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Abstract: In this paper, we develop a numerical scheme that conserves the discrete energy for solving
the Klein-Gordon equation with cubic nonlinearity. We prove theoretically that our scheme conserves
not just discrete energy, but also other energy-like discrete quantities. In addition, we prove the
convergence and the stability of the scheme. Finally, we present some numerical simulations to
demonstrate the performance of our energy-conserving scheme.
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1. Introduction

The Klein–Gordon equation is a well-studied equation in mathematical physics in
terms of radiation theory, nonlinear optics and general relativity of scattering [1–3]. In par-
ticular, much work has been carried out on the Klein–Gordon equation with respect to
wave collisions and resonance behavior [4]. Recently, we considered the Klein–Gordon
equation with quintic nonlinearity from the analytical point of view and were able to obtain
a number of new wave solutions [5]. In this paper, our focus is on the numerical study of
the initial value problem of the Klein–Gordon equation with cubic nonlinearity

utt − uxx = αu− βu3, −∞ < x < ∞, t ≥ 0, (1)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), −∞ < x < ∞,

where α and β are arbitrary positive constants, and u0(x) and u1(x) are known smooth
functions. Here, one should note that the non-local version of (1), where the dependence
of previous time history is considered, gives a time-fractional nonlinear Klein–Gordon
equation [6]. There have been a number of analytical and numerical studies to understand
the solutions of nonlinear time and space-fractional Klein–Gordon equations [7–11]. The
numerical studies have focused on various techniques to discretize the fractional derivatives.
However, no special attention was given to the nonlinearities in the equations, as we do in
Section 2.

In order to construct a numerical scheme for solving (1), we re-cast the initial value
problem as the following initial boundary value problem:

utt − uxx = αu− βu3, xL ≤ x ≤ xR, 0 ≤ t < T, (2)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), xL ≤ x ≤ xR, (3)
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and the boundary conditions

u(xL, t) = 0, u(xR, t) = 0, 0 ≤ t ≤ T. (4)

Here xL is negative, and xR is positive with |xL| and xR being large values so that the
finite spatial domain xL ≤ x ≤ xR mimics the infinite domain −∞ < x < ∞. Moreover, T
can be large. In some cases, the boundary conditions (4) may be replaced by

u(xL, t) = ∓
√

α
β , u(xR, t) = ±

√
α
β , 0 ≤ t ≤ T.

The boundary conditions at u(xL, t) and u(xR, t) for the problem (2) correspond to
the asymptotic conditions for u(x, t) of (1) as x goes to −∞ and ∞. The solution u(x, t) of
the initial boundary value problem (2)–(4) formally satisfies the following energy identity:

E =

xR∫
xL

[
(∂tu)2 + (∂xu)2 − αu2 +

β

2
u4
]

dx = const. (5)

In the literature, one can find a number of numerical schemes with conservation prop-
erties for solving the nonlinear Klein–Gordon equation. For example, a three-level finite
difference method that conserves energy was developed in [12] , while other finite-difference
algorithms that preserve energy or linear momentum were studied in [13]. In addition, there
are schemes that were constructed using a variational iteration method [14,15], a homotopy-
perturbation idea [16,17], radial basis functions [18], spline-collocation approach [19] and
discrete Fourier transforms [20] to solve the Klein–Gordon equation under various conditions.
Further, some of the recent studies on the nonlinear Klein–Gordon equation have involved
making use of pseudo-spectral discretization methods [21], employing a differential quadra-
ture method with cubic B-splines [22] and domain decomposition methods [23]. Other studies
include making use of the sinc-collocation idea along with a discrete gradient method to study
the Klein–Gordon–Schrödinger equation [24] and developing a higher order method for the
Klein–Gordon equation employing a local discontinuous Galerkin method [25]. However,
in [25], the numerical simulations were carried out only for the linear Klein–Gordon equation.
In [26], energy-preserving schemes were constructed for higher dimensional Klein–Gordon
equations using the discrete gradient method and Duhamel principle. In addition, there have
been a couple of interesting analytical studies of the Klein–Gordon equation, one utilizing an
operational matrix method with clique polynomials [27] and the other a series method using
differential transforms [28].

Most of the existing numerical methods investigate the conservation of discrete energy
only numerically. If one is to validate the numerical results of an energy conserving
numerical scheme, it is important to prove theoretically that the scheme conserves the
discrete energy. The work in [29] carried out a theoretical study of four explicit finite
difference schemes for solving the Klein–Gordon equation. In the spirit of [29], this paper
presents an implicit conservative finite difference scheme for the initial boundary value
problem (2)–(4). It should be noted that in [30] implicit finite difference schemes were
studied for the coupled system of Klein–Gordon–Zakharov equations. Later, more work
along the same lines was conducted in [31] for the same system. Even though there is some
similarity, in contrast to those works, our study considers not just the conservation of the
discrete energy, but other energy-like discrete quantities as well. A predictor–corrector idea
is employed to deal with the nonlinearity which appears in the problem. Furthermore,
we give some a priori estimates and then prove by the discrete energy method that the
difference scheme is stable and second-order convergent. Some numerical results are
presented to illustrate the theoretical results. Three-dimensional plots are displayed to
demonstrate the sensitivity of the discrete energy and other discrete quantities to the choices
of time steps, wave speed, and coefficients α and β.
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2. Finite Difference Scheme and Its Conservation Law

Before we propose the conservative finite difference scheme for the Klein–Gordon
equation with cubic nonlinearity (2)–(4), we give some notations as follows when we
discretize the space and time domains:

xm = xL + mh, 0 ≤ m ≤ M =
[

xR−xL
h

]
,

tn = nτ, n = 0, 1, 2, . . . , N =
[

T
τ

]
,

(wn
m)x =

wn
m+1 − wn

m

h
, (wn

m)x̄ =
wn

m − wn
m−1

h
,

(wn
m)t =

wn+1
m − wn

m
τ

, (wn
m)t̄ =

wn
m − wn−1

m
τ

,

where h and τ are the step sizes of space and time, respectively. In addition, we define the
following inner product and norms:

〈wn, un〉 = h
M
∑

m=0
wn

mun
m, ‖wn‖p

p = h
M
∑

m=0
|wn

m|
p,

‖wn‖∞ = sup0≤m≤M|wn
m|.

