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Abstract: The impulsive response of the fractional vibration equation z′′(t) + bDα
t z(t) + cz(t) =

F(t), b > 0, c > 0, 0 ≤ α ≤ 2, is investigated by using the complex path-integral formula of the
inverse Laplace transform. Similar to the integer-order case, the roots of the characteristic equation
s2 + bsα + c = 0 must be considered. It is proved that for any b > 0, c > 0 and α ∈ (0, 1) ∪ (1, 2),
the characteristic equation always has a pair of conjugated simple complex roots with a negative
real part on the principal Riemann surface. Particular attention is paid to the problem as to how
the couple conjugated complex roots approach the two roots of the integer case α = 1, especially
to the two different real roots in the case of b2 − 4c > 0. On the upper-half complex plane, the root
s(α) is investigated as a function of order α and with parameters b and c, and so are the argument
θ(α), modulus r(α), real part λ(α) and imaginary part ω(α) of the root s(α). For the three cases of
the discriminant b2 − 4c: > 0, = 0 and < 0, variations of the argument and modulus of the roots
according to α are clarified, and the trajectories of the roots are simulated. For the case of b2 − 4c < 0,
the trajectories of the roots are further clarified according to the change rates of the argument, real
part and imaginary part of root s(α) at α = 1. The solution components, i.e., the residue contribution
and the Hankel integral contribution to the impulsive response, are distinguished for the three cases
of the discriminant.

Keywords: fractional calculus; fractional vibration equation; Laplace transform; characteristic equation;
root trajectory

1. Introduction

In recent decades, fractional calculus has been followed with a lot of interest due to
its ability as a mathematical tool to describe the memory and hereditary properties of var-
ious materials and processes [1–8]. The application areas relevant to fractional calculus
are very extensive, including the viscoelastic constitutive relationship [4,7,9,10], anomalous
diffusion [2,4], vibration and relaxation [2,4,7,8,11], control theory [2,5], stochastic process [12],
etc. Let us recall the definitions in fractional calculus related to this paper.

Let f (t) be piecewise continuous on (0,+∞) and integrable on any finite subinterval
of (0,+∞). Then, the Riemann–Liouville fractional integral of f (t) of order β is defined as

Iβ
t f (t) =

∫ t

0

(t− τ)β−1

Γ(β)
f (τ)dτ, t > 0,

for β > 0, and I0
t f (t) = f (t) for β = 0, where Γ(·) is the gamma function. Let α be a

positive real number, m− 1 < α < m, m ∈ N+. Then, the Riemann–Liouville and Caputo
fractional derivatives of f (t) of order α are defined as

RDα
t f (t) =

dm

dtm

(
Im−α
t f (t)

)
, t > 0, and CDα

t f (t) = Im−α
t

(
f (m)(t)

)
, t > 0,

respectively.
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Theoretical analyses and experimental simulations indicated that the stress–strain
relationship of a viscoelastic body can be better characterized by using fractional constitu-
tive equations, such as the Scott–Blair model [4,9], the Kelvin–Voigt, Maxwell and Zener
models [10,13–15] and others [16–18]. Thus, dynamics involving a viscoelastic medium
with a fractional stress–strain relationship lead to fractional vibration equations or frac-
tional oscillator equations. Different types of fractional vibration equations were presented
and analyzed, such as in [7,8,19–26]. We mention the more general forms known as the
multi-term fractional Bessel equations [27] and the multi-term fractional quasi-Bessel equa-
tions [28], where the existence theory of solutions was constructed in the class of fractional
series solutions.

We consider the fractional vibration equation in the form

z′′(t) + bDα
t z(t) + cz(t) = F(t), b > 0, c > 0, 0 ≤ α ≤ 2, (1)

where the zero initial values z(0) = z′(0) = 0 are equipped with, when α is the integer
0, 1 or 2, Dα

t z(t) denotes the integer-order derivative z(α)(t), otherwise Dα
t denotes the

Riemann–Liouville or Caputo fractional derivative operator. The impulsive response to the
Dirac delta driving function F(t) = δ(t) is expressed by the inverse Laplace transform as

z(t; α) = L−1
[

1
s2 + bsα + c

]
. (2)

We note that under the zero initial conditions z(0) = z′(0) = 0, the Riemann–Liouville
and Caputo fractional derivatives of order α are consistent [2]. Otherwise for nonzero
initial values, which the fractional derivative must be indicated. The impulsive response
is also known as the Green’s function or the fundamental solution [2,23], from which the
solution of Equation (1) with nonzero initial values can be expressed through integration
and convolution.

By the complex path-integral formula of the inverse Laplace transform, Equation (2)
has the form

z(t; α) =
1

2πi

∫
Br

est

s2 + bsα + c
ds, (3)

where Br denotes the Bromwich path, i.e., a straight line on the s plane from s = γ− i∞ to
s = γ + i∞ such that the singularities of the integrand sit on its left side. For a further calcu-
lation by the residue theorem, we need to find out the zeros of the characteristic equation

s2 + bsα + c = 0, b > 0, c > 0, 0 ≤ α ≤ 2, (4)

where, when α is not integers, the one-valued branch sα = eα(ln |s|+i arg s) is taken and the
zeros are limited on the principal Riemann surface −π < arg s ≤ π. Notice that the
characteristic Equation (4) can be directly written out from Equation (1) like an integer-
order case. We note that the characteristic equation in this paper is introduced through the
inverse Laplace transform and is different from the characteristic equation Dubovski and
Slepoi [27,28] introduced to determine the parameter in a series solution. Moreover, we
note that the homogeneous fractional vibration equation belongs to the types investigated
in [27,28], where the method of series solutions was proposed.

In [21], Naber considered Equation (4) in the case of 0 < α < 1 and proved that for
any specified b > 0, c > 0 and α ∈ (0, 1), Equation (4) has a pair of conjugated complex
roots with a negative real part on the principal Riemann surface −π < arg s ≤ π. In [22],
Wang and Du investigated the case 1 < α < 2 and proved that the conclusion is still true.

