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Abstract: In this paper, an efficient prediction model based on the fractional generalized Pareto motion
(fGPm) with Long-Range Dependent (LRD) and infinite variance characteristics is proposed. Firstly,
we discuss the meaning of each parameter of the generalized Pareto distribution (GPD), and the LRD
characteristics of the generalized Pareto motion are analyzed by taking into account the heavy-tailed
characteristics of its distribution. Then, the mathematical relationship H = 1/α between the self-
similar parameter H and the tail parameter α is obtained. Also, the generalized Pareto increment
distribution is obtained using statistical methods, which offers the subsequent derivation of the
iterative forecasting model based on the increment form. Secondly, the tail parameter α is introduced
to generalize the integral expression of the fractional Brownian motion, and the integral expression of
fGPm is obtained. Then, by discretizing the integral expression of fGPm, the statistical characteristics
of infinite variance is shown. In addition, in order to study the LRD prediction characteristic of fGPm,
LRD and self-similarity analysis are performed on fGPm, and the LRD prediction conditions H > 1/α

is obtained. Compared to the fractional Brownian motion describing LRD by a self-similar parameter
H, fGPm introduces the tail parameter α, which increases the flexibility of the LRD description.
However, the two parameters are not independent, because of the LRD condition H > 1/α . An
iterative prediction model is obtained from the Langevin-type stochastic differential equation driven
by fGPm. The prediction model inherits the LRD condition H > 1/α of fGPm and the time series,
simulated by the Monte Carlo method, shows the superiority of the prediction model to predict data
with high jumps. Finally, this paper uses power load data in two different situations (weekdays and
weekends), used to verify the validity and general applicability of the forecasting model, which is
compared with the fractional Brown prediction model, highlighting the “high jump data prediction
advantage” of the fGPm prediction model.

Keywords: generalized Pareto distribution; fractional generalized Pareto motion; infinite variance;
long-range dependence; finite iterative forecasting model

1. Introduction

This paper studies the infinite variance prediction model for random sequences with
LRD characteristics. As random sequences are independent, the incremental processes of
many existing models (such as the Gamma process [1], Markov process [2] and Wiener
process [3]) are independent and cannot rely on the current state of the process to accurately
predict random sequences. The LRD model [4–6] can predict more efficiently a random
sequence by comprehensively considering the influence of past states and the current state
on the future state. In addition, in terms of data characteristics, random processes can
be divided into finite variance processes and infinite variance processes. The significant
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difference between them is that the latter have a heavier tail than the former ones [7].
This means that there may be a larger jump in the data distribution for infinite variance
processes than finite variance ones. Since the distribution of thick tails is ubiquitous in
real life [8], it is particularly important to use infinite variance processes to model natural
phenomena with sharp data jumps. This paper introduces a three-parameter generalized
Pareto distribution [9–11] to simulate infinite variance processes. Compared with the
classical Pareto distribution, a position parameter is added, which greatly increases the
flexibility needed for describing random processes.

In this paper, we use the generalized Pareto distribution (GPD) to model infinite
variance processes, by focusing only on the case of the tail parameter α ∈ (0, 2) [9–11].
In this case, the tail of the generalized Pareto distribution decays to 0 by a power law,
and the smaller is the value of α, the slower the rate of decline, so that the tail becomes
heavier. In other words, the α value is inversely proportional to the degree of heavy tail
of the GPD. Unlike the exponential drop of the tail of the finite variance distribution, the
tail of the former slowly decreases to 0, so that the data shows an infinite variance [7,12].
Regarding the description of LRD, the finite variance process is so classified by computing
its covariance function. In this case, the covariance slowly decays to 0 like a power function,
so that the sum of the covariance tends to infinity. We can call such series as finite variance
time series with LRD characteristics [13,14]. On the contrary, for the infinite variance
process, the infinite nature of the variance leads to the non-existence of covariance.

In the following, we use the relationship between heavy tail and LRD to analyze the
LRD characteristics of the infinite variance process. If the stochastic process shows heavy
tails in the probability distribution domain, then it has also LRD characteristics in the time
domain, and, moreover, the degree of heavy tails is proportional to the intensity of the
LRD [15,16]. In particular, we can use the tail parameters to represent LRD features of
infinite variance processes. At the same time, the LRD characteristics of the time series
can also be expressed by the self-similar parameter H, so that when H ∈ (1/2, 1), the
value of H is proportional to the intensity of the LRD [17,18]. In other words, there is
an inverse relationship between H and α. When α ∈ (0, 2), the tails of GPD and Levy
stable distribution are asymptotic [12,19], and for the Levy stable motion it is H = 1/α [20].
Therefore, the relationship between the tail parameter α of the generalized Pareto motion
and the self-similar parameter H is H = 1/α .