It should be noted that in the following, C stands for a general positive constant that
may take different values on different occasions. In addition, for brevity, we omit the
subscript 2 of ‖wn‖2.

Lemma 1. For any two mesh functions {wm} and {vm}, m = 0, 1, 2, . . . , M, there is the identity

h
M−1

∑
m=0

wm(vm)xx̄ = −h
M−1

∑
m=0

(wm)x(vm)x − w0(v0)x + wM(vM)x̄.

This lemma can be easily proved using the notational definitions directly.
Let Un

m be the difference approximation of u(x, t) at (xm, tn); that is, Un
m ≈ u(xm, tn).

In addition, assume that u0(xm) = U0(xm) and u1(xm) = U1(xm).
Now, we consider the following finite difference scheme for the Klein–Gordon equation

with cubic nonlinearity (2)–(4):

(Un
m)tt̄ − 1

2

(
Un+1

m + Un−1
m

)
xx̄
− α

2

(
Un+1

m + Un−1
m

)
+ β

4

(
Un+1

m + Un−1
m

)((
Un+1

m

)2
+
(

Un−1
m

)2
)
= 0.

(6)

In order to employ the finite difference scheme (6), we need initial values at two
different time levels. They are chosen from the initial conditions given in (3) such that

U0
m = U0(xm) and U1

m−U−1
m

2τ = U1(xm) (7)

making use of a fictitious time level −1.
The boundary conditions are as below.

Un
0 = 0, Un

M = 0. (8)

It should be pointed out that our two-time-level split approximation of the nonlinear
cubic term is very different than the standard nonlinear approximation. As will be seen
later in Theorems 1 and 2, this split approximation makes the theoretical analysis easier.
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In (6), the explicit forms of (Un
m)tt̄ and (Un

m)xx̄ are given as follows:

(Un
m)tt̄ =

Un+1
m − 2Un

m + Un−1
m

τ2 , (Un
m)xx̄ =

Un
m+1 − 2Un

m + Un
m−1

h2 .

As noted before, the solution u(x, t) of the initial boundary-value problem (2)–(4)
satisfies the following energy identity:

E =

xR∫
xL

[
(∂tu)2 + (∂xu)2 − αu2 +

β

2
u4
]

dx = const.

Now, we present some properties of our finite difference scheme.

Theorem 1. The difference scheme (6)–(8) possesses the following property:

Qn = Qn−1 +O(hτ), (9)

where
Qn = ‖Un

t ‖
2 + 1

2‖U
n
x ‖

2 − α
2‖U

n‖2 + β
4 ‖U

n‖4
4. (10)

Proof. Computing the inner product of (6) with Un −Un−1, we have

‖Un
t ‖

2 −
∥∥∥Un−1

t

∥∥∥2
− h

M
∑

m=0

1
τ2

[
Un+1

m − 2Un
m + Un−1

m
][

Un+1
m −Un−1

m
]

+ 1
2

(
‖Un

x ‖
2 −

∥∥Un−1
x
∥∥2
)
− α

2

(
‖Un‖2 −

∥∥Un−1
∥∥2
)
+ β

4

(
‖Un‖4

4 −
∥∥Un−1

∥∥4
4

)
= 0.

In the computation of the above equation, we have used the boundary conditions and
Lemma 1.

Now, using the Taylor’s series expansions for u(xm, tn+1) and u(xm, tn−1) about
u(xm, tn), we can easily show that

un+1
m − 2un

m + un−1
m = τ2(un

m)
′′ +

τ4

12
(un

m)
′′′′ + · · · .

Here un
m = u(xm, tn) and ∂

∂t is denoted by ′.
So, if the higher order terms of τ are neglected beyond τ4, we have

un+1
m − 2un

m + un−1
m ≈ τ2(un

m)
′′.

Therefore, for the finite difference approximation Un
m of un

m, we obtain the relationship

Un+1
m − 2Un

m + Un−1
m = τ2(un

m)
′′.

In a similar fashion, we can obtain

Un+1
m −Un−1

m = 2 τ(un
m)
′.

Using these relationships for the finite difference approximations, we obtain

h
M
∑

m=0

1
τ2

[
Un+1

m − 2Un
m + Un−1

m
][

Un+1
m −Un−1

m
]

= h
M
∑

m=0

1
τ2 τ2(un

m)
′′ 2τ(un

m)
′

= 2hτ
M
∑

m=0
(un

m)
′′ (un

m)
′ = O(hτ).
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So, we have
Qn = Qn−1 +O(hτ),

where
Qn = ‖Un

t ‖
2 + 1

2‖U
n
x ‖

2 − α
2‖U

n‖2 + β
4 ‖U

n‖4
4.

This completes the proof of the theorem.

Theorem 2. The difference scheme (6)–(8) possesses the following invariant:

En = En−1 = · · · = E0 = const, (11)

where

En =‖Un
t ‖

2 + 1
2

(∥∥∥Un+1
x

∥∥∥2
+ ‖Un

x ‖
2
)
− α

2

(∥∥∥Un+1
∥∥∥2

+ ‖Un‖2
)

+ β
4

(∥∥∥Un+1
∥∥∥4

4
+ ‖Un‖4

4

)
.