It is known that when α = 1, the roots of Equation (4) have three different forms
clarified by the three cases of the discriminant b2 − 4c: > 0, = 0 and < 0, which correspond
to the over damping, critical damping and under damping for the classical vibration
equation z′′(t) + bz′(t) + cz(t) = F(t). How the three cases of the discriminant b2 − 4c
affect the couple conjugated complex roots in the circumstance of α 6= 1, and further on the
solution of the fractional vibration equation, has not been reported to our knowledge.
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In particular, for the case of b2 − 4c > 0, when α approaches 1, how the couple
conjugated complex roots approach the two different real roots of the case α = 1 is not an
apparent status. This is the motivation for this work.

In this paper, we consider the roots of the characteristic Equation (4) and the impulsive
response of the fractional vibration Equation (1) in the three cases of the discriminant b2− 4c,
where the range of the order α covers the integers 0, 1 and 2, and also the noninteger cases
0 < α < 1 and 1 < α < 2, simultaneously. The text is organized as follows. In Section 2,
we prove that for any b > 0, c > 0 and α ∈ (0, 1) ∪ (1, 2), the characteristic Equation (4)
has exactly a pair of conjugated simple complex roots with a negative real part on the
principal Riemann surface. For the three cases of the discriminant b2 − 4c, the variations
of the argument and modulus of the roots according to α are clarified. In Section 3, the
trajectories of the roots s(α) on the upper-half complex plane are analyzed and simulated
for the three cases of the discriminant b2 − 4c. In Section 4, a particular discussion for the
case of b2 − 4c < 0 is conducted, where the trajectories of the roots s(α) are further clarified
according to the change rates of the argument θ(α), real part λ(α) and imaginary part
ω(α) of the root s(α) at α = 1. In Section 5, for the three cases of the discriminant b2 − 4c,
the residue contribution and Hankel integral contribution to the solution of the fractional
vibration equation resulted from the inverse Laplace transform are studied. Section 6
summarizes our conclusions.

2. Argument and Modulus of Roots of the Characteristic Equation

The considered characteristic Equation (4) with three parameters, two coefficients b, c
and one power exponent α is a transcendental equation when α is not integers. First, we
list results for cases of α being integers. If α = 0 or α = 2, then Equation (4) has a pair of
conjugated pure imaginary roots,

s(0) = i
√

c + b, s̄(0) = −i
√

c + b, (5)

or

s(2) = i
√

c
1 + b

, s̄(2) = −i
√

c
1 + b

. (6)

Here, the values of α are appended in parentheses to emphasize the dependence of
the roots on α, and by putting a bar, we denote the conjugate. If α = 1, then the roots of
Equation (4) have the following three forms clarified by the discriminant,

Case 1. b2 − 4c > 0 : s1,2(1) = −
b
2
∓
√

b2 − 4c
2

, (7)

Case 2. b2 − 4c = 0 : s(1) = − b
2

, double root, (8)

Case 3. b2 − 4c < 0 : s(1) = − b
2
+ i

√
4c− b2

2
, s̄(1). (9)

The absolute values of the imaginary parts in Equations (5), (6) and (9) have the
following relationship.

Proposition 1. The imaginary part in Equation (9) satisfies the property:

I f − b < b2 − 4c < 0, then 0 <

√
4c− b2

2
<

√
c

1 + b
; (10)

I f b2 − 4c < −b, then
√

c
1 + b

<

√
4c− b2

2
<
√

c + b. (11)

Proof. If −b < b2 − 4c < 0, then we have 4c− b− b2 < 0, and further (4c− b2)(1 + b) <
4c, from which it follows that 0 < 4c−b2

4 < c
1+b . Thus, the inequations in (10) hold. If

b2− 4c < −b, then we have 4c < 4c+ 4bc− b2− b3 = (4c− b2)(1+ b). Thus, the inequality
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√
c

1+b <
√

4c−b2

2 is obtained. In addition, it is apparent that
√

4c−b2

2 <
√

c + b. The proof
is completed.

We pay particular attention to the case of α = 1, and for this case, by the residue
theorem, Equation (3) can be expressed as

z(t; 1) = Sum of residues of
est

s2 + bs + c
.

For the case of b2 − 4c > 0, calculating the residues at the two simple poles s1,2(1) in
Equation (7), we obtain

Case 1. b2 − 4c > 0 : z(t; 1) =
1√

b2 − 4c

(
e−

b−
√

b2−4c
2 t − e−

b+
√

b2−4c
2 t

)
. (12)

For the case of b2 − 4c = 0, calculating the residue at the second-order pole s(1) in
Equation (8) leads to

Case 2. b2 − 4c = 0 : z(t; 1) = te−
b
2 t. (13)

For the case of b2 − 4c < 0, calculating the residues at the two conjugated simple poles
s(1) and s̄(1) in Equation (9) yields

Case 3. b2 − 4c < 0 : z(t; 1) =
2√

4c− b2
e−

b
2 t sin

(√
4c− b2

2
t

)
. (14)

For the noninteger case α ∈ (0, 1) ∪ (1, 2), sα is multivalued. Here, we take the
one-valued branch sα = eα(ln |s|+i arg s) and look for roots of Equation (4) on the principal
Riemann surface−π < arg s ≤ π. Because s satisfies Equation (4) if and only if its conjugate
s̄ satisfies Equation (4), we only need to discuss the problem on the half complex plane
0 ≤ arg s ≤ π.