In order to construct a simple model that exhibits both LRD features and infinite vari-
ance, we use a method similar to the integral of a fractional Brownian motion generalized
to fractional Levy stable motion, thus obtaining the integral expression of fGPm [8,21,22].
We use H − 1/α to replace the exponent H − 1 / 2 of the integral kernel in the fractional
Brownian motion integral. We also use the generalized Pareto random metric instead of
the Brownian random metric as the driving function, thus obtaining the fGPm integral
expression. The LRD characteristics of fGPm are analyzed through the LRD prediction defi-
nition [4–6]. The LRD prediction is the prediction of the future state by knowing both the
past and the current states, and it is shown in the integral by the dependence of the integral
kernel on past time. When H 6= 1/a , the integral kernel of the integral representation of
fGPm satisfies the LRD prediction. However, when H < 1⁄α, it can be seen from the integral
of fGPm that the future predicted value is inversely proportional to the past moment,
resulting in the predicted result always being the opposite of the actual result. In order
to predict the conciseness of the results, when H > 1/a this paper considers that fGPm
has LRD characteristics. In particular, compared with fractional Brownian motion [23,24],
describing LRD by a self-similar parameter H, the LRD of the fGPm is determined by the
tail parameter α and the self-similar parameter H, so that the fGPm can describe the LRD
process in a more flexible way. However, the two parameters are not independent because
the LRD condition implies H > 1/α . Regarding the infinite variance characteristic of
fGPm, the fGPm integral can be discretized into the superposition of countless generalized
Pareto random metrics. Therefore, when 0 < α < 2, fGPm inherits the infinite variance
characteristic of GPD.
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Previously, Stanislavsky et al. [12] proposed a fractional autoregressive integrated
moving average (FARIMA) model with Pareto noise, and the FARIMA model is a discrete-
time simulation that considers non-Gaussian statistics and the fractional Langevin equation
of LRD [25]. Therefore, in the following we propose a Langevin-type stochastic differential
equation (SDE) [26,27] driven by fGPm. First, we extend the fractional Black-Scholes
model [28,29] and obtain a parameterized SDE, where the two parameters µ and δ represent
the mean (drift) and diffusion coefficients of the sequence, respectively, and the improved
maximum likelihood method [30–32] can be used for parameter estimation. Then, the fGPm
is discretized by a fractional Taylor series [33], and the mathematical relationship between
the increment of fGPm and the generalized double Pareto white noise [34] is obtained and
substituted into the discrete Langevin-type SDE. Finally, using the discrete Langevin-type
SDE and some difference equations, the expression of the fGPm finite difference iterative
prediction model is obtained. In addition, the LRD condition of the prediction model fulfills
the LRD condition αH > 1 inherited from fGPm.

To verify the effectiveness of the proposed prediction model, we apply it to historical
power load data collected by the Eastern Slovak Electric Power Company [35]. In order to
evaluate the LRD characteristics of the power load sequence, we first use R/S [36] and the
improved maximum likelihood estimation method [30–32] to estimate the parameters of the
sequence, and then, we analyze the power load according to the condition αH > 1 to check
whether the sequence owns the LRD characteristics. In order to verify the general applicability
of the proposed prediction model, we analyze the power load data in two different situations,
i.e., working days and weekends, to predict and forecast the trend of the historical data set
for the next 6, 12, 18 and 24 h. The working days’ data, i.e., the power load from Monday
to Thursday, is used as historical data to predict the power load trend on Friday. Since the
power consumption on working days is similar, and Monday to Thursday are close to Friday,
it can accurately reflect the trend of power load data. In the same way, we select the data on
Saturday and Sunday of two weeks to predict the data on Saturday and Sunday of the other
week. At the same time, in order to highlight the superiority of the fGPm iterative prediction
model in predicting high-jump data, the fractional Brown iterative prediction model [23,36] is
used to compare the prediction accuracy of the two models.

