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Abstract: In this paper, we investigate a duopolistic market with heterogeneous firms under the
assumptions of an isoelastic demand and quadratic costs. We obtain the sufficient and necessary
condition of the local stability of the Cournot–Nash equilibrium and analytically compare it with
that of the analogue model under linear rather than quadratic costs. By approaches of symbolic
computation, we prove that diseconomies of scale have an effect of stabilizing the game provided
that the cost parameters are large enough. Moreover, by means of numerical simulations, we find
that our model loses its stability only through a period-doubling bifurcation, which is different from
its analogue having two possible routes to chaotic dynamics.

Keywords: heterogeneous duopoly; isoelastic demand; diseconomies of scale

1. Introduction

There are two common market structures: perfect competition and monopoly. In the
first case, the market has many relatively small companies competing with each other.
In the second case, one single supplier takes over the whole market. Between these two
cases, there exists another market form called oligopoly, where a small number of firms
produce identical products. It is well-known that Cournot [1] first introduced the formal
oligopoly theory in 1838. In his seminal work, a static duopoly model was investigated,
where each firm is supposed to have perfect information about its rival’s strategic behavior.

Since then, a number of dynamic oligopoly games have been explored, where the
market demand function is usually supposed to be linear, e.g., [2,3]. However, the assump-
tion of a linear demand function is not always realistic. To address this concern, Puu [4]
proposed a discrete Cournot duopoly model under an isoelastic market demand curve with
price simply the reciprocal sum of two firms’ outputs and showed that complex dynamics
such as periodic orbits and chaos could easily take place. A lot of studies are motivated
by Puu’s work, e.g., [5–12], with many fruitful and interesting results in the direction
of investigating complicated dynamics of various duopoly models, where the modern
mathematics of nonlinear dynamics and complexity theory has been intensively applied.

In the literature on oligopolistic games, a homogeneous oligopoly often refers to an
oligopoly game where firms adopt identical strategies to adjust their behavior. In com-
parison, a heterogeneous oligopoly model employs the assumption that the players use
different rules to decide their behavior. The latter is more realistic since it is rare that differ-
ent firms behave according to the same rules among a large number of possible strategies.
In ecology, it is well-known that it is impossible for species with identical niches can coexist
indefinitely according to the competitive exclusion principle. This principle also applies to
economics. In the real economy, we often observe that companies with different business
strategies coexist in the same industry due to different risk preference and asymmetric
information. But, homogeneous firms in a number of industries, e.g., the Internet industry,
can just coexist temporarily before the state of the economic system reaches the equilibrium.
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In this regard, our work focuses on the heterogeneous duopoly game by coupling a gradient
adjusting mechanism with a naive expectation mechanism.

In this paper, we employ the same isoelastic demand function as Puu’s model [4],
but we introduce nonlinear cost functions to investigate how diseconomies of scale affect the
dynamic behavior of a heterogeneous duopoly game with a boundedly rational player and
a naive player. Under the same demand but linear cost functions, the analogue of our model
has been investigated by Tramontana [13]. However, in our model, the two duopolists
are assumed to have quadratic costs, which may be important in several applications.
For instance, Bischi and others [14] proposed a fishery model based on a Cournot oligopoly
game where n profit-maximizing players harvest fish and sell their catch on several markets.
They used a Cobb–Douglas production function with fishing effort and fish stock as the
two inputs and derived that the harvesting costs depend on the square of the harvested
quantity. The nonlinearity of firms’ costs permits us to extend the applications of the
Cournot theory to oligopolistic markets under diseconomies of scale. Related to our
research is [3], where Dubiel-Teleszynski studied a heterogeneous Cournot duopoly game
with boundedly rational and adaptive players. The difference is that a linear rather than an
isoelastic demand function is used in Dubiel-Teleszynski’s model.