Let the exponential form of root be s = reiθ , where r > 0 and 0 ≤ θ ≤ π. Substituting it
into Equation (4) leads to r2ei2θ + brαeiαθ + c = 0. Separating the real part and the imaginary
part, we have the two equations

r2 cos(2θ) + brα cos(αθ) + c = 0, (15)

r2 sin(2θ) + brα sin(αθ) = 0. (16)

From the two equations, we determine the argument θ and modulus r of root on the
upper-half complex plane for any specified b > 0, c > 0 and α ∈ (0, 1) ∪ (1, 2). It follows
from Equation (15) that θ 6= 0. From Equation (16), θ 6= π and θ cannot belong to the
interval (0, π

2 ]. Thus, the argument of the root s is confined to the interval π
2 < θ < π,

and the root, if any, has a negative real part.
From Equation (16), we have r2−α = b sin (αθ)

− sin(2θ)
, where the denominator is positive.

In order to guarantee sin (αθ) > 0, we must require

if 1 < α < 2, then
π

2
< θ <

π

α
. (17)

Thus, we can express the modulus as

r =
(

b sin (αθ)

− sin(2θ)

) 1
2−α

. (18)
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By inserting Equation (18) into Equation (15) and applying trigonometric formulas,
we derive the equation only involves θ free from r as

b
2

2−α
(sin (αθ))

α
2−α cos(2θ) sin(αθ)

(− sin(2θ))
2

2−α

− b
2

2−α
(sin(αθ))

α
2−α sin (2θ) cos(αθ)

(− sin(2θ))
2

2−α

+ c = 0,

and further reduce to

b
2

2−α
(sin (αθ))

α
2−α

(− sin(2θ))
2

2−α

sin((2− α)θ) = c. (19)

Here, the requirement sin((2− α)θ) > 0 is necessary, which implies the limitation for
the argument

if 0 < α < 1, then
π

2
< θ <

π

2− α
. (20)

The limitations for the argument in Equations (17) and (20) can be combined together as

π

2
< θ <

π

max{α, 2− α} , α ∈ (0, 1) ∪ (1, 2). (21)

This range of limiting the argument of root is shown in Figure 1.

0 1 2
α

π

2

π

range of θ

Figure 1. The range of argument of root limited by Equation (21).

Rewrite Equation (19) into the following form and define the left-hand side as the
function f (θ, α),

f (θ, α) := 4b
2

2−α−2
(

sinα (αθ)

sin2(2θ)

) 1
2−α

sin((2− α)θ) =
4c
b2 . (22)

Our aim is to show the argument θ of the root can be uniquely determined by
Equation (22) for any specified b > 0, c > 0 and α ∈ (0, 1) ∪ (1, 2). In Figure 2, sur-
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face f (θ, α) for b = 4 is shown on the domain 0 < α < 2, π
2 < θ < π

max{α,2−α} , where the
vertical coordinates are limited in 0 ≤ f (θ, α) ≤ 5.

Figure 2. Surface of f (θ, α) for b = 4 on the domain: 0 < α < 2, π
2 < θ < π

max{α,2−α} .

For fixed α and b, the function f (θ, α) satisfies the following limits,

lim
θ→( π

2 )
+

f (θ, α) = +∞, if 0 < α < 1 or 1 < α < 2,

lim
θ→( π

2−α )
−

f (θ, α) = 0, if 0 < α < 1,

lim
θ→( π

α )
−

f (θ, α) = 0, if 1 < α < 2,

as shown in Figure 2. Furthermore, the partial derivative with respect to θ is

f ′θ(θ, α) =
4b−2

2− α

(
b2 sinα (αθ)

sin2(2θ)

) 1
2−α 1

sin(αθ) sin(2θ)
g(θ, α),

where

g(θ, α) = 4 sin2(αθ) + α2 sin2(2θ)− 4α sin(αθ) sin(2θ) cos((2− α)θ),

can be estimated as

g(θ, α) > 4 sin2(αθ) + α2 sin2(2θ) + 4α sin(αθ) sin(2θ)

= (2 sin(αθ) + α sin(2θ))2 ≥ 0.

Because sin(2θ) < 0, so we have f ′θ(θ, α) < 0.
Thus, by the theorem of implicit function, for any b > 0 and c > 0, Equation (22)

uniquely determines an implicit function of the argument of the root vs. α, θ = θ(α), α ∈
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(0, 1) ∪ (1, 2), which has the continuous derivative θ′(α). With the argument, the modulus
of the root is determined from (18) as

r = r(α) =
(

b sin (α θ(α))

− sin(2 θ(α))

) 1
2−α

, α ∈ (0, 1) ∪ (1, 2). (23)

We summarize the above deduction as follows, taking into account the conjugated
part in the lower semi-complex plane.

Proposition 2. For any b > 0, c > 0 and α ∈ (0, 1) ∪ (1, 2), Equation (4) has exactly a pair
of conjugated simple complex roots with a negative real part on the principal Riemann surface
as s(α) = r(α) eiθ(α) and s̄(α), where θ(α) satisfies the Equation (21) and is determined by
Equation (22), and r(α) is determined by Equation (23).

The graphs of the implicit function θ = θ(α) determined by Equation (22) are shown
in Figure 3 for b = 4 and for c = 1, 2, 4, 8 and 16. The outermost thin red dash curve is the
boundary of θ,

θ =
π

max{α, 2− α} , (24)

which corresponds to the limit c → 0+. The six curves arrayed outside-in from the
outermost in Figure 3 are just the six level intersections of the surface in Figure 2 by the
planes with the vertical coordinates 0, 0.25, 0.5, 1, 2 and 4.

1 2
α

π

2

π

θ

Figure 3. Curves of θ(α) vs. α for b = 4 and for different values of c: c = 1 (black dash line), 2 (purple
dot-dash line), 4 (red solid line), 8 (blue dot line) and 16 (green dot-dot-dash line).

