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Abstract: This paper deals with a class of nonlinear fractional Sturm-Liouville boundary value
problems. Each sub equation in the system is a fractional partial equation including the second kinds
of Fredholm integral equation and the p-Laplacian operator, simultaneously. Infinitely many solutions
are derived due to perfect involvements of fractional calculus theory and variational methods with
some simpler and more easily verified assumptions.
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1. Introduction

Nano/microactuators, as an indispensable portion of nano/microelectromechanical
systems, are always subject to different inherent nonlinear forces. Many studies show that
an integro-differential equation is generated in the modeling process of the nano/microactuator
governing equation owing to axial forces ([1-3]). In [4,5], the following nanoactuator beam
equation augmented to boundary conditions and containing an integro-differential expres-
sion, was discussed

Ly Tf2dt+L)—{+fi+ﬁ+%:0,t€[0rlL
f0)=f(1)=0, f(0)=f(1) =

where f and t denote the deflection and length of the beam, respectively. y, L, x and r denote
some inherent nonlinear forces. Actually, in practical engineering applications, actuators are
constructed by the billions for chipsets, therefore, developing more effective and accurate
strategies for the study of nano/microactuator structures is of great significance.
Furthermore, it is often not appropriate to establish models with delayed behaviors by
ordinary differential equations or partial differential equations, while integral equations
are ideal tools. Moreover, fractional calculus operators are convolution operators (For
details, please refer to the definitions of fractional integral and differential operators in [6],
in which the definitions involving convolution integrals.), because they are nonlocal and
have full-memory function, and those characteristics can be well used to describe various
phenomena and complex processes involving delay and global correlations. For this reason,
fractional calculus has been extensively applied in interdisciplinary fields such as fluid and
viscoelastic mechanics, control theory, signal and image processing, electricity, physical,
etc., (see [7-9]). Therefore, matching fractional calculus operators and integro-differential
equations is ideal to complete the mathematical modeling of practical problems. Taking

)
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into account the effect of a full-memory system, the integer derivatives in Equation (1)
can be substituted for fractional ones. Inspired by this fact in Equation (1), Shivanian [10]
introduced the following overdetermined Fredholm fractional integro-differential equations

tD”T"( ()OD“‘uJ(t)) ARy (tur(t), .. um(£)) + [ ki(t,s)uj(s)ds, t€ (0,T), j=1,2,...,m,
fo (t, s)u](s yds, te (0,T),j= 1,2,..., m, 2)
u](O) = u](T) =0, j=12,...,m

where «; € (0,1, a ( ) € L®[0,T],j = 1,2,...,m. The existence of at least three weak
solutlons was obtamed through the three critical points theorem.

Committed to fully considering more general systems, this paper studies a class of
nonlinear Fredholm fractional integro-differential equations with p-Laplacian operator and
Sturm-Liouville boundary conditions as below

Dy (ki(£)®, (D ( )))+l]( )Pp(zi(t))
= )\fz (t zl( ), oo zm(t)) —i—fo i(t,s)®p(zi(s))ds, t€[0,T], j=1,2,...,m,
fo gi(t,s) CDp(z]( s))ds, t€[0,T], j=1,2,...,m, ©)

]k ( )@y (2j(0)) — ¢/ Dy’ ”gkj(o)@,,(gpjfzj(o))) =0,j=1,2,...,m
dikj(T)®y(2j(T)) + diiDy (kj(T)®p(§D"2(T))) =0, j=1,2,...,m

where c],c’ d and d’ are positive constants, A € (0,+0) is a parameter, k],l € L=[0,T]
w1thk = essinf 1 k;(t) > Oandl =essinfjy[j(t) 2 0,j=1,2,...,m For1 <p < oo,
D, (s) = |s|P2s(s # 0) p(0) = 0 f:[0,T] x R"™ — R satisfies f(-,z1(t),...,zm(t)) €
Clo,T] and f(t,,...,-) € c1 [R™], gi(-,) € C([0,T],[0,T]). $D,7 and ; D}’ denote the left
Caputo fractional derivative and right Riemann-Liouville fractional derivative of order 1;,
respectively, which are defined by Kilbas et al. in [6]

. n n _1\n n T
D) = (0 gD}l = s [ € @
]
. - t
507 u(t) = oDy’ " u (1) = r(nl_%)/o (t= )" (), )

for Vu(t) € AC([0,T|,R),n—1< 7j <mn,neN.

