.766 3.766 732.51 732.51 433.26
−10 3.758 3.758 729.53 729.53 431.77
−30 3.750 3.750 726.57 726.57 430.29
−50 3.742 3.742 723.65 723.65 428.81

Remark 7. In Figure 12 we see that the overall average profit steadily drops as the
setup and holding expenses rise from −50% to 50% of their value. On the other hand, the
total average profit rises as the selling price steadily climb from 50% to 50% of its worth,
spanning a wide range of values. The influence of the stock coefficient in the demand
function is also somewhat less critical on the sensitivity analysis of the profit function, in
addition to the unit shortage cost’s negligible impact on the sensitivity of the best solution.

Figure 12. Graphs of the sensitivity analysis on optimum values of the objective function total average
profit (TAP∗) for the model with shortage with respect to the input variables (Sup, hc, p, sc, c) varying
them from −50% to +50% of their values.

5.4. Major Observations

From the numerical simulation of the preceding two subsections, we observe the
following significant points:
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For both shortage and without shortage cases, as the value of the memory index
increases, the value of the total average profit increases. Mathematically, the fractional
value of the memory index near zero implies a strong memory sense. On the other hand,
the memory index values near one stand for the weak memory sense. Thus, the numerical
simulation of this section implies that poor memory sense is more desirable for boosting
profitability in favor of the retailer’s goal.

(i) As the memory index approaches to value 1 (towards the memory less situation), the
model with the shortage coincides with the model without shortage. Thus, there is no
such effect of the unit shortage cost on the average profit function. Thus, the sensitivity
curve of the average profit to the unit shortage cost is displayed as a straight line in
Figure 12.

(ii) The medium memory sense is given by the value of the memory index near 0.5. For
medium memory sense, the models with and without shortage again converge to one.

(iii) The span of the lot cycle decreases uniformly with an exception at the value of the
memory index near zero as the memory sense is more vital for the case of a model
without shortage. For the case of shortage, the span of the lot cycle is a little bit high
for the memory index nearer to both the extreme ends that is 0 and 1. The graph is
almost a straight line in the memory index’s other intermediate values.

(iv) The lot sizes for both models face gradual uniform decay as the memory becomes
more robust. The curves representing the two models coincide for the memory index
values equal to 0.5 and 1.

(v) The variation of the total average profit against the lot cycle is not uniform. For both
the cases of shortage and without shortage, it faces several up and down in the curve
plotting. Because of the effect of memory, there is no such straightforward relation
between the average profit and lot cycle.

(vi) As the setup and holding costs gradually increase from −50% to 50% of its value, the
total average profit decreases moderately. The outcome is quite evident.

(vii) The unit selling price has seemed the most crucial input parameter, which significantly
impacts the sensitivity of the optimal solution. As the selling price gradually increases
from −50% to 50%of its value, the total average profit increases, covering a vast range
of values.

(viii) Apart from the insignificant role of the unit shortage cost on the sensitivity of the
optimal solution (reasons are discussed earlier), the impact of the stock coefficient in
the demand function is also slightly inferior on the sensitivity analysis of the profit
function. This is because we restrict our model to be developed under the assumption
that the demand is dependent on the displayed stock, but not so much.

6. Managerial Insights and Real-Life Applications

The following two subsections highlight the suggested model’s managerial insights
and application domains in this section’s actual scenarios.

6.1. Managerial Insights

We consider the demand of the suggested EOQ model to be a function of selling price
and displayed stock while formulating the model. The memory-sensitive environment is
assured by using fractional calculus as a mathematical tool. The numerical results have
shown the following managerial lessons:

1. A person involved in the situation cannot be memory-free. Because of the interactions
between retailers and customers during earlier transactions, there must be some
system memory that might play a part in the current scenario. It has been determined
through the models’ numerical simulation that the memory negatively impacts the
retailer’s objective of maximum gain. The retailer’s objective may be accomplished in
a nearly memory-free setting. The absence of memory is the ideal circumstance for
increased profitability, but this is not always feasible in practice.
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2. The selling price and demand are inversely correlated. On the other hand, the nu-
merical results show that raising the selling price will maximize the profit. The
selling price’s influence on the profit function outweighs its influence on the demand
function.

3. The showroom’s merchandise display may help favorably draw customers’ attention.
However, in practice, this effect is not comparable to the mania surrounding the
instance of decreasing the selling price. Numerical optimization assumes that the
stock component of the demand function has low values. The result is a favorable but
marginally less significant influence of the presented stock on the profit target.

4. Another intriguing finding from the numerical results is that the retailer’s purpose
in a memory-free environment is best served by the convergence of the models with
and without shortage. The highest average profit may be achieved when there is no
shortage and no memory constraints.

6.2. Possible Domains of Application
6.2.1. Retail Bakery Inventory

Baking is the process in which foods are cooked by dry heat. Bread, cookies, biscuits,
rolls, cakes, cupcakes, pies, tarts, and sweet rolls are bakery products. Bakery goods such
as bread and biscuits supply essential nutrients for maintaining health through a balanced
diet. Thus, stock, retail and its coordination management are matters of significant concern.
The demand for the baked product must be price sensitive. The low-priced product must
have high demand. The impact of displayed stocks in the store on the market and thus on
the profit is slightly inferior. Therefore, the assumptions of the proposed model are highly
relatable to the scenario of the retail bakery inventory. In the proposed model, it is observed
that large memory negatively impacts the EOQ model’s profitability. Furthermore, the
model advocates for the scenario of no shortage. So, one can apply the proposed decision-
making problem to the retail bakery inventory in which the better retailing goal can be
achieved with a fresh start (low memory) and tight supply flow (no shortage).