(12)

Proof. Computing the inner product of (6) with Un+1 −Un−1, we have

‖Un
t ‖

2 −
∥∥∥Un−1

t

∥∥∥2
+ 1

2

(∥∥Un+1
x
∥∥2 −

∥∥Un−1
x
∥∥2
)
− α

2

(∥∥Un+1
∥∥2 −

∥∥Un−1
∥∥2
)

+ β
4

(∥∥Un+1
∥∥4

4 −
∥∥Un−1

∥∥4
4

)
= 0.

(13)

In the computation of Equation (13), we have used the boundary conditions and
Lemma 1. By adding and subtracting 1

2‖Un
x ‖

2, α
2‖Un‖2, and β

4 ‖Un‖4
4 to the left-hand side of

Equation (13) and rearranging the terms, we obtain

‖Un
t ‖

2 −
∥∥∥Un−1

t

∥∥∥2
+ 1

2

(∥∥Un+1
x
∥∥2

+ ‖Un
x ‖

2
)
− 1

2

(
‖Un

x ‖
2 +

∥∥Un−1
x
∥∥2
)

− α
2

(∥∥Un+1
∥∥2

+ ‖Un‖2
)
+ α

2

(
‖Un‖2 +

∥∥Un−1
∥∥2
)
+ β

4

(∥∥Un+1
∥∥4

4 + ‖U
n‖4

4

)
− β

4

(
‖Un‖4

4 +
∥∥Un−1

∥∥4
4

)
= 0.

(14)

Hence, result (11) follows from Equation (14). This completes the proof.

Now, from Equations (10) and (12), we can easily observe that

En = Qn+1 + Qn −
∥∥∥Un+1

t

∥∥∥2
, (15)

and therefore, it follows from (9) that

En = 2Qn −
∥∥∥Un+1

t

∥∥∥2
+O(hτ). (16)

Moreover, from Equation (15) and Equation (11), we have

Qn + Qn−1 − ‖Un
t ‖

2 = Qn−1 + Qn−2 −
∥∥∥Un−1

t

∥∥∥2
,

or equivalently,

‖Un
t ‖

2 −
∥∥∥Un−1

t

∥∥∥2
= Qn −Qn−2. (17)

In addition, from Equation (9), we obtain

Qn = Qn−2 +O(hτ). (18)
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Therefore, it follows from (17) and (18) that

‖Un
t ‖

2 =
∥∥∥Un−1

t

∥∥∥2
+O(hτ). (19)

Theorem 3. The difference scheme (6)–(8) possesses the following property:

Ẽn = Ẽn−1 +O(hτ), (20)

where
Ẽn = ‖Un

t ‖
2 + ‖Un

x ‖
2 − α‖Un‖2 + β

2 ‖U
n‖4

4. (21)

Moreover, if En is given by Equation (12), we have

En = Ẽn +O(hτ). (22)

Proof. From (16) and (19), we have

En = 2Qn − ‖Un
t ‖

2 +O(hτ). (23)

In addition, from Equations (22), and (11), we obtain

Ẽn +O(hτ) = Ẽn−1 +O(hτ). (24)

Hence, result (20) follows from Equation (24), and result (22) follows from
Equation (23). This completes the proof.

It should be pointed out that even though our numerical scheme (6) (with two-time-
level split approximation) is second order, it does not immediately follow that every discrete
quantity that will be conserved will also be conserved up to second order. As we have
shown in Theorems 1–3, if a discrete quantity, such as Qn, ‖Un

t ‖
2, or Ẽn is defined using

only the nth time level, then each one of them will be conserved up to order one. On the
other hand, the discrete energy En defined at two time levels n and (n + 1) is shown to be
conserved (Theorem 2) without any order restrictions.

3. Some a Priori Estimates for the Numerical Solutions

In this section, we will obtain some a priori estimates for the numerical solutions of
the scheme (6). Our work makes use of the lemmas presented in [32].

Lemma 2 (Discrete Sobolev’s Estimate). For any discrete function {un
m | m = 0, 1, . . . , M} on

the finite interval [xL, xR], there is the inequality

‖un‖∞ ≤ ε‖un
x‖+ C(ε)‖un‖,

where ε and C(ε) are two constants independent of {un
m | m = 0, 1, . . . , M} and step length h.

Lemma 3 (Gronwall’s Inequality). Suppose that the nonnegative mesh functions {w(n), ρ(n) |
n = 1, 2, . . . , N; Nτ = T} satisfy the inequality

w(n) ≤ ρ(n) + τ
n

∑
l=1

Blw(l),

where Bl (l = 1, 2, . . . , N) are nonnegative constants. Then, for any 0 ≤ n ≤ N, there is

w(n) ≤ ρ(n) exp

(
nτ

n

∑
l=1

Bl

)
.
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Theorem 4. Assume that U0(x) ∈ H1, U1(x) ∈ L2 and

|Un
m| ≤ C, ∀m = 0, 1, 2, . . . , M, (25)

then the following estimates hold:

‖Un
t ‖ ≤ C, ‖Un

x ‖ ≤ C, ‖Un‖ ≤ C, ‖Un‖4 ≤ C, ‖Un‖∞ ≤ C.

Proof. From Equation (11), we have

‖Un
t ‖

2 + 1
2

(∥∥∥Un+1
x

∥∥∥2
+ ‖Un

x ‖
2
)
+ β

4

(∥∥∥Un+1
∥∥∥4

4
+ ‖Un‖4

4

)
= C + α

2

(∥∥∥Un+1
∥∥∥2

+ ‖Un‖2
)

.