The structure of the paper is as follows. Section 2 introduces the meaning and in-
cremental distribution of each parameter in GPD, and introduces the LRD expression of
generalized Pareto motion. Section 3 deals with the integral expression of fGPm and its
increment. We also analyze the self-similarity and LRD characteristics of fGPm. In Section 4,
the fGPm finite difference iterative prediction model is proposed. The Langevin-type SDE
driven by fGPm establishes a finite-difference iterative prediction model and introduces the
parameter estimation method of the Langevin-type SDE, an improved maximum likelihood
estimation method [30–32]. Power load data considered in cases are used to show the
effectiveness of the prediction model in Section 5. Summary and future perspectives of the
work are given in Section 6.

2. Generalized Pareto Distribution
2.1. Parameter Meaning of Generalized Pareto

The classical Pareto distribution is defined by the following probability density func-
tion (PDF) [14,37]:

pPareto(x) =
aδ

xα+1 (1)

where x ≥ α > 0, δ > 0. However, in order to describe the random process in a more
flexible way, the following PDF generalization has been proposed [9–11].

f ( x|µ, δ, α ) =
1
δ
[1 +

1
αδ

(x− µ)]
−1−α

(2)

Which depends on the additional parameter µ and where x ≥ µ, α > 0, δ > 0.
This variant is also called the generalized Pareto distribution (GPD). The parameter α is
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called the tail, where δ is the scale parameter and µ the location. The location µ indicates
the minimum value of x, and the scale parameter δ represents the discrete nature of the
distribution (Figure 1).
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Figure 1. Comparison of δ value in GPD PDF plots.

In the following, we consider only an infinite variance process, thus limiting ourselves
to the case 0 < α < 2, for both practical and theoretical reasons [4]. When x → ∞ , the
probability tails of X satisfy the conditions (see e.g., [19]):

P{|X| > x} ∼ Cx−α (3)

where C is constant. The tail of the distribution with 0 < α < 2 obeys a power law and
decreases to zero so slowly that the variance tends to infinity, and the smaller is the value
of α, the slower it decays. From the probability distribution point of view, it is said that the
tails are thicker (Figure 2).
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2.2. LRD Characteristics of Generalized Pareto Motion

It is known that in the case of finite variance, the LRD characteristics of the finite
variance time series can be expressed by its covariance. The covariance Cov(x0, xt) slowly
drops to 0 in the form of power law, that is, Cov(x0, xt) ∼ Ct−a, ( t→ ∞ ) so slowly that
∑∞

t=0 Cov(x0, xt) = ∞, and this conditions characterizes the time series of finite variance
with LRD characteristics [13,14]. However, the generalized Pareto time series with tail
parameter α ∈ (0, 2) is an infinite variance process, which implies the absence of covariance.
To analyze the LRD characteristics of the generalized Pareto time series, we start from the
mathematical definition of covariance to analyze its long correlation. The definition of
covariance is as follows [15]:

Cov(x(t1), x(t2)) = E[x(t1)x(t2)] =
∫ ∞

−∞

∫ ∞

−∞
x(t1)x(t2)p(x1, t1; x2, t2)dx1dx2 (4)

where p(x1, t1; x2, t2) is the joint probability density function of GPD. It can be seen from
Equation (4) that when p (x) in the calculation of the autocorrelation function slowly
decays, also Cov(x(t1), x(t2)) slowly decays, and the decay speed of Cov(x(t1), x(t2))
is proportional to the decay speed of p (x), where, the intensity of LRD is inversely
proportional to the decay rate of Cov(x(t1), x(t2)). Meanwhile, the LRD intensity can be
represented by the self-similar parameter H, and when H ∈ (1/2, 1), H is proportional to
the intensity of the LRD [17,18]. So, it can be concluded that there is an inverse relationship
between H and α.

For the infinite variance process, both the Levy stable distribution and GPD are
characterized by the parameter α, and their tails P (ε > x) satisfy [7,19]:

P(ε > x) = 1− F(x) ∼ Cx−α, as x → ∞ (5)

where F (x) is the cumulative distribution function and ∼ indicates that the functions on
the left and the right sides are asymptotically equivalent, i.e., their ratio tends to 1. It is
known that the relationship between H and α in Levy stable motion is H = 1/α [20], and
when the range of Pareto α is (0, 2), it is asymptotically in the attractive domain of Levy
stable distribution [7,12]. So, the relationship between H and α of GPD motion is:

H =
1
α

(6)

2.3. Incremental Distribution of the Generalized Pareto

The subsequent iterative prediction model is expressed by the incremental form. So,
in this section, we use statistical methods to obtain the incremental distribution of GPD.
The main steps can be summarized as follows:

(1). Generate GPD-compliant time series.
(2). Determine the time interval τ, and the two-state quantities separated by τ in the

sequence are differentiated multiple times, i.e., ∆x(t) = x(t + τ)− x(t). Repeat the
above process to make multiple differences of the generated time series to form an
incremental set.