We emphasize that this paper extends previous results in several directions, which
are listed as follows: (i) In recent years, a large number of existence results for fractional
differential equations have been acquired by variational methods and critical point theory
([11-14]). However, not many research works are available in related references to handle
fractional integro-differential equations, let alone involving the p-Laplacian operator and
Sturm-Liouville boundary conditions. (ii) It is not hard to see that Equation (3) can
turn into the Dirichlet boundary value problem Equation (2) under p = 2, c} = d; =
0,l;(t) =0,j = 1,2,...,m, which means that Equation (2) is a special case of Equation (3).
Furthermore, since the p-Laplacian operator is considered with 1 < p < oo in the paper,
the linear differential operator ;D1 D/ is extended to the nonlinear differential operator
tDI®,(§D]). In short, the form of Equation (3) is more generalized, as well as the boundary
value conditions. (iii) Infinitely many solutions are obtained in this paper with some simpler
and more easily verified assumptions. Hence, our work improves and replenishes some
existing results form the literature.

2. Preliminaries

Assume H is a Banach space and F € C!(H,R). Functional F satisfies the Palais-Smale
condition if each sequence {z;}{° ; C H such that {F(z)} is bounded and klim F'(zx) =0
— 00

possesses strongly convergent subsequence in H.
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Theorem 1 ([15]). Let H be an infinite-dimensional Banach space, F € C'(H,R) is an even
functional and satisfies the Palais—Smale condition. Assume that:

(i) F(0) = 0. There exist T > 0and 5 > 0 such that Y; C {z € H | F(z) > 0} and
F(z) > nforallz € 0Y,, whereYr = {z € H | ||z|| < T},
(ii) For any finite dimensional subspace Hy C H, the set Hy(\{z € H | F(z) > 0} is bounded.

Then, F has infinitely many critical points.

Deﬁnition 1. Let1 < p < oo, % <7 <1,j=12,...,m. Define the fractional derivative space
H= H;.Z”HW”? with the weighted norm

j=m
”ZHH = Z ||ZjH("y]-,p)/ Zj S H,Yf’p, Z = (Zl,...,Zm) € H, (6)
j=1

where .
HY"P = {z; € AC([0, T|,R) : §D,"z;(t) € L¥([0, T], R)}

as the closure of C* ([0, T], R) endowed with the norm

T T . p )
- (/O | Z(t) |7 dt+/0 | §DYzi(t) [P dt) \Vzj € HYP, @)

Hi'P is a reflexive and separable Banach space [16]. Therefore, H also is a reflexive and separable
Banach space.

Lemma 1 ([13]). Forany zj(t) € H""",1 < p,q < co with % + % =1, there exists a constant
1
P

1
e » vi PYT19
W,.. = max{le,l} + l:zp max{l, (le ) }:l such that HZ”OQ <
(vj:p) M) (ry—D)g+1) 1 T I(rj+1) 7

Wep 5 0 = 1,2

Taking into account Lemma 1, one has

W, T T .
Il < 22— ([T 1500 P dr+ [ k(01§05 P ar) ', vz € HY?, (8)
(min{k]-, l]}) P 0 J0

j=1,2,...,m. In order to describe it more easily for the further analysis, denote

W — W(“r;,p) W=
j=—————1/ W= max{W;}. )
(min{k;, 7;})" 1<jsm

Obviously, the norm defined by (7) is equivalent to

1

T T . P
v .
E— (/0 (1) | zi(t) [P dt+/0 Ki(£) | §D)Iz;(8) |7 dt> L i=12,...,m. (10)
We work with the norm (10) hereinafter.