In Figure 3, dash line and dot-dash line are for the case of b2 − 4c > 0, solid line is for
the case of b2 − 4c = 0 and dot line and dot-dot-dash line are for the case of b2 − 4c < 0.
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As c → 0+, the curve of θ(α) approaches the boundary (24). We note that the left- and
right-hand derivatives of the boundary (24) at α = 1 are

θ′−(1) = π, θ′+(1) = −π. (25)

The function r = r(α) in Equation (23) is composed through the implicit function
θ = θ(α). We note that the argument and the modulus of the root in the upper-half plane,
θ(α) and r(α), can be extended to define the closed interval 0 ≤ α ≤ 2 by using the results
of the integer cases in (5)–(9). That is, for α = 0 and 2, we have

θ(0) = θ(2) =
π

2
, r(0) =

√
c + b, r(2) =

√
c

1 + b
,

while for α = 1, we have

Case 1. b2 − 4c > 0 : θ(1) = π, r1,2(1) =
b
2
±
√

b2 − 4c
2

, (26)

Case 2. b2 − 4c = 0 : θ(1) = π, r(1) =
b
2

, (27)

Case 3. b2 − 4c < 0 : θ(1) = arccos
(
− b

2
√

c

)
, r(1) =

√
c. (28)

It is worth noting that for the case α = 1, b2 − 4c > 0, the moduli of roots are double-
valued with r1(1) > r2(1).

We depict the function r = r(α) on the discrete values of α with the step size 0.02:

αj = 0.02j, j = 0, 1, 2, . . . , 100. (29)

The data plots are shown in Figure 4 for the cases of b2 − 4c > 0 and b2 − 4c = 0
and in Figure 5 for the case of b2 − 4c < 0, where data for the integer cases, α = 0, 1 and 2,
are depicted by red ‘+’. We note that the circular dot line and square dot line in Figure 4
belong to the case b2 − 4c > 0, and jump discontinuities are shown at α = 1.

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●

■■■
■■■

■■■
■■■

■■■
■■■

■■■
■■■

■■■■
■■■■

■■■■
■■■■■

■■■
■■
■
■
■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■

◆◆◆◆
◆◆◆◆

◆◆◆◆
◆◆◆◆

◆◆◆◆
◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆
◆
◆
◆

◆

◆

◆

◆
◆
◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

+

+

+

+

+

+

+

+

+

+

+

1 2
α

1

2

3

r

Figure 4. Curves of r(α) vs. α for b = 4 and for c = 1 (black circular dots), c = 2 (purple square dots)
and c = 4 (red rhombic dots).
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Figure 5. Curves of r(α) vs. α for b = 4 and for c = 5 (blue circular dots), c = 10 (green square dots)
and c = 15 (pink rhombic dots).

For the two implicit functions θ(α) and r(α), the derivatives can be given as follows.
First, from (22) follows the partial derivative,

f ′α(θ, α) =
4b−2

(2− α)2

(
b2 sinα (αθ)

sin2(2θ)

) 1
2−α

sin((2− α)θ) h(θ, α),

where

h(θ, α) = (2− α)(α cot(αθ)− (2− α) cot((2− α)θ))θ + ln
b2 sin2 (αθ)

sin2(2θ)
.

By the formula of derivative of implicit function, we obtain

θ′(α) = − f ′α(θ, α)

f ′θ(θ, α)
= − sin(αθ) sin(2θ) sin((2− α)θ)h(θ, α)

(2− α)g(θ, α)
, (30)

and furthermore, from Equation (23), we derive

r′(α) =
r(α)
2− α

[
θ cot(αθ) + θ′(α)(α cot(αθ)− 2 cot(2θ)) + ln(r(α))

]
. (31)

Note that in Equations (30) and (31), θ denotes the implicit function θ(α). The two
derivatives will be used in the next section.

Proposition 3. Suppose 0 < α < 1, then s = reiθ is a root of equation s2 + bsα + c = 0 if and
only if s = 1

r eiθ is a root of equation

s2 +
b
c

s2−α +
1
c
= 0. (32)
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Proof. If s = reiθ is a root of equation s2 + bsα + c = 0, then r2ei2θ + brαeiαθ + c = 0, which
is equivalent to its conjugate r2e−i2θ + brαe−iαθ + c = 0. Then, multiplied by 1

cr2 ei2θ on the
two sides, the equation becomes

1
r2 ei2θ +

b
c

1
r2−α

ei(2−α)θ +
1
c
= 0.

This means s = 1
r eiθ is a root of Equation (32). The reverse is also true. The proof is

completed.

From Figure 3, the curve of θ(α) is not symmetrical about the straight line α = 1 in
general. However, from Proposition 3, a sufficient condition for symmetry can be given
as follows.

Proposition 4. Suppose the argument of the root of equation s2 + bsα + 1 = 0 on the upper-
half complex plane is θ(α), where 0 ≤ α ≤ 2, then the function θ(α) satisfies the equality
θ(α) = θ(2− α), i.e., the curve of θ(α) vs. α is symmetrical about the straight line α = 1.

3. Root Trajectories in Three Cases

In this section, we consider the variation of the root s(α) = r(α)eiθ(α) with respect to α
in three cases clarified by the discriminant b2 − 4c. Our discussion concentrates upon the
upper-half complex plane and is based on the fact that the argument of the root, θ(α), is
continuous on the interval 0 ≤ α ≤ 2. Special attention is paid to the variation of the root
s(α) near α = 1.