Using approaches of symbolic computation [15], we find that, if the cost parameters
are large enough, diseconomies of scale have an effect of stabilizing the heterogeneous
duopoly game considered in this paper. This finding is consistent with the result discovered
by Fisher [2] as well as by McManus and Quandt [16], that increasing marginal cost is
a stabilizing influence for oligopolies with n players. It should be mentioned that these
studies considered only homogeneous mechanisms of adjusting firms’ outputs and a linear
demand function. However, we introduce heterogeneous agents and a nonlinear demand
to our study. In contrast, Dubiel-Teleszynski’s opposite conclusion that industries facing
diseconomies of scale are less stable than those with constant marginal costs surprises us.
Specifically, Dubiel-Teleszynski [3] found that the region of stability of his model under the
framework of increasing marginal costs is smaller than its analogous game found by Agiza
and Elsadany [17] under linear instead of quadratic cost functions. In addition, this paper
unveils another crucial difference between our model and its analogue by Tramontana [13]:
our model loses its local stability only through a period-doubling bifurcation, but for
Tramontana’s, there exist two possible routes, through a period-doubling bifurcation and a
Neimark–Sacker bifurcation, to complicated dynamics.

Our study contributes to the literature on dynamic oligopoly models in two ways,
i.e., the modeling and the methodology. On the one hand, we explore a duopoly game
under the assumptions of an isoelastic demand function and quadratic costs. It becomes
complicated to investigate oligopoly models when the market demand is nonlinear and
firms’ costs are also nonlinear. To our knowledge, such a model setting is seldom adopted
in the previous literature. On the other hand, we introduce several methods of symbolic
computation, e.g., the triangular decomposition and the partial cylindrical algebraic de-
composition, into the study of dynamics of oligopoly games. We show that symbolic
computation methods could be powerful tools in theoretical economics, such as theorem
proving (see, e.g., the proof of Corollary 1).

The rest of this paper is structured as follows. In Section 2, we propose a heterogeneous
duopoly model under the assumptions of an isoelastic demand and diseconomies of scale.
In Section 3, the unique equilibrium and its local stability of the proposed duopoly are
thoroughly investigated. The stability regions of our model and its analogue with linear
costs are compared analytically and graphically. In Section 4, numerical simulations are
performed to explore complex dynamics such as periodic solutions and chaos of our game.
The paper is concluded with some remarks in Section 5.

2. Model

Let us consider a market with two firms producing identical products. Let q1(t) and
q2(t) denote the outputs of the two firms, respectively, at period t. We assume that the
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market is featured by an isoelastic demand function as in Puu [4], which is based on the
hypothesis of the Cobb–Douglas utility function by the agents. Specifically, the market
inverse demand function is

p(Q) =
1
Q

=
1

q1 + q2
,

where Q = q1 + q2 is the total market supply. Moreover, the cost function of firm i is
assumed to be quadratic, i.e.,

C1(q1) = c1q2
1, C2(q2) = c2q2

2,

where c1 > 0 and c2 > 0 can be seen as shift parameters in these cost functions, respectively.
Then the marginal costs of the two firms are

MC1(q1) = 2c1q1, MC2(q2) = 2c2q2,

which are increasing as the outputs q1 and q2 grow. That is, we say that these two players
have increasing marginal costs or diseconomies of scale.

Under the above assumptions, the profit of firm i at period t would be

Πi(t) =
qi(t)

qi(t) + q−i(t)
− ciq2

i (t), i = 1, 2,

where q−i(t) represents the output of the rival at period t. As a result, the marginal profit
of firm i is

∂Πi(t)
∂qi(t)

=
q−i(t)

(qi(t) + q−i(t))2 − 2 ciqi(t).

Solving the first order condition, i.e., ∂Πi(t)/∂qi(t) = 0, each firm could maximize
its own profit. In the real world, however, it is appropriate to assume that firms cannot
obtain their competitors’ production information in advance, which means that q−i(t + 1)
is unknown at period t + 1.