(3). Draw the histogram of the incremental set, in order to obtain the probability density
map of the set and select a known distribution to fit it according to the characteristics
of the probability distribution.

(4). After proposing a distribution that meets the characteristics of the incremental data,
the χ2 test method [38,39] is used to test the distribution fit.

In the following, we use the GPD with parameters α = 1.5, δ = 2, µ = 10. The
corresponding time series is shown in Figure 3.
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The GPD is given in Figure 3 and the GPD incremental data are plotted in Figure 4. The
peak and high variability of the GPD time series data indicate that the distribution is heavy-
tailed. At the same time, the GPD time series are not similar to white (pure random) noise, and
the obvious clustering in the data indicates the self-similarity of the GPD time series.
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It can be seen from Figure 5 that the probability density of the GPD increment has the
characteristics of symmetry and tail weight, and in order not to affect the meaning of the
parameters in the probability density, we can choose those with these two characteristics
and a similar probability density function. Generalized double Pareto distribution is used,
then to fit the date. The PDF is as follows [34]:

fGDP( x|δ, α, µ ) =
1
2δ

[1 +
|x− µ|

αδ
]
−1−α

(7)

where δ > 0 is a scale parameter, α > 0 is a tail parameter, and the location µ represents
the mean value of the random variable. Similarly, when x → ∞ , f (x) follows Equation (3).
The influence of δ and α on the distribution is consistent with GPD (Figures 6 and 7).
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It can be seen from Figure 5 that the position parameter is µ = 0 in the generalized
double Pareto distribution. And because when x = 0, f (x) = 1/2δ, the probability value
of 0 can be used to estimate δ. It can be seen from Figure 4, their peak value of the GPD
increment sequence is due to the corresponding peak value of the GPD time sequence
and their tails are similar in distribution, so their corresponding tail parameters α are the
same. It can be concluded that the values of the parameters in the generalized double
Pareto distribution are µ = 0, δ = 1.1638 and α = 1.5. To form the χ2 test [38,39] between
the empirical distribution in Figure 5 and the generalized double Pareto distribution with
known parameters, the process is as follows:

(1). Make the following test assumptions, H0: Figure 4 obeys the generalized double Pareto
distribution, H1: Figure 4 does not obey the generalized double Pareto distribution.

(2). Partition the value range of the overall data X in Figure 4 into k intervals [ai−1,ai],
i = 1, 2, . . . k (ai−1,ai can be −∞,+∞), where the size of k is not strictly specified, but
if it is too small, it will make the test too rough, and if it is too large, it will increase
random errors. Usually, the sample size n is larger, and k can be slightly larger, but
generally 5 ≤ k ≤ 16. In this example, there are four grouping cases k = 10, 12, 14, 16.

(3). Assuming that H0 holds, calculate the theoretical probability pi and theoretical fre-
quency npi of each interval:

pi =
ai

∑
x=ai−1

fGDP( x|δ, α, µ ) (8)

(4). According to the sample observation values (x1, x2, . . . , xn) in Figure 4, calculate the
actual frequency vi of falling in the interval [ai−1,ai], and then calculate the observation
value of the statistic χ2:

χ2 =
k

∑
i=1

(npi − vi)
2

npi
(9)
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(5). Accordingly, choosing 95% based on confidence, check the χ2 distribution Table, and
get χ2(k− r− 1), where r is the number of unknown parameters in the generalized
Pareto distribution PDF, because the generalized Pareto distribution PDF parameters
are known, so r = 0. The four sets of χ2(k− 1) values found out from the table and
the χ2 values obtained from the four experiments are compared in Table 1:

Table 1. Look-up Table χ2 (k−1) value and experimental χ2 value comparison.

Experimental k Value k = 10 k = 12 k = 14 k = 16

χ2(k− 1) 16.92 19.68 22.36 25
χ2 15.42 15.83 16.15 18.21

It can be seen from Table 1 that the experimental results show that the χ2 value is
always smaller than the χ2(k− 1) value obtained from the look-up Table, so there is a 95%
probability that H0 holds. In a statistical sense, it can be said that the time series of Figure 4
obeys the generalized double Pareto distribution.