6.2.2. Chicken Retail Store

Chicken production and its consumption rate appear to be rapid day by day. Opening
a chicken retail store is a straightforward and profitable job. The low price of the slaughtered
chicken can attract the consumer’s attention and may increase the profitability in favor of
the retailer’s side. However, the mass or the number of poultry impacts neither the demand
rate nor the average profit. So, the proposed retail design fits the chicken retail scenario
well. The managerial insights given by the present paper to the actual chicken retail store is
that the retail body can achieve its goal of better gain with a fresh start (low memory) and
tight supply flow (no shortage).

7. Conclusions and Future Research Scope

This paper presents a mathematical approach for designing a memory-sensitive
decision-making environment for an EOQ model. We assume that demand is a linear
function of selling price and displayed. The lot-sizing model is considered for both cases
of shortage and without shortage. The fractional calculus theory is used to demonstrate
the memory-inspired EOQ model. Initially, the traditional EOQ model was developed
in a memory-free environment. Then, the memory in terms of iterative impact has been
supplied to the model to design its fractional counterpart. Intuitively, the association of
fractional calculus with this present study is not only for representing a memory-based
decision scenario; it also includes the memory-free traditional approach of lot size modeling
as a particular case.

Based on the theoretical advancement, a solution algorithm of the optimization model
equivalent to the proposed EOQ is designed and solved in Mathematica software for
numerical analysis. The results suggest that the system memory negatively impacts the
profit maximization objective. The memory-free situation is the most desired phenomenon
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from the retailer’s side. Additionally, the numerical results show that maintaining a
continuous supply free of any shortfall will yield the most profit.

The proposed mathematical model is suitable for a business phenomenon where the
retailing organization is newly introduced and the showroom is not well built yet. The
small-scale retailing store of bakery and chicken slaughtering may be viewed as domains
of application for the prescribed mathematical model in this paper.

The present study has some limitations. We consider an EOQ model with minimal
decision variables in a memory-motivated situation because of the complexity of dealing
with the fractional-order system. The supply chain channels have more decision variables
to control the objectivity of the models. One of the possible future extensions of this study
is to incorporate the sense of memory in different junctions of supply chain models so that
an accurate picture of memory impact on the supply chain will reveal. We can construct the
model by considering the non-linear dependency, for example, the application of logistic
differential equation, between some factors and proceed further in the future. The theory
of fractional calculus may need to be improved to do this, emphasizing its applications in
operation research. Additionally, the analytical approach may be replaced by fruitful soft
computing techniques for numerical optimization of fractional lot-sizing problems.
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Appendix A

This present section depicts the theory of fractional calculus very briefly. In order to
make a study on the memory of the dynamical behavior of an inventory control problem,
here, our major curiosity is limited to the Riemann–Liouville and Caputo’s definition of the
fractional integral and derivative.

Definition 1 [6]. The left sided Riemann–Liouville integral of ψ(x) of orderα is denoted by
RL
x0

I α
xψ(x) and is given by

RL
x0

I α
xψ(x) =

1
Γ(α)

∫ x

x0

(x− t)α−1ψ(t)dt

Here, the origin is assumed at x = x0 and 0 < α ≤ 1 is a real number.

Definition 2 [6]. The left-sided Riemann–Liouville derivative of ψ(x) of order α is denoted
byRL

x0
Dα

xψ(x) given by the first order derivative of the left sided Riemann–Liouville integral of ψ(x)
of order 1− α, where 0 < α ≤ 1 is a real number.

RL
x0

Dα
xψ(x) =

d
(RL

x0
I1−α

x ψ(x)
)

dx
=

1
Γ(1− α)

d
dx

∫ x

x0

(x− u)−αψ(u)du

This definition of fractional derivative is used to define the dynamical system having
a known initial state of fractional-order. However, in order to describe the phenomena
with memory concerned situation where the initial condition is given in the form of the
integer order, the Riemann–Liouville fractional derivative is proven to fail and the Caputo
fractional derivative is tested with greatness in this circumstance. The later definition is
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also considered to be an inverse of the Riemann–Liouville integral. Here, the order of
integration and differentiation in the Riemann–Liouville derivative are interchanged.

Definition 3 [6]. The left-sided Caputo fractional derivative of ψ(x) of orderα is denoted by
C
x0

Dα
xψ(x) given by the left sided Riemann–Liouville integral of dψ

dx of order 1− α , where 0 < α ≤ 1
is a real number.

i.e.,

C
x0

Dα
xψ(x) = RL

x0
I1−α

x

(
dψ

dx

)
=

1
Γ(1− α)

∫ x

x0

(x− u)−α
(

dψ(u)
du

)
du, where 0 < α ≤ 1

This definition of fractional derivative is used in this current paper and therefore, we
take more cares on this definition.

Theorem 1 [6]. The Laplace transformation of the Caputo fractional derivative C
x0

Dα
xψ(x) is given

by

L
(

C
x0

Dα
xψ(x)

)
= sαΨ(s)− sα−1−0ψ(x0)

where, 0 < α ≤ 1 is a real number and Ψ(s) is the Laplace transform of ψ(x).

Appendix B. Mittag–Leffler Function

The Mittag–Leffler function is considered to be very important figure in the theory
of fractional calculus. This function seems to be the fractional counterpart of the popular
exponential function in the integer calculus.

1. The two parameters Mittag–Leffler function is denoted by Eα,β(z) and is defined by

Eα,β(z) = ∑∞
i=0

zi

Γ(αi + β)
, where α, β > 0

2. The one parameter Mittag–Leffler function is denoted by Eα(z) and is defined by

Eα(z) = ∑∞
i=0

zi

Γ(αi + 1)
, where α > 0
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