In our study, the two firms are assumed to adopt heterogeneous strategies of adjusting
their outputs. We suppose that the first firm is a boundedly rational player, which increas-
es/decreases its output according to the information given by the marginal profit of the last
period. In particular, firm 1 could adjust its output at period t + 1 with a gradient mechanism
(also called the myopic adjusting mechanism or the rule of thumb) as

q1(t + 1) = q1(t) + Kq1(t)
∂Π1(t)
∂q1(t)

,

i.e.,

q1(t + 1) = q1(t) + Kq1(t)

[
q2(t)

(q1(t) + q2(t))2 − 2 c1q1(t)

]
where K > 0 is a parameter controlling the adjustment speed. It is worth noting that the
adjustment speed depends upon not only the parameter K but also the size of the first firm
q1(t). One may observe that a boundedly rational player does not need to expect or guess
the output of its rival at the current period.

The second firm, instead, is a naive player, who naively expects the output of its rival
at the current period t + 1 is the same as that of the last period. Therefore, the expected
profit at period t + 1 is

Πe
2(t + 1) =

q2(t + 1)
q2(t + 1) + q1(t)

− c2q2
2(t + 1),
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and its marginal profit is

∂Πe
2(t + 1)

∂q2(t + 1)
=

q1(t)
(q2(t + 1) + q1(t))2 − 2 c2q2(t + 1).

The first order condition for profit maximization yields a cubic polynomial equation,
i.e.,

q1(t)− 2 c2q2(t + 1)(q2(t + 1) + q1(t))2 = 0. (1)

The second firm could maximize its expected profit by solving the above equation.
One can verify that there exists a unique real solution for q2(t + 1) of (1), but its closed-form
expression is quite complex,

q2(t + 1) =
3
√

2 M
6 c2

+
3
√

4 c2q2
1(t)

3 M
− 2 q1(t)

3
, (2)

where

M = 3

√
c2

2q1(t)
(

4c2q2
1(t) + 3

√
3
√

8 c2q2
1(t) + 27 + 27

)
.

For simplicity, we denote (2) as

q2(t + 1) = R2(q1(t)),

where R2 is called the best response function of the second firm.
In short, the model is described as the following two-dimensional iteration map.

q1(t + 1) = q1(t) + Kq1(t)

[
q2(t)

(q1(t) + q2(t))2 − 2 c1q1(t)

]
,

q2(t + 1) = R2(q1(t)).

(3)

It should be noted that this map is not defined on the origin (0, 0).

3. Local Stability

In order to identify the equilibrium, we set q1(t + 1) = q1(t) = q∗1 and q2(t + 1) =
q2(t) = q∗2 . Then 

Kq∗1

[
q∗2

(q∗1 + q∗2)
2 − 2 c1q∗1

]
= 0,

q∗2 = R2(q∗1).

(4)

We acquire the following result.

Theorem 1. The iteration map (3) has one unique equilibrium:

E1 =

[
4
√

c2√
2(
√

c1 +
√

c2) 4
√

c1
,

4
√

c1√
2(
√

c1 +
√

c2) 4
√

c2

]
.

Proof. Recalling that (2) is derived from (1), we know q∗2 = R2(q∗1) is equivalent to

q∗1 − 2 c2q∗2(q
∗
2 + q∗1)

2 = 0. (5)

Moreover, it is satisfied that

Kq∗1

[
q∗2

(q∗1 + q∗2)
2 − 2 c1q∗1

]
= 0,
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thus two possible cases should be considered. If q∗1 = 0, then (5) implies that q∗2 = 0,
which is impossible as map (3) is not defined on the origin (0, 0). If q∗1 6= 0, then we

have q∗2
(q∗1+q∗2)

2 − 2 c1q∗1 = 0, which means q∗2 − 2 c1q∗1(q
∗
1 + q∗2)

2 = 0. One can obtain the

following equations {
q∗2 = 2 c1q∗1(q

∗
1 + q∗2)

2,

q∗1 = 2 c2q∗2(q
∗
2 + q∗1)

2.
(6)

There is a simpler way of solving these two equations. Provided that q∗1 6= 0 and
q∗2 6= 0, dividing the first equation by the second one, we know q∗2/q∗1 = c1/c2 × q∗1/q∗2 ,
from which q∗1 =

√
c2/c1 × q∗2 . Substituting this into (6), one can obtain the equilibrium

E1. However, this is a special case that this solving approach is feasible for we can deduce
the simple relation q∗1 =

√
c2/c1 × q∗2 . Here, we want to show another way of computing

the equilibrium using the triangular decomposition that is suitable for general polynomial
equations. The triangular decomposition method can be viewed as an extension of the
Gaussian elimination method. The main idea of these two methods is to transform an
equation system into a triangular form. However, the triangular decomposition method
is feasible for polynomial systems, while the Gaussian elimination method is only for
linear systems. The readers can refer to [18–22] for more information on the triangular
decomposition.