3. Fractional Generalized Pareto Motion
3.1. Fractional Generalized Pareto Motion Model

We define a parametric family of fractional Brownian motion in terms of the stochastic
Weyl integral [7,40].

BH(t) =
∫ ∞

−∞
{a[(t− s)H− 1

2
+ − (−s)H− 1

2
+ ] + b[(t− s)H− 1

2
− − (−s)H− 1

2
− ]}B(ds) (10)

where a and b are arbitrary constants, xH−1/2
+ = 0 for x ≤ 0 and xH− 1

2
+ = xH− 1

2 for x > 0,
B(ds) is Gaussian with mean 0 and variance |ds|, H is the self-similarity parameter. The
integral expression analogous to fractional Brownian motion is generalized to the method
of fractional Levy stable motion [8,21,22], and similarly, the integral expression of fGPm can
also be obtained. In addition, the relationship between H and α in the generalized Pareto
motion is H = 1/α . The representation of fGPm is acquired by transforming the exponent
in the Equation (5) from H− 1/2 to H− 1/α, and a GPD random measure with the location
parameter µ = 0 replaces the standard Brownian random measure as the driving function.
The fGPm is defined by:

PH,α(t) =
∫ ∞

−∞
{a[(t− s)H− 1

α
+ − (−s)H− 1

α
+ ] + b[(t− s)H− 1

α
− − (−s)H− 1

α
− ]}p(ds) (11)

where p(ds) is a GPD random process with the location parameter µ = 0 and scale parameter
= |ds|. When t > s > 0, we discretize s as {0, 1, 2, · · · , t}, and Equation (11) can be written as:

PH,α(t) =
t

∑
s=0

a(t− s)H− 1
α − b(−s)H− 1

α p(1) (12)

where a(t− s)H− 1
α − b(−s)H− 1

α can also be written as a constant sequence An = {a0, a1, · · · , at},
to obtain:

PH,α(t) = (a0 + a1 p + · · ·+ an)p(1) = An p(1) (13)

Therefore, fGPm in Equation (11) can be regarded as a superposition of GPD with different
weighting coefficients, where µ and δ of fGPm are 0 and ds, respectively. It can be concluded
that the fGPm has infinite variance and its probability distribution is subject to GPD. Similarly,
we can also define the fGPm as the following Riemann-Liouville fractional integral [41]:

PH,α(t) =
1

Γ(H + 1
2 )

∫ t

0
(t− τ)H− 1

2 p(dτ) (14)
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where p(dτ) is the GPD motion with the location parameter µ = 0 and the scale pa-
rameter = dτ. Γ(·) is the gamma function, the gamma function is defined as Γ(x)
=
∫ +∞

0 tx−1e−tdt(x > 0). Figure 8 shows the fGPm sequence generated with different
α values for H = 0.75. We should notice that the random walk of the fGPm sequence
increases as α increases.
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3.2. Fractional Generalized Pareto Motion Incremental Processes Model

The 1-step incremental model of fGPm is obtained from the identity XH,α(t) =
PH,α(t + 1)− PH,α(t):

XH,α(t) = PH,α(t + 1)− PH,α(t) =
∫ ∞

−∞
{a[(t + 1− s)H−1/α

+ − (−s)H−1/α
+ ] + b[(t + 1− s)H−1/α

− − (−s)H−1/α
− ]}ωα(s)ds (15)

where ωα(s) = p[d(s + 1)]−p(ds)]. From Section 2.1, we can see that ωα(s) follows the
generalized double Pareto distribution with position parameter µ = 0 and scale parameter
δ = 1. Figure 9 shows the fGPm incremental sequence generated with different α, where
H = 0.75. We observe that the influence of noise increases as the parameters increases.

3.3. Long-Range Dependence and Self-Similarity of Fractional Generalized Pareto Motion

The basic idea of self-similarity for stochastic processes can be seen as the invariance
in distribution under suitable scaling of time. Self-similarity can be expressed as:

x(t) , a−Hx(at) (16)
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where H (Hurst exponent) is the self-similarity parameter, , denotes equality in
distribution. Several methods can be used to calculate the self-similarly parameter H such
as the absolute value method, the periodogram estimation method, the wavelet estimation
method, rescaled range method etc. [42–44]. Since the best accuracy is achieved by the
rescaled range method [36], we use this method for the estimation of the self-similar
parameters in LRD random processes.