In addition, from Equation (25), we obtain

‖Un‖ =

√√√√h
M

∑
m=0

(Un
m)

2 ≤ C.

Therefore, it follows from the last two equations that

‖Un
t ‖

2 + 1
2

(∥∥Un+1
x
∥∥2

+ ‖Un
x ‖

2
)
+ β

4

(∥∥Un+1
∥∥4

4 + ‖U
n‖4

4

)
= C + α

2

(∥∥Un+1
∥∥2

+ ‖Un‖2
)
≤ C.

Hence, we obtain

‖Un
t ‖ ≤ C, ‖Un

x ‖ ≤ C, ‖Un‖4 ≤ C.

In addition, we can obtain the following estimate by Lemma 2:

‖Un‖∞ ≤ C.

This completes the proof.

4. Convergence and Stability of the Difference Scheme

In this section, we will discuss the convergence and the stability of the difference
scheme (6)–(8). First, we define the truncation error by

rn
m = (u(xm, tn))tt̄ − 1

2 (u(xm, tn+1) + u(xm, tn−1))xx̄ − α
2 (u(xm, tn+1) + u(xm, tn−1))

+
β
4 (u(xm, tn+1) + u(xm, tn−1))((u(xm, tn+1))2 + (u(xm, tn−1))2) = 0.

(26)

Lemma 4. Assume that the conditions of Theorem 4 are satisfied, and u(x, t) ∈ C4,4, then the
truncation error of the difference scheme (6)–(8) satisfies

|rn
m| = O(τ2 + h2) as τ → 0, h→ 0.

By Taylor’s expansion, Lemma 4 can be proved directly. Moreover, we note that the
approximation of the initial condition (7) has the truncation error of order O(τ2), which is
consistent with the scheme.

Now, we are going to analyze the convergence of the difference scheme (6)–(8). Let
us set

en
m = u(xm, tn)−Un

m.

Theorem 5. Assume that the conditions of Lemma 4 are satisfied. Then the solution of the difference
scheme (6)–(8) converges to the solution of the problem stated in (2)–(4) with order O(τ2 + h2)
in the L∞ norm for Un.
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Proof. Subtracting (6) from (26), we obtain

rn
m = (en

m)tt̄ − 1
2 (e

n+1
m + en−1

m )xx̄ − α
2 (e

n+1
m + en−1

m )

+ β
4 (u(xm, tn+1) + u(xm, tn−1))((u(xm, tn+1))2 + (u(xm, tn−1))2)

− β
4 (U

n+1
m + Un−1

m )((Un+1
m )2 + (Un−1

m )2).
(27)

Then computing the inner product of (27) with en+1 − en−1, we have

‖en
t ‖

2 −
∥∥∥en−1

t

∥∥∥2
+ 1

2 (
∥∥∥en+1

x

∥∥∥2
−
∥∥∥en−1

x

∥∥∥2
) = α

2 (
∥∥∥en+1

∥∥∥2
−
∥∥∥en−1

∥∥∥2
) + R1 − R2,

where

R1 = h
M
∑

m=0
rn

m(en+1
m − en−1

m ) = hτ
M
∑

m=0
rn

m(en
m + en−1

m )t

and

R2 = βh
4

M
∑

m=0

[
(u(xm, tn+1) + u(xm, tn−1))((u(xm, tn+1))2 + (u(xm, tn−1))2)

−(Un+1
m + Un−1

m )((Un+1
m )2 + (Un−1

m )2)
]
(en+1

m − en−1
m ).

Using Young’s inequality ab ≤ 1
4 a2 + b2, we have

R1 = hτ
M
∑

m=0
rn

m(en
m + en−1

m )t = hτ
M
∑

m=0

[
rn

m(en
m)t + rn

m(en−1
m )t

]
≤ hτ

M

∑
m=0

[
1
4
(rn

m)
2 + (en

m)t(en
m)t +

1
4
(rn

m)
2 + (en−1

m )t(en−1
m )t

]

= hτ
M

∑
m=0

[
1
2
(rn

m)
2 + (en

m)t(en
m)t + (en−1

m )t(en−1
m )t

]

= τ

[
1
2
‖rn‖2 + ‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
]
≤ Cτ

[
‖rn‖2 + ‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
]

and

R2 = βh
4

M
∑

m=0

[
(u(xm, tn+1) + u(xm, tn−1))((u(xm, tn+1))2 + (u(xm, tn−1))2)

−(Un+1
m + Un−1

m )((Un+1
m )2 + (Un−1

m )2)
]
(en+1

m − en−1
m )

= βh
4

M
∑

m=0

[
(u(xm, tn+1))2 + (u(xm, tn−1))2](en+1

m + en−1
m )(en+1

m − en−1
m )

+ βh
4

M
∑

m=0

[
u(xm, tn+1) + Un+1

m
]
en+1

m (en+1
m − en−1

m )

+ βh
4

M
∑

m=0

[
u(xm, tn−1) + Un−1

m
]
en−1

m (en+1
m − en−1

m )