The triangular decomposition method permits us to decompose the solutions of (6)
into zeros of the following two triangular sets

T1 = [ q∗2 , q∗1 ],

T2 =
[
(4c1c2q∗21 − c2)q∗2 + (2c2

1 + 2c1c2)q∗31 , (4c3
1 − 8c2

1c2 + 4c1c2
2)q
∗4
1 + 8c1c2q∗21 − c2

]
.

The zero of T1 is redundant since map (3) is not defined on the origin (0, 0). The second
polynomial (4c3

1 − 8c2
1c2 + 4c1c2

2)q
∗4
1 + 8c1c2q∗21 − c2 of T2 is a univariate polynomial in q∗1

and could be solved by

4
√

c2√
2(
√

c1 +
√

c2) 4
√

c1
,

− 4
√

c2√
2(
√

c1 +
√

c2) 4
√

c1
,

i 4
√

c2√
2(
√

c1 +
√

c2) 4
√

c1
,

−i 4
√

c2√
2(
√

c1 +
√

c2) 4
√

c1
.

Among them, only the first solution q∗1 =
4√c2√

2(
√

c1+
√

c2) 4√c1
is economically meaningful.

Substituting it into the first polynomial of T2, we can easily compute q∗2 =
4√c1√

2(
√

c1+
√

c2) 4√c2
.

Therefore, the equilibrium E1 is obtained.

It is obvious that the unique equilibrium E1 is the Nash equilibrium of our game,
i.e., the Cournot–Nash equilibrium. Furthermore, the profits of the two firms corresponding
to the Cournot–Nash equilibrium E1 are

Π∗1 =

√
c2(c1 + 2

√
c1c2)

2
√

c1(
√

c1 +
√

c2)
2 , Π∗2 =

√
c1(c2 + 2

√
c1c2)

2
√

c2(
√

c1 +
√

c2)
2 .

We have
Π∗1
Π∗2

=
c2(c1 + 2

√
c1c2)

c1(c2 + 2
√

c1c2)
.

If c1 < c2, then
c2c1 + 2c2

√
c1c2 > c1c2 + 2c1

√
c1c2,

from which it is known that Π∗1
Π∗2

> 1 or Π∗1 > Π∗2 . In other words, a more efficient firm
achieves a higher profit, and vice versa. It is consistent with our economic intuition.
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In order to investigate the local stability of the equilibrium, we consider the Jacobian
matrix of map (3), i.e.,

J(q1, q2) =

1− 2 Kc1q1 + K
q2

2 − q1q2

(q1 + q2)3 K
q2

1 − q1q2

(q1 + q2)3

dR2

dq1
0

. (7)

It is challenging to directly calculate dR2/dq1 as the analytical expression of R2, i.e., (2)
is quite complicated. However, by (1) we have

q1 − 2 c2R2(q1)(R2(q1) + q1)
2 = 0. (8)

One could calculate the derivative of the implicit function, if the derivative does exist,
using the implicit function differentiation. Accordingly, it is acquired that

dR2

dq1
= −

4 c2q1q2 + 4 c2q2
2 − 1

2 c2(q2
1 + 4 q1q2 + 3 q2

2)
.

For simplicity, we denote 4
√

c1 = a and 4
√

c2 = b, then

E1 =

[
b√

2(a + b)a
,

a√
2(a + b)b

]
.

Evaluating at E1, the Jacobian matrix would be

J(E1) =

 (a2+b2)
2−
√

2 a3bK(a2+3b2)
(a2+b2)

2 −
√

2 ab3K(a2−b2)
(a2+b2)

2

a2(a2−b2)
b2(3a2+b2)

0

.