Generalized Pareto motion is a self-similar process with a self-similarity parameter 1
α ,

namely, p(t) , a−1/α p(at) for all a > 0. As can be seen from Figure 8, the fGPm does not
resemble white (pure random) noise as the clustering in data is clearly visible, this indicates
the existence of self-similarity. Following N. Laskin et al.’s proof that fractional Levy stable
motion is a self-similar process [41], fGPm self-similarity parameters are obtained as follows:

PH,α(ct) =
1

Γ(H + 1
2 )

∫ ct

0
dp(τ)(ct− τ)H− 1

2 =
cH− 1

2+
1
a

Γ(H + 1
2 )

∫ t

0
dp(τ)(t− τ)H− 1

2 = cH− 1
2+

1
a PH,α(t) (17)

Equation (17) shows that the fGPm is a self-similar process with self-similarly pa-
rameter H − 1/2 + 1/α. Similarly, the fGPm incremental process is also self-similar with
parameter H − 1/2 + 1/α.

As shown in Equation (6), the LRD of fGPm is closely related to its integral kernel

a
[
(t− s)H− 1

α
+ − (−s)H− 1

α
+

]
+ b
[
(t− s)H− 1

α
− − (−s)H− 1

α
−

]
. When t > s, if H 6= 1

α , fGPm

always shows that the value of the current time t is always related to the value of all the
times s in the past, so that the integral kernel has a strong memory. We say that fGPm has
LRD when H > 1

α and negative dependence when H < 1
α . Moreover, the sequence of the

self-similar parameter H ∈ (1/2, 1) has LRD characteristics [17,18]. Therefore, we restrict
H to the interval (1/2, 1) with H > 1

α so that α belongs to (1, 2). The key feature of the
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fGPm model is that parameters α, H are not independent since the fGPm has the LRD
condition for αH > 1.

4. Iterative Forecasting Model based on Fractional Generalized Pareto Motion
4.1. Iterative Forecasting Model

A. A. Stanislavsky et al. [12] proposed the FARIMA model with Pareto noise, which
is a discrete-time analog of the fractional Langevin equation, in which the non-Gaussian
statistics and the LRD are considered [25]. Therefore, let us consider the following Langevin-
type stochastic differential equation [26,27] driven by GPD motion:

dX(t) = b(t, X(t))dt + δ(t, X(t))dpα(t) , X(0) = X0 (18)

where dpα(t) stands for the increments of generalized Pareto motion pα(t). By replacing
PH,α(t) to pα(t), we obtain the Langevin-type stochastic differential equation driven by fGPm:

dXH,α(t) = b(t, XH,α(t))dt + δ(t, XH,α(t))dPH,α(t) , XH,α(0) = X0 (19)

where b(t, X(t)) and δ(t, X(t)) represent the drift and diffusion functions, respectively. The
Black-Scholes model [28,29] was generalized to the fractional Black-Scholes model by Dai
et al. [45–47], based on the stochastic equation:

dSt = µStdt + δStdBH(t) (20)

where µ indicates the expected return rate, δ is the volatility rate. In fGPm, the iterative
prediction model is based on incremental modeling, so the parameters of the differential
equation correspond to the parameters of the fGPm increment. In Section 2.3, we use the
generalized double Pareto distribution to fit the increment of GPD. Figure 9 shows that
the increment of fGPm also obeys the generalized double Pareto distribution. In addition,
when the range of the generalized double Pareto α is (0, 2), it is asymptotically in the
attractive domain of Levy’s stable distribution [7,12]. Therefore, µ represents the mean
value of random variables, the parameter δ represent the diffusion coefficient. Consequently,
Equation (20) can be rewritten as follows:

dXH,α(t) = µXH,α(t)dt + δXH,α(t)dPH,α(t) (21)

where µ, δ are constants. By using the Maruyama symbol [33] dBt = w(t)(dt)1/2(ω(t)
represents Gaussian white noise), we get:∫ t

0 f (τ)(dτ)a = a
∫ τ

0 (t− τ)a−1 f (τ)dτ (22)

and
dx = f (t)(dt)a (23)

where 0 < a < 1 represents the self-similar parameter of x. f (t) denote a continuous function.
The incremental expression of fGPm can be obtained by replacing f (t) with wα(t):

dPH,α = wα(t)(dt)H− 1
2+

1
α (24)

It can be seen from Figure 9 that the increment of fGPm obeys the generalized double
Pareto distribution, so ωα(s) follows the generalized double Pareto distribution with
position parameter µ = 0 and scale parameter δ = 1.