Case 1. b2 − 4c > 0
In this case, the limit of the argument of the root is lim

α→1
θ(α) = θ(1) = π, which is the

peak value of θ(α). For the modulus in Equation (23), by L’Hospital rule

lim
α→1−

r(α) = lim
α→1−

b sin (αθ(α))

− sin(2θ(α))
=

b
2

lim
α→1−

(
α +

θ

θ′(α)

)
=

b
2

(
1 +

π

θ′−(1)

)
. (33)

Similarly,

lim
α→1+

r(α) =
b
2

(
1 +

π

θ′+(1)

)
. (34)

Due to that θ(1) is the maximum value of θ(α), so θ′−(1) ≥ 0 and θ′+(1) ≤ 0. Thus,
from Equations (33) and (34), we have lim

α→1−
r(α) ≥ lim

α→1+
r(α). The two limits should equal

the absolute values of the two unequal real roots of the case α = 1 in Equation (7), i.e., the
following equations hold,

lim
α→1−

r(α) =
b +
√

b2 − 4c
2

, lim
α→1+

r(α) =
b−
√

b2 − 4c
2

. (35)

Thus, r(α) has a downward jump when α increasingly passes through 1, as shown in
Figure 4. Substituting the two limits into Equations (33) and (34), we obtain

θ′−(1) =
bπ√

b2 − 4c
, θ′+(1) = −

bπ√
b2 − 4c

. (36)

The limit case of c→ 0+ is consistent with the boundary in Equation (25). Therefore,
for the root s(α) = r(α)eiθ(α), we have the following result.
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Proposition 5. If b2 − 4c > 0, then in the upper-half complex plane, the root s(α) as a function of
α is discontinuous at α = 1, and

lim
α→1−

s(α) = s1(1) = −
b +
√

b2 − 4c
2

, (37)

lim
α→1+

s(α) = s2(1) = −
b−
√

b2 − 4c
2

. (38)

Taking b = 4, c = 3 and α as the values in Equation (29), the trajectory of roots s(α)
in the upper-half complex plane is shown in Figure 6, where s(0) =

√
7 i, s(2) =

√
0.6 i,

s1(1) = −3 and s2(1) = −1, indicated in red crosses, are the roots for the integer cases
α = 0, 2 and 1 in the upper-half complex plane.

+ +

+

+

s1(1) s2(1)

s(0)

s(2)

O

0<α<1

1<α<2

Re(s)

Im(s) i

Figure 6. Trajectory of roots s(α) for α varying between 0 and 2, where b = 4 and c = 3 (b2 − 4c > 0).

Case 2. b2 − 4c = 0
For the critical case, the argument of the root satisfies the limit lim

α→1
θ(α) = θ(1) = π.

As a limiting case of b2 − 4c→ 0+, from Equations (35) and (36), we have

lim
α→1

r(α) =
b
2

, θ′−(1) = +∞, θ′+(1) = −∞.

Therefore, the root s(α) is continuous at α = 1, but non-differentiable at α = 1.
Taking b = 4, c = 4 and α as the values in Equation (29), the trajectory of roots s(α) in

the upper-half complex plane is shown in Figure 7, where s(0) = 2
√

2 i, s(2) =
√

0.8 i and
s(1) = −2, indicated in red crosses, are the roots for the integer cases α = 0, 2 and 1 in the
upper-half complex plane.
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+

+

+

s(1)

s(0)

s(2)

O

0<α<1

1<α<2

Re(s)

Im(s) i

Figure 7. Trajectory of roots s(α) for α varying between 0 and 2, where b = 4 and c = 4 (b2 − 4c = 0).

Case 3. b2 − 4c < 0
In this case, from Equation (28), the argument and modulus of the root in the upper-half

complex plane have the limits lim
α→1

θ(α) = θ(1) = arccos
(
− b

2
√

c

)
and lim

α→1
r(α) = r(1) =

√
c.

The root s(α) is continuous at α = 1, and also differentiable, which will be further discussed
in the next section.

Taking b = 4, c = 4.4 and α as the values in Equation (29), where −b < b2 − 4c < 0,
the trajectory of roots s(α) is shown in Figure 8, where s(0) =

√
8.4 i, s(2) =

√
0.88 i and

s(1) = −2 +
√

0.4 i, indicated in red crosses, are the roots for the integer cases α = 0, 2 and
1 in the upper-half complex plane. As a comparison, we take b = 4 and c = 8 satisfying
b2 − 4c < −b, and the trajectory of roots s(α) is shown in Figure 9, where s(0) = 2

√
3 i,

s(2) =
√

1.6 i and s(1) = −2 + 2 i are indicated in red crosses and are the roots for the
integer cases α = 0, 2 and 1 in the upper-half complex plane. Note that for comparison
purposes, scale ranges of the horizontal and vertical axes in Figures 6–9 are consistent.

+

+

+
s(1)

s(0)

s(2)

O

0<α<1

1<α<2

Re(s)

Im(s) i

Figure 8. Trajectory of roots s(α) for α varying between 0 and 2, where b = 4 and c = 4.4 (−b <

b2 − 4c < 0).
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+

+

+
s(1)

s(0)

s(2)

O

0<α<1

1<α<2

Re(s)

Im(s) i

Figure 9. Trajectory of roots s(α) for α varying between 0 and 2, where b = 4 and c = 8 (b2− 4c < −b).

From the trajectories of roots, s(α) has a faster change rate as α approaches 1. For the
cases of b2 − 4c ≥ 0, the imaginary part of the root s(α) can become arbitrarily small as
α approaches 1. For the case of b2 − 4c < 0, the smaller the value b2 − 4c, the larger the
imaginary part of the root s(1).

4. Further Discussion for the Case of b2 − 4c < 0

From the last section, we know that the root trajectory s(α) has better behavior at α = 1
in the case of b2 − 4c < 0 than other cases. We confine to the case b2 − 4c < 0 and further
clarify the variation of roots s(α) according to the change rates of the argument θ(α), real
part λ(α) and imaginary part ω(α) of roots s(α) at α = 1. The discussion is confined to the
upper-half complex plane.

From Equations (28) and (30), we derive that

θ′(1) =
b ln c

2
√

4c− b2
, (39)

and further, from Equations (28), (31) and (39), we obtain

r′(1) = − b
√

c√
4c− b2

arccos
(
− b

2
√

c

)
. (40)

It is apparent that r′(1) < 0 is always true. That is, the modulus of root, r(α), decreases
invariably at α = 1. From Equation (39), if c = 1, then θ′(1) = 0, and if c < 1, then θ′(1) < 0,
while if c > 1, then θ′(1) > 0.