= βhτ
4

M
∑

m=0

[
(u(xm, tn+1))2 + (u(xm, tn−1))2](en+1

m + en−1
m )(en

m + en−1
m )t

+ βhτ
4

M
∑

m=0

[(
u(xm, tn+1) + Un+1

m
)
en+1

m +
(
u(xm, tn−1) + Un−1

m
)
en−1

m
]
(en

m + en−1
m )t

≤ βhτ
4

M
∑

m=0

[
ũ2 + ũ2]∣∣en+1

m + en−1
m
∣∣∣∣(en

m + en−1
m )t

∣∣
+ βhτ

4

M
∑

m=0

∣∣(ũ + C)en+1
m + (ũ + C)en−1

m
∣∣∣∣(en

m + en−1
m )t

∣∣
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≤ Chτ
M
∑

m=0

∣∣en+1
m + en−1

m
∣∣∣∣(en

m + en−1
m )t

∣∣+ Chτ
M
∑

m=0

∣∣en+1
m + en−1

m
∣∣∣∣(en

m + en−1
m )t

∣∣
≤ Chτ

M
∑

m=0

∣∣en+1
m + en−1

m
∣∣∣∣(en

m + en−1
m )t

∣∣
≤ Chτ

M
∑

m=0

1
4
(
en+1

m + en−1
m
)2

+ Chτ
M
∑

m=0

[
(en

m + en−1
m )t

]2
≤ Chτ

M
∑

m=0

(
en+1

m + en−1
m
)2

+ Chτ
M
∑

m=0

[
(en

m + en−1
m )t

]2
= Cτ

∥∥en+1 + en−1
∥∥2

+ Cτ
∥∥∥en

t + en−1
t

∥∥∥2

≤ Cτ

[∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
+ ‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
]

≤ Cτ

[
‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
+
∥∥en+1

x
∥∥2

+ ‖en
x‖

2 +
∥∥en−1

x
∥∥2

+
∥∥en+1

∥∥2
+ ‖en‖2 +

∥∥en−1
∥∥2
]

,

where
ũ = max{|u(xm, tn)| : 0 ≤ m ≤ M, 0 ≤ n ≤ N}.

Therefore,

‖en
t ‖

2 −
∥∥∥en−1

t

∥∥∥2
+ 1

2 (
∥∥en+1

x
∥∥2 −

∥∥en−1
x
∥∥2
) + α

2 (
∥∥en+1

∥∥2 −
∥∥en−1

∥∥2
)

= α(
∥∥en+1

∥∥2 −
∥∥en−1

∥∥2
) + R1 − R2

≤ α(
∥∥en+1

∥∥2
+
∥∥en−1

∥∥2
) + R1 + R2,

where

R1 ≤ Cτ

[
‖rn‖2 + ‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
]

and

R2 ≤ Cτ

[
‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
+
∥∥en+1

x
∥∥2

+ ‖en
x‖

2 +
∥∥en−1

x
∥∥2

+
∥∥en+1

∥∥2
+ ‖en‖2 +

∥∥en−1
∥∥2
]

.

So, we have

‖en
t ‖

2 −
∥∥∥en−1

t

∥∥∥2
+ 1

2 (
∥∥en+1

x
∥∥2 −

∥∥en−1
x
∥∥2
) + α

2 (
∥∥en+1

∥∥2 −
∥∥en−1

∥∥2
)

≤ α(
∥∥en+1

∥∥2
+
∥∥en−1

∥∥2
) + R1 + R2

≤ α(
∥∥en+1

∥∥2
+
∥∥en−1

∥∥2
) + Cτ

[
‖rn‖2 + ‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
]

+Cτ

[
‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
+
∥∥en+1

x
∥∥2

+ ‖en
x‖

2 +
∥∥en−1

x
∥∥2

+
∥∥en+1

∥∥2
+ ‖en‖2 +

∥∥en−1
∥∥2
]

≤ Cτ

[
‖rn‖2 + ‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
+
∥∥en+1

x
∥∥2

+ ‖en
x‖

2 +
∥∥en−1

x
∥∥2

+
∥∥en+1

∥∥2
+ ‖en‖2 +

∥∥en−1
∥∥2
]

= Cτ‖rn‖2 + Cτ

[
‖en

t ‖
2 +

∥∥∥en−1
t

∥∥∥2
+
∥∥en+1

x
∥∥2

+ ‖en
x‖

2 +
∥∥en−1

x
∥∥2

+
∥∥en+1

∥∥2
+ ‖en‖2 +

∥∥en−1
∥∥2
]
.

(28)

Let
Bn = ‖en

t ‖
2 + 1

2 (
∥∥∥en+1

x

∥∥∥2
+ ‖en

x‖
2) + α

2 (
∥∥∥en+1

∥∥∥2
+ ‖en‖2),
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then by (28) and Lemma 4, we have

Bn − Bn−1 ≤ Cτ‖rn‖2 + Cτ(Bn + Bn−1)
≤ Cτ(h2 + τ2)2 + Cτ(Bn + Bn−1).

(29)

Summing (29) up for n (1 ≤ n ≤ N), we obtain

Bn − B0 ≤ Cnτ(h2 + τ2)2 + Cτ
n
∑

l=0
Bl

≤ Cτ(h2 + τ2)2 + Cτ
n
∑

l=0
Bl

≤ Cτ
(
(h2 + τ2)2 + B0)+ Cτ

n
∑

l=1
Bl ,

and hence, we have

Bn ≤ B0 + Cτ
(

B0 + (h2 + τ2)2)+ Cτ
n
∑

l=1
Bl

≤ Cτ
(

B0 + (h2 + τ2)2)+ Cτ
n
∑

l=1
Bl .

Applying Gronwall’s inequality (Lemma 3), we obtain

BN ≤
(

B0 + C(h2 + τ2)2) exp(CNτ)
≤ C

(
B0 + (h2 + τ2)2).

Therefore, we obtain∥∥eN
t
∥∥2

+ 1
2 (
∥∥eN+1

x
∥∥2

+
∥∥eN

x
∥∥2
) + α

2 (
∥∥eN+1

∥∥2
+
∥∥eN

∥∥2
) ≤ C

(
B0 + (h2 + τ2)2). (30)

From the discrete initial conditions, we know that e0 and e1 are of second-order
accuracy, then

B0 = O(τ2 + h2)2.