Equation (18) can be discretized as:

∆XH,α(t) = µXH,α(t)∆t + δXH,α(t)wα(t)(∆t)H− 1
2−

1
α (25)
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The iterative predictive model was obtained from the identity ∆X(t) = X(t + 1)− X(t):

PH,α(t + 1) = PH,α(t) + µPH,α(t)∆t + δPH,α(t)wα(t)(∆t)H− 1
2+

1
α (26)

By using Monte Carlo simulation [48], most likely curves for multiple time series can
be generated. Assuming that α = 1.5, µ = 0.4586, δ = 0.0396, H = 0.75, X0 = 0.6, we
performed 50 simulations by the Monte Carlo method and obtained the results in Figure 10.
We can see that the data simulated by the fGPm iterative prediction model has high jumps,
and the model will have good predictability for high jump data.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 13 of 20 
 

 

By using Monte Carlo simulation [48], most likely curves for multiple time series 

can be generated. Assuming that  𝛼 =  1.5, µ =  0.4586, 𝛿 =  0.0396, 𝐻 =  0.75, 𝑋0  =

 0.6, we performed 50 simulations by the Monte Carlo method and obtained the results 

in Figure 10. We can see that the data simulated by the fGPm iterative prediction model 

has high jumps, and the model will have good predictability for high jump data. 

 

Figure 10. fGPm sequences generated with 𝛼 =  1.5 , µ =  0.4586, 𝛿 =  0.0396 , 𝐻 =  0.75 ,  𝑋0 =

 0.6, by the Monte Carlo simulation method. 

4.2. Parameter Estimation of ,δ,α 

As mentioned in 3.1., 𝜇 is the mean of the series, so its estimated value can be ex-

pressed as the mean of the time series. In addition, the estimation of 𝛼 and 𝛿 can be 

done by the most common maximum likelihood estimation method [30,31]. But there 

may be no maximum likelihood estimates for 𝛼 and 𝛿. To find a solution, Davison [32] 

pointed out that by a change of parameters to 𝜃 = 1 𝛼𝛿⁄  and  𝛼 = 𝛼, the problem is re-

duced to a unidimensional search. We search for  𝜃, which gives a local maximum of the 

profile log-likelihood (the log-likelihood maximized over 1 𝛼⁄ ). The specific process is: 

Step 1: Let 𝑥𝑖|𝑖=1…𝑁 be the sampling data for the fGPm, 

Step 2: let 𝑥(1)  ≤ 𝑥(2)  ≤···≤ 𝑥(𝑁) be the order statistics. 

Step 3: 𝜇 estimation: 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

  (27) 

Step 4: 𝛼 and 𝛿 estimation: 
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𝑁
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1

𝑁𝜃
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𝑁

𝑖=1
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Figure 10. fGPm sequences generated with α = 1.5 , µ = 0.4586, δ = 0.0396 , H = 0.75 , X0 = 0.6,
by the Monte Carlo simulation method.

4.2. Parameter Estimation of µ,δ,α

As mentioned in 3.1., µ is the mean of the series, so its estimated value can be expressed
as the mean of the time series. In addition, the estimation of α and δ can be done by the most
common maximum likelihood estimation method [30,31]. But there may be no maximum
likelihood estimates for α and δ. To find a solution, Davison [32] pointed out that by a
change of parameters to θ = 1/αδ and α = α, the problem is reduced to a unidimensional
search. We search for θ, which gives a local maximum of the profile log-likelihood (the
log-likelihood maximized over 1/α). The specific process is:

Step 1: Let xi|i=1...N be the sampling data for the fGPm,
Step 2: let x(1) ≤ x(2) ≤ ··· ≤ x(N) be the order statistics.
Step 3: µ estimation:

µ =
1
N

N

∑
i=1

xi (27)

Step 4: α and δ estimation:

L∗(θ) = −log2− N −
N

∑
i=1

log (1− θxi)− Nlog[− 1
Nθ

N

∑
i=1

log(1− θxi)] (28)

For θ<1/x(N). By assuming that a local maximum θ̂ of (27) can be found, then it
follows that

α̂ = −N
N

∑
i=1

log(1− θ̂xi) (29)
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δ̂ =
2

α̂θ̂
(30)

5. Case Study

To verify the validity of the fGPm forecasting model, in this section we give the results
of an experiment considering power load curves and predictions in the future of 6, 12, 18
and 24 h model for the two cased. The actual power load data is collected by the Eastern
Slovak Electric Power Company [35] and is sampled every 30 min. By selecting the historical
power load data in two cases (weekdays-case1 and weekends-case2), the parameters of the
are estimated using R/S and the improved maximum likelihood estimation method. The
calculated parameters are shown in Table 2. According to the condition αH > 1, both sets
of data have LRD characteristics. Therefore, the two sets of data are modeled by the fGPm
forecast model. The experimental process is shown in Figure 11.