Now, consider the real part and the imaginary part of the root

λ(α) = Re(s(α)) = r(α) cos(θ(α)), ω(α) = Im(s(α)) = r(α) sin(θ(α)),

and its derivative

λ′(α) = r′(α) cos(θ(α))− r(α) sin(θ(α))θ′(α), (41)

ω′(α) = r′(α) sin(θ(α)) + r(α) cos(θ(α))θ′(α). (42)
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Substituting Equations (28), (39) and (40) into Equation (41), we acquire the derivative
of the real part at α = 1 as a function of b and c,

λ′(1) = λ′(1; b, c) = p(b, c) :=
b2

2
√

4c− b2
arccos

(
− b

2
√

c

)
− b ln c

4
. (43)

Proposition 6. The equation p(b, c) = 0 uniquely determines a continuous and monotonically
increasing implicit function c = ξ(b) defined on the interval 0 < b < +∞ such that ξ(b) > b2/4
and ξ(0+) = 1. The curve L1 of the implicit function c = ξ(b) divides the domain b2 − 4c < 0
in the (b, c) plane into two regions, and λ′(1) < 0 above the curve L1 and λ′(1) > 0 below the
curve L1.

Proof. For any fixed b > 0, the limits hold

lim
c→+∞

p(b, c) = −∞, lim
c→
(

b2
4

)+ p(b, c) = +∞.

Further, the partial derivative is calculated from (43) as

p′c(b, c) = − b2

(4c− b2)3/2 arccos
(
− b

2
√

c

)
− b

4c− b2 < 0.

Thus, the equation p(b, c) = 0 uniquely determines a continuous implicit function
c = ξ(b) defined on 0 < b < +∞ such that ξ(b) > b2/4.

Calculating the partial derivative with respect to b, we have

p′b(b, c) =
b2

2(4c− b2)
− 1

4
ln c +

b(8c− b2)

2(4c− b2)3/2 arccos
(
− b

2
√

c

)
. (44)

It follows from the equation p(b, c) = 0 that

ln c =
2b√

4c− b2
arccos

(
− b

2
√

c

)
. (45)

Replacing ln c in Equation (44) by using Equation (45), we obtain

p′b(b, c) =
b2

2(4c− b2)
+

2bc
(4c− b2)3/2 arccos

(
− b

2
√

c

)
> 0.

Hence, the derivative of the implicit function c = ξ(b) is

ξ ′(b) = −
p′b(b, c)
p′c(b, c)

> 0.

Therefore, the implicit function c = ξ(b) is monotonically increasing. Finally, by letting
b→ 0+ in Equation (45), we obtain ξ(0+) = 1. Thus, the curve L1 of the implicit function
c = ξ(b) divides the domain b2 − 4c < 0 in the (b, c) plane into two regions. The signs of
λ′(1) are deduced from the equation λ′(1) = p(b, c). The proof is completed.

For the derivative of the imaginary part at α = 1, from Equations (28), (39), (40) and (42),
we have

ω′(1) = ω′(1; b, c) := q(b, c) = − b
2

arccos
(
− b

2
√

c

)
− b2 ln c

4
√

4c− b2
. (46)

Proposition 7. The equation q(b, c) = 0 uniquely determines a continuous and monotonically
increasing implicit function c = ζ(b) defined on the interval 0 < b < 2 such that b2/4 < ζ(b) < 1
and ζ(0+) = 0, ζ(2−) = 1. The curve L2 of the implicit function c = ζ(b) divides the domain
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b2 − 4c < 0 in the (b, c) plane into two regions, and ω′(1) < 0 above the curve L2 and ω′(1) > 0
below the curve L2.

Proof. In the domain b2 − 4c < 0, if c ≥ 1, then ω′(1) < 0 from Equation (46). Now,
we look into the function q(b, c) in the region 0 < b < 2, b2/4 < c < 1. For any fixed b
(0 < b < 2), the limits hold

lim
c→
(

b2
4

)+ q(b, c) = +∞, lim
c→1−

q(b, c) = − b
2

arccos
(
− b

2

)
< 0.

Calculating the partial derivatives, we have

q′c(b, c) =
b2 ln c

2(4c− b2)3/2 < 0,

q′b(b, c) =
2c

4c− b2 arccos
(
− b

2
√

c

)
− b

2
√

4c− b2
,

where the equation q(b, c) = 0 is used. Now, we estimate the second partial derivative
as follows,

q′b(b, c) ≥ 2πc− b
√

4c− b2

2(4c− b2)
.

Moreover, from the inequality 4π2c2 > 4c(4c− b2) > b2(4c− b2) > 0, we deduce that
q′b(b, c) > 0. Therefore, the equation q(b, c) = 0 uniquely determines a continuous and
monotonically increasing implicit function c = ζ(b) defined on the interval 0 < b < 2 such
that b2/4 < ζ(b) < 1, and from Equation (46), we know that ζ(0+) = 0 and ζ(2−) = 1.
Thus, the curve L2 of the implicit function c = ζ(b) divides the domain b2 − 4c < 0
in the (b, c) plane into two regions. The signs of ω′(1) are deduced from the equation
ω′(1) = q(b, c). The proof is completed.

From the above analyses, the curves L1, c = 1 and L2 subdivide the domain b2− 4c < 0
in the (b, c) plane into four disjoint regions, as shown in Figure 10. The region IV is narrow
and is magnified in Figure 11. The characteristics of the four regions in the domain
b2 − 4c < 0 are listed in Table 1.