Consequently, the characteristic polynomial of J(E1) is

P(λ) = λ2 − Tr(J)λ + Det(J),

where Tr(J) and Det(J) are the trace and the determinant of J(E1), i.e.,

Tr(J) =
(
a2 + b2)2 −

√
2 a3bK

(
a2 + 3b2)

(a2 + b2)
2 ,

Det(J) =

√
2 a3bK

(
a2 − b2)2

(3a2 + b2)(a2 + b2)
2 .

According to the Jury criterion [23], the conditions of the local stability include:

1. P(1) = 1− Tr(J) + Det(J) > 0,
2. P(−1) = 1 + Tr(J) + Det(J) > 0,
3. 1−Det(J) > 0.

Theorem 2. The unique equilibrium E1 is locally stable if

K <
(
√

c1 +
√

c2)
2(3
√

c1 +
√

c2)
√

2 4
√

c3
1c2(c1 + 6

√
c1
√

c2 + c2)
. (9)
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Proof. The first condition of the local stability is always satisfied as

1− Tr(J) + Det(J) =
4
√

2 a3bK
3a2 + b2 > 0.

Furthermore, the left hand side of the second condition is transformed into

1 + Tr(J) + Det(J) =
2
√

2
(√

2
2
(
a2 + b2)2(3a2 + b2)− a3bK

(
a4 + 6a2b2 + b4))

3a6 + 7a4b2 + 5a2b4 + b6 , (10)

while the left hand side of the third condition is

1−Det(J) =

√
2
(√

2
2
(
a2 + b2)2(3a2 + b2)− a3bK(a− b)2(a + b)2

)
(a2 + b2)

2
(3a2 + b2)

. (11)

Since both of the denominators of (10) and (11) are positive, we only need to check the
sign of their numerators. One can see that

a4 + 6a2b2 + b4 > (a− b)2(a + b)2.

Thus, 1− Tr(J) + Det(J) > 0 implies that 1−Det(J) > 0. Consequently, if
√

2
2

(
a2 + b2

)2(
3a2 + b2

)
− a3bK

(
a4 + 6a2b2 + b4

)
> 0,

or equivalently

K <

(
a2 + b2)2(3a2 + b2)

√
2 a3b(a4 + 6a2b2 + b4)

,

i.e.,

K <
(
√

c1 +
√

c2)
2(3
√

c1 +
√

c2)
√

2 4
√

c3
1c2(c1 + 6

√
c1
√

c2 + c2)
,

the unique equilibrium E1 would be locally stable. The proof is completed.

The analogue of our model, under the same demand function but with linear, instead
of quadratic, cost functions, was investigated by Tramontana [13]. Tramontana’s model
resembles ours also in the sense that it is a heterogeneous duopoly with a boundedly
rational player and a naive player. To compare the features of these two games, we restate
the results of the local stability of Tramontana’s in the following proposition. The readers
can refer to Theorem 1 of [13] for more details. For ease of comparison, the following
proposition is slightly different but equivalent to the original version of Tramontana [13].

Proposition 1. In our model, if we replace the cost functions with C1(q1) = c1q1 and C2(q2) =
c2q2, there exists a unique equilibrium (c2/(c1 + c2)

2, c1/(c1 + c2)
2). Moreover, this equilibrium

is locally stable if L1 < 0 and L2 < 0, where

L1 = K(4c1c2 − (c2 − c1)
2)− 4(c1 + c2), (12)

and
L2 = K(c2 − c1)

2 − 2(c1 + c2). (13)

It is interesting to compare the dynamic behavior of the duopolists in face of decreasing
returns to scale with that of constant returns to scale. For this reason, Dubiel-Teleszynski [3]
investigated a heterogeneous Cournot duopoly game under a linear demand with a bound-
edly rational player and an adaptive player. Dubiel-Teleszynski showed that his model
experiences a decrease in the latitude of the local stability in face of diseconomies of scale
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compared to constant returns to scale. Here, we also compare the region of stability of our
model with the analogue given by Tramontana [13].