Hence, the following inequalities can be obtained by (30):∥∥eN
t
∥∥ ≤ O(τ2 + h2),

∥∥eN
x
∥∥ ≤ O(τ2 + h2),

∥∥eN
∥∥ ≤ O(τ2 + h2).

It follows from Lemma 2 that∥∥∥eN
∥∥∥

∞
≤ O(τ2 + h2).

This completes the proof of Theorem 5.

It should be remarked that since our boundary value problem (2)–(4) involves second
derivatives of u(x, t) in time and space, in order for the difference scheme (6)–(8) to be a
consistent second order method in both time and space, foundational theory in numerical
analysis dictates that u(x, t) ∈ C4,4 (also, see [31]). If for example, u(x, t) ∈ C3,3, still the
finite difference scheme (6)–(8) works, but now, it will be a consistent first order method in
both time and space, i.e., u(x, t) ∈ C4,4 is not an essential condition for the method to be
consistent.

In the same way as above and under the conditions of Theorem 5, we can also prove
that the solution Un of the difference scheme (6)–(8) is stable in the sense of norm ‖ . ‖∞.

5. Numerical Results

In this section, we will test the efficiency of our numerical scheme by considering a
number of simulations. A predictor–corrector idea is employed to deal with the nonlinearity
which appears in the problem.
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Let us first define the “error” functions as

‖en‖∞ = sup
0≤m≤M

|u(xm, tn)−Un
m|

and

‖en‖ =

√√√√h
M

∑
m=0

(u(xm, tn)−Un
m)

2.

Bell Solitary Wave Solution

We consider the following initial boundary value problem of the Klein–Gordon equa-
tion with cubic nonlinearity

utt − uxx = αu− βu3, 0 < x < 40, 0 < t < T, (31)

subject to the initial conditions

u(x, 0) =
√

2α
β sech

(√
α

c2−1 x
)

,

ut(x, 0) = αc
√

2
β(c2−1) tanh

(√
α

c2−1 x
)

sech
(√

α
c2−1 x

)
, 0 ≤ x ≤ 40,

and the homogenous Dirichlet boundary conditions

u(0, t) = 0, u(40, t) = 0, 0 ≤ t ≤ T.

Note that the initial conditions are derived from the exact solitary wave solution of (31)
given by [33]

u(x, t) =
√

2α
β sech

(√
α

c2−1 (x− ct)
)

, |c| > 1. (32)

This exact solution is of bell shape and represents a soliton which travels with velocity

c and whose amplitude is
√

2α
β . The exact solution u(x, t) of the above initial boundary

value problem satisfies the following energy identity:

E =

40∫
0

[
(∂tu)2 + (∂xu)2 − αu2 +

β

2
u4
]

dx =

40∫
0

4 α2
(

cosh2
(√

α
c2−1 (x− 20)

)
− 1
)

β (c2 − 1) cosh4
(√

α
c2−1 (x− 20)

)
dx

=

4 α2 sinh
(√

α
c2−1 (x− 20)

)(
cosh2

(√
α

c2−1 (x− 20)
)
− 1
)

3 β (c2 − 1)
√

α
c2−1 cosh3

(√
α

c2−1 (x− 20)
)


x=40

x=0

= const.

This is fairly straightforward and is obtained by applying Equation (32) in Equation (5)
at t = 0. For our computations, we consider parameters α = 1, β = 1

π2 , and c = 1.5. Hence,
the approximate value of the constant E is

E ≈ 2.385139 π2 ≈ 23.5403801.

Since (6)–(8) is a three-time-level numerical scheme, in order to get the computer
simulation started, at the beginning, we need initial values at two different time levels. For
our computations of bell solitary wave solution and kink solitary solution, respectively,
these initial values were obtained from u(x, 0) and ut(x, 0) making use of the respective
exact solutions given by (32) and (33).

In Figure 1, the solitary wave computed by the numerical scheme (6)–(8) is com-
pared with the wave of exact solution at time T = 5. As one can see, both waves are
indistinguishable—the numerical solution simply overlaps the exact solution.
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Figure 1. U computed by the numerical scheme (6)–(8) with h = 0.1 and τ = 0.0125. Comparison
between the exact solution and the numerical solution at time T = 5. Initial condition (solid line);
exact solution (dotted line); and numerical solution (dashed line).

The curves of discrete energy En and discrete quantities Ẽn, Qn, and ‖Un
t ‖

2 obtained by
the numerical scheme (6)–(8) at a larger T value (T = 7) are plotted in Figure 2. The figure
shows that the numerical scheme (6)–(8) possesses very good conservation properties
when compared to the theoretical results.

Figure 2. Discrete energy En and discrete quantities Ẽn, Qn, and ‖Un
t ‖

2 computed by the numerical
scheme (6)–(8) with h = 0.1 and τ = 0.0125 at time T = 7. En (Up-Left); Ẽn (Up-Right); Qn

(Down-Left); and ‖Un
t ‖

2 (Down-Right).

In order investigate the influence of the time-step size τ, the computations were
repeated with a fixed space step h = 0.1 and a different time-step size τ = 0.0125. Figure 3
shows the sensitivities of En, Ẽn, Qn, and ‖Un

t ‖
2 to the time-step size τ. We can easily see

that the discrete quantities Ẽn, Qn, and ‖Un
t ‖

2 are more sensitive than the discrete energy
En to the changing of the time-step size τ.
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Figure 3. Discrete energy En and discrete quantities Ẽn, Qn, and ‖Un
t ‖

2 computed by the numerical
scheme (6)–(8) with h = τ = 0.1 at time T = 7. En (Up-Left); Ẽn (Up-Right); Qn (Down-Left); and
‖Un

t ‖
2 (Down-Right).