I

II

III

IV

1 2 3 4
b

1

2

3

4

c

Figure 10. Curves of b2 − 4c = 0 (solid line), c = 1 (dot line), p(b, c) = 0 (dash line) and q(b, c) = 0
(red dot-dash line).
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III

IV

0.5 1.0 1.5 2.0
b

0.2

0.4

0.6

0.8

1.0

c

Figure 11. Local zoom of the rectangular area 0 ≤ b ≤ 2, 0 ≤ c ≤ 1 in Figure 10.

Table 1. Characteristics of four regions in the domain b2 − 4c < 0.

Regions Constraint
Conditions

Characteristics of
Roots at α = 1

Samples (b, c) and
Root Trajectories

I p(b, c) < 0 θ′(1) > 0, λ′(1) < 0,
ω′(1) < 0 (3, 15); Figure 12

II p(b, c) > 0, c > 1 θ′(1) > 0, λ′(1) > 0,
ω′(1) < 0

(4, 4.4) and (4, 8);
Figures 8 and 9

III c < 1, q(b, c) < 0 θ′(1) < 0, λ′(1) > 0,
ω′(1) < 0 (0.9, 0.6); Figure 13

IV q(b, c) > 0 θ′(1) < 0, λ′(1) > 0,
ω′(1) > 0 (0.6, 0.1); Figure 14

+

+

+s(1)

s(0)

s(2)

O

0<α<1

1<α<2

Re(s)

Im(s) i

Figure 12. Trajectory of roots s(α) for α varying between 0 and 2, where b = 3 and c = 15 (b2− 4c < 0,
region I).
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+

+

+
s(1)

s(0)

s(2)

O

0<α<1

1<α<2

Re(s)

Im(s) i

Figure 13. Trajectory of roots s(α) for α varying between 0 and 2, where b = 0.9 and c = 0.6
(b2 − 4c < 0, region III) .

+

+

+

s(1)

s(0)

s(2)

O

0<α<1

1<α<2

Re(s)

Im(s) i

Figure 14. Trajectory of roots s(α) for α varying between 0 and 2, where b = 0.6 and c = 0.1
(b2 − 4c < 0, region IV).

In region I, we take a sample b = 3, c = 15 and depict the trajectory of roots s(α) in
Figure 12. In Figure 8, b = 4, c = 4.4, and in Figure 9, b = 4, c = 8, which are all in region
II. In region III, we take a sample b = 0.9, c = 0.6, and the trajectory of roots is shown
in Figure 13. In region IV, we take b = 0.6, c = 0.1 and display the trajectory of roots in
Figure 14.

Note that region IV is in the immediate vicinity of the critical case b2 − 4c = 0. This
means that only when s(1) is close enough to the real axis, its imaginary part may satisfy
ω′(1) > 0.
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5. The Residue Contribution and Hankel Integral Contribution to the
Impulsive Response

Consider the noninteger case α ∈ (0, 1) ∪ (1, 2), and denote the couple of conjugated
complex roots of the characteristic Equation (4) on the principal Riemann surface as s(α) =
r(α)eiθ(α) = λ(α) + iω(α) and s̄(α), where λ(α) < 0 and ω(α) > 0. By the residue
theorem, the solution in Equation (3) can be decomposed into two components: the residue
contribution and the Hankel integral contribution,

z(t; α) = zR(t; α) + zH(t; α), (47)

where

zR(t; α) = Res
[

est

s2 + bsα + c
, s(α)

]
+ Res

[
est

s2 + bsα + c
, s̄(α)

]
, (48)

zH(t; α) =
1

2πi

∫
Ha

est

s2 + bsα + c
ds. (49)

We note that the Hankel path, Ha, is a loop starting from−∞ and going along the lower
side of the negative real axis to the origin O, encircling the origin counterclockwise with
the radius approaching 0 and passing through the upper side of the negative real axis and
ending at−∞. Calculating the residues in Equation (48), we obtain the residue contribution

zR(t; α) = 2eλ(α)t P sin(ω(α)t) + Q cos(ω(α)t)
P2 + Q2 , (50)

where

P = 2r(α) sin(θ(α)) + bα (r(α))α−1 sin((α− 1)θ(α)),

Q = 2r(α) cos(θ(α)) + bα (r(α))α−1 cos((α− 1)θ(α)).

The Hankel integral in Equation (49) is reduced to the following real infinite integral

zH(t; α) =
1
π

∫ +∞

0
K(ρ, α)e−ρtdρ, (51)

where

K(ρ, α) =
bρα sin(πα)

(ρ2 + c + bρα cos(πα))2 + (bρα sin(πα))2 .

It seems that the residue contribution zR(t; α) approaches z(t; 1) in Equations (12)–(14)
and the Hankel integral contribution zH(t; α) approaches 0 as α → 1. However, the facts
are not so and depend on the sign of the discriminant b2 − 4c. If b2 − 4c > 0, then from
Equations (37) and (50), the left-hand limit of the residue contribution zR(t; α) at α = 1 is

zR(t; 1−) = − 2√
b2 − 4c

e−
b+
√

b2−4c
2 t,

while from Equations (38) and (50), the right-hand limit of zR(t; α) at α = 1 is

zR(t; 1+) =
2√

b2 − 4c
e−

b−
√

b2−4c
2 t.

The two limits produce a jump, neither equals z(t; 1) in Equations (12) and they satisfy
the relationship z(t; 1) = (zR(t; 1−) + zR(t; 1+))/2. In fact, the Hankel integral contribution
zH(t; α) does not vanish as α→ 1 but fills up the jump such that z(t; α)→ z(t; 1) as α→ 1.
This can be seen from Figures 15 and 16. If b2 − 4c = 0, then the variations of zR(t; α) and
zH(t; α) are similar to the former case, see Figures 17 and 18.
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1 2 3 4
t

-0.6

-0.4

-0.2

0.2

0.4

0.6

zR(t; α)

Figure 15. Curves of z(t; 1) (solid line) and residue contribution zR(t; α) for α = 0.9 (dash line), 0.99
(dot line), 1.1 (dot-dash line), 1.01 (dot-dot-dash line), where b = 4 and c = 2 (b2 − 4c > 0).