Lemma 2 ([17]). Let1 < p < o, 7; € (%,1],]' =1,2,...,m. Suppose that any sequence {zy ;}
converges to z; in H"i" weakly. Then, zy j — z; in C([0, T|) as k — co.

Lemma 3 ([18]). Let H]- be any finite-dimensional subspace of H'i'?, j = 1,2, ..., m. There exists
a constant {o > 0 such that meas{t € [0, T] :| z;(t) |> §0||z]-||(,yj/p)} > (o, Vzj(t) € Hj \ {0}.
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Lemma 4 ([6]). Let v+ > 0, p > 1,9 > 1and%—|—% <14+9(p # 1,9 # 1 in the case
when % +% =1+79). If z1 € LP([a,b]) and z, € L([a,b]), then, fab(ﬂnyzl(t))zz(t)dt =
[P 21(8) (:D, "za (1))t

Lemma 5. It is said Z = (z1,...,2m) € H is a weak solution of Equations (3), if the following
equation holds

{ [ 0@, DY O DYy0) + 500, (000t + T 0)2,0)5(0) + P (D), (T ()}
] ]

T

{/OT/O gj(t,s)cpp(zj(s))yj(t)dsdt+A/O'szj(t,zl(t),...,zm(t))yj(t)dt},w: (1., ym) € H. (11)

M= 1M

Proof. Consider (4) and (5), the boundary conditions in Equation (3) and Lemma 4 yield:

T _ v
/0 (D7 (kj(£)y (§D;"z(t)))y; (1)dt

== /OT }/j(f)d[tD?’l(kj(t)<1>,,(gDZfzj(t)))]

:tD¥/—1 <kj(0)q>p(gD7fzj(0)))yj(O) - tD¥j_1 (kj(T)q>p(gD7fzj(T))>yj(T) + /OT tD?_l(kj(t)q>p(gD?fzj(t)))y]’.(t)dt (12)

. d: ) .
=i (0)® (z,(0)y;(0) + 1k (T) By (3 (T))yy(T) + | k@, D]z (1)§ DYy (1)t
] ]

Substituting y;(#) into Equation (3) and integrating on both sides from 0 to T, then
summing from j = 1 to j = m and combining with (12), we can obtain Equation (11).
The proof is completed.

O

Remark 1. Foranyz; € H""" C C([0,T]),j = 1,2,...,m, from Equation (3) we have
. T
tD}’(kj(t)ép(gDZ’zj(t))) +L()Pp(zi(t) = Afz (tz1(t), ..., zm(t)) +/0 gi(t,s)®@p(zj(s))ds, t € [0,T],

because f(t,-,...,-) € CH[R™], zj(t) = fOng(t,s)QDP(zj(s))ds € H""P and

tD?(&(w¢w<8Dﬁzﬂw>>=:(dD¥%kﬂo¢m<8D7%xt»>),

one gets

DY k(P (§DYz(1))) € AC([0, T)).

Hence, the terms tD;j_l(k]-(O)(I)p (gDij]-(O))) and tD¥j_l(kj(T)dDP(OCDijj(T))) exist in
this paper.

Consider the functional F : H — R with
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j=m . j=m d
F(Z) 1:% = /OTkj(t) 6D zi(t) [P +1;(t) | z;(t) | dt + Z { 0) [2(0) 7 +p 7ki(T) | 2(T) [P
v TG dt—A ! d
-1 /0 (zj())dt — /0 F(bz (), ., zm(b))dt
1 j=m j=m
=5 L el +2[ 0)1340) "+ ko () 5 14
j=m T T
- ]; /O Gj(zj(t))dt—/\/o F(t,z1(8), . zu(b))dt, (13)
where G;j(z;(t)) = %fOTg]-(t,s)CD,,(zj(s))zj(t)ds,t €(0,T),j=12,...,m Owingtoz;(t) =
fOT gj(t,s)ép(zj(s))ds,j =1,2,...,m, the Gateaux derivative of G; is
h
Gj(21) () = lim =~ Gile + y;l) Gi(z) (14)
— lim 100 8t s)®p(z(s) + h}/j(s))(zj(t;1+ hy;j(£)) — 8j(t,5)®p(zj(s))z;(t)ds
h—0
22 () + hz; (Hy; (¢
:]111%2 v . Z]()yj():zj(t)yj(t):./OTg]-(t,s)qDP(zj(s))yj(t)ds,j:1,2,...,m
Then, combining the continuity of f and (14), we can see that 7 € C'(H,R) and
j=m T , ) i
P = L { [} kO@ D] 0) + 500 00t + 0122100 (15
]:
d:
+ kG (T) Dy (z(T / / 8j(t,5)®p (z(s))y; (t)dsdt — A/ £ (6, Z(8)y; (¢ )dt} ¥Z,Y € H.
]