Kink Solitary Wave Solution

Now, let us consider the following kink solitary wave solution of (31) given by [33]

u(x, t) =
√

α
β tanh

(√
α

2(1−c2)
(x− ct)

)
, |c| < 1. (33)

This kink solution approaches ±
√

α
β as ξ = x − ct → ±∞. So, for solving (31),

initial conditions can be obtained from this exact solution (Equation (33)) along with the
boundary conditions given by

u(0, t) = −
√

α
β , u(40, t) =

√
α
β , 0 ≤ t ≤ T.

For computations, we choose α = 1, β = 1
π2 . We solved (31) with the numerical scheme

(6)–(8) for different velocities c and several values of τ and h.
Figure 4 shows the comparison between the exact solution and the numerical solution

with h = 0.1 and τ = 0.0125 at time T = 50 for c = 0.1. One can easily see that the solitary
wave solution computed by the numerical scheme (6)–(8) agrees very well with the exact
solution. In addition, the curves of discrete energy En and discrete quantities Ẽn, Qn, and
‖Un

t ‖
2 obtained by the numerical scheme (6)–(8) are plotted in Figure 5. This shows that

the numerical scheme (6)–(8) possesses extremely good conservation properties.



Fractal Fract. 2022, 6, 461 14 of 18

Figure 4. U computed by the numerical scheme (6)–(8) with h = 0.1 and τ = 0.0125. Comparison
between the exact solution and the numerical solution at time T = 50. Initial condition (solid line);
exact solution (dotted line); and numerical solution (dashed line).

Figure 5. Discrete energy En and discrete quantities Ẽn, Qn, and ‖Un
t ‖

2 computed by the numerical
scheme (6)–(8) with h = 0.1 and τ = 0.0125 at time T = 50. En (Up-Left); Ẽn (Up-Right); Qn

(Down-Left); and ‖Un
t ‖

2 (Down-Right).

Table 1 gives the numerical errors for the scheme (6)–(8) with different h and τ at time
T = 50. In fact, the errors are presented for mesh widths h and time steps τ as they are
halved. Using simple arithmetic, one can easily verify that the L∞ error decreases as second
order in time and space when τ and h are halved. Tables 2 and 3 show the conservation of
discrete energy En and discrete quantities Ẽn, Qn, and ‖Un

t ‖
2 computed by the numerical

scheme (6)–(8) with h = τ = 0.1 at time T = 10, 20, 30, 40, and 50. Moreover, Table 4 gives
the errors between exact and approximate discrete energies and quantities with different
velocities at different times in the case when h = 0.1 and τ = 0.0125.
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Table 1. The numerical errors for different h and τ at time T = 50.

c = 0.1 h = 0.1 h = 0.05

‖en‖∞ ‖en‖ ‖en‖∞ ‖en‖
τ = 0.1 6.4229947× 10−3 8.4036315× 10−3 1.7938245× 10−3 2.3492447× 10−3

τ = 0.05 6.1916631× 10−3 8.1103089× 10−3 1.5889166× 10−3 2.0859734× 10−3

τ = 0.025 6.1110808× 10−3 8.0373959× 10−3 1.5329330× 10−3 2.0216974× 10−3

τ = 0.0125 6.0895241× 10−3 8.0190648× 10−3 1.5191884× 10−3 2.0056431× 10−3

c = 0.1 h = 0.025 h = 0.0125

‖en‖∞ ‖en‖ ‖en‖∞ ‖en‖
τ = 0.1 6.37524510× 10−4 8.38629564× 10−4 3.48616848× 10−4 4.61523940× 10−4

τ = 0.05 4.42980854× 10−4 5.82593914× 10−4 1.56742018× 10−4 2.06995681× 10−4

τ = 0.025 3.94393863× 10−4 5.20513898× 10−4 1.10009011× 10−4 1.45397726× 10−4

τ = 0.0125 3.82361297× 10−4 5.05042927× 10−4 9.84232136× 10−5 1.30065000× 10−4

Table 2. Discrete energy En and discrete quantities Ẽn, Qn, and ‖Un
t ‖

2 with h = τ = c = 0.1.

c = 0.1 En Ẽn Qn ‖Un
t ‖

2

T = 10 −179.184654861638 −179.184653840830 −89.54557482415776 0.09350419251447
T = 20 −179.184654890734 −179.184653061841 −89.54557787387751 0.09349731408601
T = 30 −179.184654919834 −179.184652734929 −89.54558438427085 0.09348396638753
T = 40 −179.184654948939 −179.184652618482 −89.54559308985157 0.09346643877978
T = 50 −179.184654978049 −179.184652779509 −89.54560187973719 0.09344902003472

Table 3. Discrete energy En and discrete quantities Ẽn, Qn, and ‖Un
t ‖

2 with h = τ = 0.1 and c = 0.2.

c = 0.2 En Ẽn Qn ‖Un
t ‖

2

T = 10 −178.894785975667 −178.894779071216 −89.25749397503454 0.37979112114713
T = 20 −178.894786093736 −178.894775141725 −89.25753221833852 0.37971070504812
T = 30 −178.894786211828 −178.894775717560 −89.25758719130271 0.37960133495474
T = 40 −178.894786329945 −178.894779939288 −89.25763320390750 0.37951353147354
T = 50 −178.894786448089 −178.894786332554 −89.25766841880310 0.37944949494802

Table 4. The errors between exact and approximate discrete energies and quantities with different
velocities at different times.