1 2 3 4
t

0.05

0.10

0.15

0.20

z(t; α)

Figure 16. Curves of z(t; 1) (solid line) and z(t; α) for α = 0.9 (dash line), 0.99 (dot line), 1.1 (dot-dash
line), 1.01 (dot-dot-dash line), where b = 4 and c = 2 (b2 − 4c > 0).
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1 2 3 4
t

-1.0

-0.5

0.5

1.0

1.5

zR(t; α)

Figure 17. Curves of z(t; 1) (solid line) and residue contribution zR(t; α) for α = 0.9 (dash line), 0.99
(dot line), 1.1 (dot-dash line), 1.01 (dot-dot-dash line), where b = 4 and c = 4 (b2 − 4c = 0).

1 2 3 4
t

0.05

0.10

0.15

0.20

z(t; α)

Figure 18. Curves of z(t; 1) (solid line) and residue contribution z(t; α) for α = 0.9 (dash line), 0.99
(dot line), 1.1 (dot-dash line), 1.01 (dot-dot-dash line), where b = 4 and c = 4 (b2 − 4c = 0).

Nevertheless, if b2 − 4c < 0, then the variations of the residue contribution zR(t; α)
and the Hankel integral contribution zH(t; α) are different from the former two situations.
From Equations (9), (28) and (50), we derive that zR(t; α) → z(t; 1) in Equation (14) as
α→ 1. Moreover, from Figures 19 and 20, we can see that the residue contribution zR(t; α)
approaches z(t; 1) and the Hankel integral contribution zH(t; α) approaches 0 as α→ 1.
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1 2 3 4
t
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0.15

0.20

zR(t; α)

Figure 19. Curves of z(t; 1) (solid line) and residue contribution zR(t; α) for α = 0.9 (dash line), 0.99
(dot line), 1.1 (dot-dash line), 1.01 (dot-dot-dash line), where b = 4 and c = 8 (b2 − 4c < 0).

1 2 3 4
t

0.05

0.10

0.15

z(t; α)

Figure 20. Curves of z(t; 1) (solid line) and z(t; α) for α = 0.9 (dash line), 0.99 (dot line), 1.1 (dot-dash
line), 1.01 (dot-dot-dash line), where b = 4 and c = 8 (b2 − 4c < 0).

6. Conclusions

We consider the roots of the characteristic Equation (4) of the fractional vibration
Equation (1) on the principal Riemann surface for the three cases of the discriminant
b2 − 4c: > 0, = 0 and < 0, and with the range of α covering the interval 0 ≤ α ≤ 2.
Particular attention is paid to the varying of the roots s(α) as a function of the order α
near α = 1 on the upper-half complex plane. We find that the root trajectories of the
characteristic equation with α varying have different behaviors in the three cases of the
discriminant. The residue contribution and Hankel integral contribution serve as two
solution components of the impulsive response of the fractional vibration equation. It is
found that the changing pattern of the solution components as α→ 1 depends on the sign
of the discriminant b2 − 4c.
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In Section 2, we prove that for any b > 0, c > 0 and α ∈ (0, 1)∪ (1, 2), the characteristic
Equation (4) has a pair of conjugated simple complex roots with a negative real part. For
the three cases of the discriminant b2 − 4c, the variations of the argument and modulus of
the roots according to α are clarified. For the integer-order cases, α = 0, 1 and 2, the inverse
Laplace transform gives the known analytic results. In Section 3, the trajectories of the
roots s(α) on the upper-half complex plane are analyzed and simulated for the three cases
of the discriminant b2 − 4c. For the case of b2 − 4c > 0, the root s(α) as a function of α is
discontinuous at α = 1, and the left and right limits equal the two different real roots of
the case α = 1 as in Equations (37) and (38). For the case of b2 − 4c = 0, the root s(α) is
continuous at α = 1 but non-differentiable at α = 1. For the case of b2 − 4c < 0, the root
s(α) is continuous and also differentiable at α = 1. In Section 4, the particular analyses for
the case of b2 − 4c < 0 are conducted. The trajectories of the roots s(α) are further clarified
in the domain b2 − 4c < 0 on the (b, c) plane according to the change rates of the argument
θ(α), real part λ(α) and imaginary part ω(α) of the root s(α) at α = 1. For this purpose,
the domain b2 − 4c < 0 is subdivided into four disjoint regions to clarify the trajectories
of the roots.

In Section 5, the residue contribution and Hankel integral contribution to the impulsive
response of the fractional vibration equation are considered. For the cases of b2 − 4c ≥ 0,
the left and right limits of the residue contribution zR(t; α) at α = 1 produce a jump and
neither equals z(t; 1). The Hankel integral contribution zH(t; α) does not vanish as α→ 1
but fills up the jump such that z(t; α) = zR(t; α) + zH(t; α)→ z(t; 1) as α→ 1. Nevertheless,
for the case of b2 − 4c < 0, the variations of zR(t; α) and zH(t; α) are different from the
cases b2 − 4c ≥ 0, and we derive that the residue contribution zR(t; α) approaches z(t; 1) as
α→ 1, and so the Hankel integral contribution zH(t; α) approaches 0 as α→ 1.

For the two solution components in Equations (50) and (51), the residue contribution
represents a damping oscillation, while the Hankel integral contribution provides a mono-
tonic recovering. Moreover, asymptotic behaviors can be obtained conveniently from the
solution components [23]. In the residue contribution (50), the real part λ(α) and imaginary
part ω(α) of the root s(α) describe the decaying rate of the amplitude and the oscillation
frequency, respectively. These results could be helpful for revealing the relationship be-
tween the model parameters b, c and α and the oscillation properties. Finally, we indicate
that there are few reports on the root trajectories of an equation with a fractional power.
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