Notice that, the critical point of F is the weak solution of Equation (3).

3. Main Results

First, some hypotheses related to nonlinearity f are given, which play important roles
in the remaining discussion.

(Hp) lim L2 _ o uniformly for t € [0, T|, Z(t) = (z1(t),...,zm(t)) € R™;

Vjilzj oo Ti_y Izi1P
(H1) 0 < f(t,Z(t)) = O(Z;-Zn | z; |F) as Z; 1 | zj |= 0 uniformly for t € [0, T];

)
(Hp) Forany Z(t) = (z1(t),...,zm(t)) € R™, f(t,Z(t)) = Z; T';] | zj [P —](t, Z(t)) with
J(t,0) =0, and

: 3, I ¢ d; p
12}1;}”{77]'} A€p+1< tp ; [pcl k](O) pd{kj(T)]W]' ),
j=mo,.

nj . Bj w w;
Z(J ])\Z]|J<]tZ <25]|Z]|
j=1 p j=1

where w; € (0,p),d; > 0,{o > Oisaconstantand B is introduced thereinafter, j = 1,2, .
Lemma 6. F satisfies the Palais—Smale condition under (Hy).

Proof. Suppose that sequence {F(Z)}xen is bounded and klim F'(Zy) =0, Zk(t) =
—00
(zk1(t), - zm(t)). We claim that {Z;}ren is bounded in H. Indeed, assume
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Vi ||zk,j\|(7],,p) — oo(k — c0). From (Hp), for any L > 0, there exists kg € N such
that
JA0)
J=m 14
Zj;l sz,jH(% »)

For any fixed k. € N with k, > ko, from the integral mean value theorem, there exists
¢(ky) € (0,1] such that

>L,Vk>kotel0T]. (16)

[ 0,20 )t = THEOIT, 22, (6(6)T)). a7)

Combining (16) and (17) yields

Jo F(t, 2k (D)dt_ TFER)T, Ze, (€(k)T)) TLYZY N2k 1] (o)

j= j=m 1P - yUE
2] 1 H k*]H(,Y 7) 2721 ||Zk*,]|‘(,yj,p) Z] 1 || k*]”(,y 7)
Hence, we can get

fo f(t, Z(t)

> TL, Vk >k, t €[0,T]. (18)
J'zl 1 7k, ”(v,»p)

In view of (8), (9), (13) and (18) we have

j= cj d;
Fzw) 1 D[k 120 1P k(T | zky(T) 1P
— ==+ —
otz ) P ot 2l )
rrG zk] )t + A [ f(t, Zi())dt
ot 2l )
i . d.
i Toirki (0) + S ki (TIW! ||z 1]
§l+ =1 tpc; j:mp] (7j.p) CATL
p ijl sz,jH(fy] p)
1 j=m Cj d P
<- —k; D — . 19
<5+ Dl + gk (TIW) —ATL (19)

j= i d;
Choose L large enough such that % + Z;.:T[p%kj(o) + pd’k (T)]Wp ATL < —1, then

combining (19) yields that F(Z(t)) < — ijl" sz,]-||€7v ») which means that F(Z(t)) —
i
—o0 as ||Zk,]'H('yj,p) — 00, Vj =1,2,...,m. It contradicts that {F(Z)} is bounded. Hence,

{Z}} is bounded in H. Because of the reflexivity of H, we get that Z; — Z* in H (up to
subsequences). From Lemma 2, we have Z; — Z* uniformly in C([0, T]") and L* ([0, T]™).