Velocity Time |Ên− En| | ˜̂En− Ẽn| |Q̂n−Qn|
∥∥Ûn

t
∥∥2−‖Un

t ‖
2

c = 0.1 T = 1 1.9263239× 10−8 3.5616346× 10−7 1.7027686× 10−5 3.3699209× 10−5

T = 5 1.9263836× 10−8 2.9341919× 10−8 6.3929299× 10−6 1.2815201× 10−5

T = 10 1.9264291× 10−8 1.2115395× 10−7 7.3275363× 10−6 1.4776226× 10−5

c = 0.2 T = 1 3.2929548× 10−7 1.2054303× 10−6 7.6424689× 10−5 1.5164394× 10−4

T = 5 3.2929474× 10−7 5.2233454× 10−7 3.1137188× 10−5 6.2796710× 10−5

T = 10 3.2929548× 10−7 9.6851493× 10−7 3.8699464× 10−5 7.8367444× 10−5

c = 0.3 T = 1 1.8083146× 10−6 1.8153764× 10−6 1.9013949× 10−4 3.7846360× 10−4

T = 5 1.8083150× 10−6 2.7416199× 10−6 9.0616743× 10−5 1.8397510× 10−4

T = 10 1.8083162× 10−6 3.9544104× 10−6 1.3546068× 10−4 2.7487579× 10−4

Figures 6 and 7 show the error functions ‖en‖∞ and ‖en‖ with c = 0.2, h = 0.1, and
τ = 0.05, 0.025, 0.015, and 0.01 at time T = 1. The error functions are computed at different
values for α and β. Hence, for a small velocity c, the number of error oscillations decreases
as α decreases and β increases—i.e., when the cubic term dominates the linear term in the
Klein–Gordon nonlinearity.
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Figure 6. The error functions ‖en‖∞ and ‖en‖ computed when α equals 0.8, 0.9, 1.0, 1.1, and 1.2 and
β equals 0.8, 0.9, 1.0, 1.1, and 1.2.

Figure 7. The error functions ‖en‖∞ and ‖en‖ computed when α equals 0.1, 0.2, 0.3, and 0.4 and β

equals 7, 8, 9, and 10.

6. Conclusions

In this paper, we constructed a finite difference scheme that conserves the discrete
energy (and some other discrete quantities) for solving the Klein–Gordon equation with
cubic nonlinearity. Theoretical analysis is provided to show the conservation properties
of the numerical scheme. In addition, we obtain theoretical error estimates and prove the
stability and the convergence of the scheme. Finally, we carry out a number of computer
simulations using the scheme. In particular, we consider the cases where the solutions are
either traveling pulses or traveling wave fronts. The numerical simulations demonstrate
that our method performs very well in both instances—conserving the discrete energies
and producing accurate and stable solutions. One observation is that if it is imperative
to conserve the other discrete quantities along with the discrete energy, one may have to
choose a smaller time step. This is because since the conservation of the discrete quantities
are correct up to the order of the spatial mesh and the time step, at instances, some of
the discrete quantities, other than the discrete energy, are susceptible to an increasing
time step. However, this does not affect the performance of our method. One can still
conserve the discrete energy and obtain excellent numerical results that are stable and
accurate. In addition, in the case of traveling wave fronts with low speeds, we find that our
scheme performs well (with no error oscillations) if the cubic term is dominant compared
to the linear term (i.e., larger β and smaller α). As we noted in the introduction, there
are a few energy conserving explicit finite difference schemes in the literature for solving
the Klein–Gordon equation. However, because of the explicitness, the stability of these
schemes is conditional resulting in restrictive choices for the spatial mesh width and time
step. In contrast, since our energy-conserving scheme is an implicit scheme, the stability is
unconditional, and we do not have any restrictions on the spatial mesh width or the time
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step. As pointed out in [29], an energy-conserving scheme is very suitable for studying
the long-time behavior of wave solutions. For example, the wave collisions and resonance
behavior that were studied decades ago in [4] could be well understood if one employs an
implicit method such as ours that does not dissipate energy. At this juncture, one should
note that another interesting equation with cubic nonlinearity is the nonlinear Schrödinger
equation [34]. An energy-conserving circularly exact leapfrog scheme was developed in [34]
to study the nonlinear Schrödinger equation. However, our work could be easily modified
to study the nonlinear Schrödinger equation as well. Further, this work could be extended
to Klein–Gordon equations with other nonlinearities. For instance, if the nonlinear term in
Equation (2) is β uq, where q = 2p − 1 and p is any positive integer (note that, p = 2 gives
u3), one could construct a numerical scheme such that in Equation (6), the nonlinear term
is split judiciously as

for p = 2

β

22

(
Um

n+1 + Um
n−1
)((

Um
n+1
)2

+
(

Um
n−1
)2
)

,

for p = 3

β

23

(
Um

n+1 + Um
n−1
)((

Um
n+1
)2

+
(

Um
n−1
)2
)((

Um
n+1
)4

+
(

Um
n−1
)4
)

,

for p = 4

β

24

(
Um

n+1 + Um
n−1
)((

Um
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and more generally as,
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· · ·
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n+1
)r

+
(

Um
n−1
)r)

,

where r = 2(p−1). Then, as in Section 2, one could proceed to show that the scheme will be
energy conserving for any positive integer p. So, the idea of re-arranging the nonlinearity in
a judicious manner could even be adopted in combination with the standard discretization
of fractional derivatives in order to develop new and efficient numerical schemes for the
fractional nonlinear Klein–Gordon equations. Therefore, we believe that our work adds to
the body of knowledge with regards to the computational study of Klein–Gordon equations.
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