Table 2. Parameter estimation of forecasting model.

H α µ δ

Case 1 0.8242 1.7322 639.6825 3.0220
Case 2 0.7883 1.7178 751.5419 2.8802
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5.1. Case 1: Weekdays

The power load of the first week of working days in January is used as the input
sequence: that is, the power load from Monday to Thursday is used as historical data to
predict the power load on Friday. Since the power consumption on weekdays is similar,
and Monday to Thursday are close to Friday, it can accurately reflect the trend of power
load data. Replacing this set with an iterative predictive model, we predict the trend of
data sets for the next 6, 12, 18 and 24 h. The 24-h forecast trend of historical data is shown
in Figure 12. At the same time, the fractional Brownian iterative prediction model [23,36] is
used to repeat the above process and the results are compared with the fGPm prediction
results in Figure 13. The maximum and average absolute percentage errors of the prediction
results are shown in Table 3. The results show that the fGPm iterative prediction model has
a good effect on the high-jump power load data prediction.
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Table 3. The workday forecasting relative error (%) of power loads on adjacent dates.

Forecast Time Name fGPm Forecasting FBM Forecasting

6 h Max error percentage 0.93 1.26

6 h Mean error percentage 0.42 0.44

12 h Max error percentage 1.40 1.95

12 h Mean error percentage 0.46 0.60

18 h Max error percentage 1.48 2.00

18 h Mean error percentage 0.47 0.89

24 h Max error percentage 2.28 3.04

24 h Mean error percentage 0.74 0.95
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5.2. Case 2: Weekends

We repeated the analysis of Case 1, using the weekends of the first two weeks of
January to predict the power load trend in the next weekend. Since the electric load trends
on weekends are similar, the electric load sequence between each weekend also has LRD
characteristics. Therefore, it can also be used to predict power load trends. The results
of weekend power load forecasting are shown in Figure 14. The comparison of the two
forecasting models is shown in Figure 15. The error analysis results are reported in Table 4.
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Table 4. The weekend forecasting relative error (%) of power loads on adjacent dates.

Forecast Time Name fGPm Forecasting FBM Forecasting

6 h Max error percentage 0.69 1.01

6 h Mean error percentage 0.36 0.56

12 h Max error percentage 0.94 1.38

12 h Mean error percentage 0.39 0.69

18 h Max error percentage 1.32 2.66

18 h Mean error percentage 0.45 0.72

24 h Max error percentage 1.59 3.51

24 h Mean error percentage 0.62 1.09
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6. Conclusions

The main contributions of this paper are as follows. Firstly, the incremental distribution
of GPD is obtained using statistical methods and the LRD characteristics of the generalized
Pareto motion are analyzed according to the heavy-tailed characteristics of its distribution:
the mathematical relationship H = 1/α of the self-similarly parameter H and the tail
parameter α is obtained. Secondly, analogously to the method of generalizing fBm’s
integral expression to fractional Levy stable motion, the integral expression of fGPm is
obtained, discretized and analyzed, revealing that fGPm has infinite variance. Third, the
fGPm-driven Langevin-type SDE has been used to establish the fGPm iterative prediction
model and the parameter estimation method in the Langevin-type SDE was also provided.
The prediction model for considered only the case of α ∈ (1, 2): the case of α ∈ (0, 1) has
yet to be studied in the future.

In order to verify the effectiveness of the fGPm prediction model, two different scenarios
(weekdays and weekends) of power load data were considered in the case study. The
prediction accuracy in the study is good, indicating that the model is universally applicable.
At the same time, the comparison of the fGPm iterative prediction model with the fractional
Brownian iterative prediction model highlights the superiority of the prediction model in this
paper for high-jump data prediction. Wind speed prediction is a challenging job at present.
Due to the strong randomness and intermittency of wind speed, the wind speed sequence is
high-jump data. This model may have a good prediction effect on this kind of problem.
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