Then,
(]—”’(Zk) —F(Z))(Zx —Z") = 0, k = oo,
{ fO fZ t Zk(t)) _ij(t/Z*(t)))(Zk,j(t) - Z;(t))dt - O/ k— oo,,j = 1/2/" .,m, (20)
I =z (t) |2 dt — 0,2,j(0) =27 (0) = 0,2¢,j(T)) = 2 (T) = 0, k > 00,j =1,2,...,m

From (15), we obtain that
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(FI(2) - P20 (2~ 2°) = F(2) (2~ 2) ~ F(Z) (% - 2°)
jm | |
{ [ 50 (2062150 - @ (D510 DT 2t 0) = 5 00) +150) (e 0)) — (27 (1)) 0) — 5 1)t (21)

/ 510090 (@150 = @25 (1)) ) — 2 Ot + F0) (@ 21 0) = @, 0)) ) 210) =2 (0)
]
d,k (1) (@21 (T)) = @y 3] (D) ) a1y (T) = 5 (T) =1 [ (£ 0, Z0(0) — Fo 1, 2° 0)) 1) — 5 1)}

moreover,

"M@ @, (zF “(1))dsdt = [ B —zi(t) |2 dt. (22
7 st (@atg60) = @y 00 ) ety 0) =5 st = [ |20 =55 0) P @)
Denote

_ 7 cpYi CpYi () \CDY ,
010 = [ k50) (@507 215(00) — @607z (1) )§D (1) — 2 (),

T
Fu(0) = [ 500 (@ (a17(0) — 0,50 ) a1 (0) 5 ()t

combining (20), (21) and (22), we obtain Z;zn {¥kj(vj,p) + ¥rj(p)} = 0ask — co. Asin
the discussion of ©(a, p), ®(p) in [19], we can get

eillze; —Z 185 =2,

Yii(7jp) +¥,i(p) > p=2
I ! eillzk, _Z}k||%a,].,p)(‘|zk,j||5p izl 7, 1<p <2,

where ej, ¢ are constants, j = 1,2,...,m. Based on the above discussion, we can obtain
||zk/]' z] || (rp) 0,j=1,2,...,mforalll < p < oo. Hence, the Palais-Smale condi-

tion holds. O

Theorem 2. Assume that (Ho) and (Hl) hold and f(t,Z) = f(t, —Z). Then, Equation (3) has

Proof. Dueto f(t,Z) = f(t,—Z), it is easy to verify that F is even. Obviously, F(0) = 0.
Taking into account (Hy) that, for any € > 0, there exists r(¢) such that

j=m =
f(t,Z(t)) <sZ|z]\P vt € [0, T], Z|z]|<r() (23)
j= j=
Further, g;(+,-) € C([0,T], [0, T]) means that the kernel g; is bounded by, say B;, i.e.,
| gj(t,s) |< Bj, and

Gi(zi(1) = 2 [ it 9)@p(zi(5))zi0as < Dz 12187 < 5 187 =12 24)

Let7 = . Forany Z € Y., one has || Z||g = ;zT ||z]-||(7]_, < 15+ Then,

ro I i |

- > z > — |z =~
72 Ll 2 gl 2

i|mm (25)

-\.
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which means that Z] —1 lIzjllo < 7(e). At this point, from (13), (23) and (24) we can see

1j:m p ‘3] p T j=m
25 L Il 2/ Iz 1% at =2 | e Iz
=1 =

1] N TB; p
Z |z ;H 2( 7 + AeT)W; HZ;|| (26)
j
1 T
2[2 - <f+ATwp (znm W)
_ 1 TE ATD p v
—[; - (7 +AeT)W }WHZH , VZ €Yo,

where p = 1r<n]:i>]<n{/3]} Choose € = 5 ( TplWl’ — B), from (26), we get

]:(Z) = meP

1zl > 27)

Hence, Y; C {Z € H | F(Z) > 0} and F(Z) > W”ZHZVVZ € Y. Therefore,
the condition (7) in Theorem 1 holds.

For any finite-dimensional space Hy C H, we claim that H = Hy(\{Z € H | F(Z) >
0} is bounded. Assume that there exists at least a sequence {Z;} C H such that || Z||; — oo
as k — oo. From F(Z;) > 0 and (19), we obtain

j=m o d;
0 —ZBW L VS 0+ + ST —ATL
Vi lzejlly, P =1 PE P

Since L is arbitrary, we draw a contradiction. Therefore, H = Hy\{Z € H | F(Z) > 0}
is bounded. Based on Theorem 1, functional F has infinitely many critical points, which
means that Equation (3) has infinitely many solutions in H. [J

Theorem 3. Assume that (Hy) holds and J(t,Z) = J(t, —Z). Then, Equation (3) has infinitely
many solutions with Z; 1m % — (ﬁsz + A > w? > 0.

Proof. Suppose that the sequence {F(Z;) }xen is bounded and klim F'(Zx) =0, Zi(t) =
— 00

(zk1(f), ..., 2k m(t)). In what follows, we prove that F satisfies the Palais-Smale condition.
Indeed, assume Vj : ||Zk,]'||('yj,p) — oo(k — o), from (13), (24), (Hz) and (8), we have

j=m j=
;ZH k,llw F(Zy) +Z/ dt—i—A/ F(t,z(t) Z (1)) dt (28)
]

F(z) +Z z-v’dw]:zm U~ By o
k k,j ~Jo p kj p " 2A Tk
j=

i BT ATh i B
zk+2(’ =)W, +ATZ] Phweag

j=mq ﬁ]-T ATfyj P p j=m Uh ﬁj w; w
v 5 - (B S we |, - AT L g el < FiZ0- @9
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Recall that Y/} 1 — ( BT | ATy
get a contradiction. Hence, {Z;} is bounded on H. The rest of the proof for the Palais-Smale

condition is similar to that of Lemma 6, so we do not repeat it.

Let v’ € (O,%). For any Z € Y./, one has || Z||y = Z;Zn IZll(y;p) < T < % A

Wp >0, wj € (0,p) and {F(Z)} is bounded, we

similar analysis with (25) yields Z;Zn [zjllec < 1. From (28), we get

]m & ‘B] p 77] p_ IBJ w
> Y Iaill,, - L ) 211 dt—Az/ £l SIETRE
]1 j=1

1 NTE U no B |

LY laillyy - X | [ Zmpaea J]|p_(f+]>|]w]dt}
= =1 p

RS Bi , , M B o }
- ‘ - — 4+ =) |z |“T dt
5 1 Il jl[/o< My 1~ By 1

M 'B] w (M B
_ Izil?.  + / L (M ” a
p]Z\]‘(%,p) = p ) |z (p )| zj
Lyt T A B Anj B
= [ / (— + ] p_ (2 ] P gt
p ]; | J‘(w,p) Sy )|z Zj | p )|z zj |
1izm 1 ]—m
- ?]; | ]||(’Y/p > o & Z 12l ¢7;,p))" = me”Z”H>0 VZeYy

Clearly, Y, C {Z € H| F(Z) > 0} and F(Z) > me”Z”HIVZ €9Y.
For any finite-dimensional space H) C H, we claim that H = H)"\{Z € H | F(Z) >

0} is bounded. Assume that there exists at least a sequence { Zy} C H such that || Z;| iy — oo
as k — oo. Then, according to (19), (H) and Lemma 3 we obtain

A 2 P (0, Ze0)t

FZi(t) 1 g

d:
0< <=+ Y [=Lki(0) + L k(T IW! — (30)
Lot el P =P pd; / S Izl )
. J= m)"ﬁ T —j=m .
j=mo. d: Y fQ g()” kj” at ) Z], i | Zg i |“i dt
§1_~_ Z[ é,k](o)_f_#kj(j")]w]}’_ 1= ; (viop) n Jo j:];l ] p]
p =1 P¢ pa; ]‘:1 H k,]'H 21'71 ||Zk,j||(,y].,p)
= d; p+1 ATZJ Tl 8
1+z k(05 kT Wy =20 i gy LT )
P3P p P 1sjsm Yoy Nzl )
where ;= {t € [0,T] :| z;(t) [= §o||2k,j (vjp p} and meas{Q; .} > Co.
Since miny <<, {1} > Ag‘““( +PZ] m[ G k i(0) + pd’k (7)) jp),then
1 f:m d; by AT 1
st = pc,; pd,k]( Wy === min ik < =5 (31)
based on w; € (0,p) and || Zy||g — o0 as k — oo, we get
/\TZ T oWzl -
0,k — oo. (32)
Eimy l1zelIf (vj:p)
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Combining (31) and (32), we obtain that 0 < % < _2177 as k — oo, which
j=1 1kl p)

draws a contradiction. Hence, H is bounded. Based on Theorem 1, functional F has

infinitely many critical points, which means that Equation (3) has infinitely many solutions
inH. O

Example 1. Focus on the following Fredholm fractional partial integro-differential equations with
m=23and p = 4:

(DY ((£+1)@a(§DP521 (1)) + (3 + t><1>4<zl<f>> = Dz, f(t71(1),22(1), 23(1)) + [y 105t sin(s)P4(z1(s))ds, ¢ € [0,1],
21(t) = [y 107t sin(s) @4 (z1(s))ds, ¢ € [0,1],

(DYO((12 +1)@4(§DPOz (1)) + (4 +t2><1>4( 2(H) = Daf(t,21(), 22(1), 23(t)) + [y 107512 sin(s) P4 (2a(s))ds, ¢ € [0,1],
() = [y 10*5tzsin(s)q)4(zz(s))ds telo,1],

D°75<<t3+1>q> (§DP7523(1))) + (§ + £)®4(23(t) = Das f(1,21(), 22(8), 73(1)) + [y 1058 sin(s) Py (z3(5))ds, ¢ € [0,1],  (33)
z3(t f 107583 sin(s) P4 (z3(s))ds, ]

q’4(21(0))—tD 05(©4(CD0521( 0))) =0, @4(z1(1)) + Dy "2 (@4 (§DY21(1))) = 0,

P4(22(0)) — Dy O4(@4(€ D192, (0))) = 0, @y (2a(1)) + 1Dy 4 (@4 (§ D52 (1))) = 0,
®4(23(0)) —¢Dy 025(¢4(CD075Z3(0))) =0, P4(z3(1)) + Dy " (P4(§DP"°23(1))) =

te[0,1],

where cj=cp= 1,dj = d]v = %,j =1,2,3,

(z3+z3+23)% 21 +25+25 <1,
2(z} +25 +23)* — (zl+zz+z3)2, Zi+z5+z > 1

f(t,z1,22,23) = (1 + t){

It is easy to verify that f is continuous with respect to ¢ and continuously differentiable
with respect to z1,z; and z3 (see Figures 1 and 2) and satisfies (Hp) and (Hj ). Obviously,
k1(0 ) = kz( ) = k3( ) =1,k (1 ) = kz( ) = k3(1) =2, B = 107°. By direct calculation we
havekl —k2 —k3 =1, 11 = 2,12 =7 l3 = 4,and

Wioss) = max{r(os)[( 1;) T } [8max{1’< )4} B
{ _

1
W, = max 8 max = 3.072
r(0.6)[(~2)%+1)3

)
W=

=
/—\
~_ \/
~ ~
—— —
W= W=

»B\W

1
W = max { 1} [8 max {1, < = 2.936,
0754 r(075)[(-1)2 + 1% r(1.75)
then . . .
Wiosa) Wiosa) Wiorsa) 297
min{k;, 11 } "min{ky, I} " min{ks, I3} '

namely, W = 297, LW = 8.4 x 1072, then p%?v — E > 0. Hence, from Theorem 2 we can see
that Equation (33) has infinitely many solutions.
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Figure 2. the contour-plot of Equation (33) for t = 1.
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