It is known that (9) is equivalent to

K
(√

2 4
√

c3
1c2(c1 + 6

√
c1
√

c2 + c2)

)
− (
√

c1 +
√

c2)
2
(3
√

c1 +
√

c2) < 0,

For simplicity, we denote

N = K
(√

2 4
√

c3
1c2(c1 + 6

√
c1
√

c2 + c2)

)
− (
√

c1 +
√

c2)
2
(3
√

c1 +
√

c2).

Then the stability condition of our model is simply N < 0. In Figure 1, we depict
the surfaces of N = 0, L1 = 0 and L2 = 0 in red, blue and green, respectively, using the
implicitplot3d function in Maple 2022.

(a) viewed from the top (b) viewed from the bottom

Figure 1. The 3-dimensional (c1, c2, K) parameter space. The red, blue and green surfaces are N = 0,
L1 = 0 and L2 = 0, respectively.

Furthermore, Figure 2 depicts several 2-dimensional subspaces of parameter values
with one parameter fixed. The curves corresponding to N = 0, L1 = 0 and L2 = 0 are
marked in red, blue and green, respectively. For each subfigure of Figure 2, our model is
locally stable in the region surrounded by the red line and the two axes, while the stability
region of its analogue under linear costs is colored in grey. The implicitplot3d function
only gives us an approximate view of the three surfaces, but some places in Figure 1 seem
inaccurate, e.g., the region around the origin (0, 0, 0). If c2 = c1, then L1 = 0 is transformed
to c1 = 0, i.e., the vertical axis in Figure 2a, which is not precisely captured by Figure 1.
As shown by Figure 2a, given c2 = c1, it is always possible to find a combination of the
parameters c1 and K such that our Cournot–Nash equilibrium E1 and the equilibrium of
Tramontana’s are

• Both locally stable;
• Both locally unstable;
• One locally stable and the other locally unstable.

From Figure 2b,c, similar features as above can be observed. Figure 2b depicts the
special case of the unit speed of adjusting the first firm’s output, i.e., K = 1. In addition,
the other two cases where the second firm has a small (c2 = 1) and a large (c2 = 8) cost pa-
rameter are shown in (c) and (d), respectively. In general, from all the subfigures in Figure 2,
it is observed that a reduction in the cost parameter (c1 or c2) has an effect of enhancing the
local stability for both our model and Tramontana’s. Furthermore, both models would be
destabilized if the speed parameter K of adjustment becomes large enough.



Fractal Fract. 2022, 6, 459 9 of 16

(a) c2 = c1 (b) K = 1

(c) c2 = 1 (d) c2 = 8

(e) c1 = 1 (f) c1 = 17

Figure 2. The 2-dimensional subspaces of the parameter values with one parameter fixed. The curves
corresponding to N = 0, L1 = 0 and L2 = 0 are marked in red, blue and green, respectively. For each
case, the model considered in this paper is locally stable in the region surrounded by the red line and
the two axes; the analogue under linear costs is locally stable in the grey region that is surrounded by
the blue, the green lines and the two axes.
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The comparison between Figure 2c,d (or Figure 2e,f) is quite informative. In (c) or
(e), the stability region of Tramontana’s model is not covered by our model and vice versa.
However, in (d) or (f), it seems that the stability region of Tramontana’s model is strictly
contained in that of our model. Consequently, we conjecture that if c2 or c1 is large enough,
the stability region of our model is strictly larger than that of Tramontana’s. We use the
symbolic computation to formally prove this conjecture in Corollary 1.

Corollary 1. The stability region of map (3) covers that of its analogue under linear costs provided
that c1 > (19/10)4 or c2 > (17/10)4.

Proof. We need to prove that (9) is true if both (12) and (13) are satisfied. This may be
extremely difficult to acquire through a manually mathematical derivation. However, we
provide another proof in a computational style. Denote a = 4

√
c1 and b = 4

√
c2. Then (9) is

equivalent to

CD1 < 0 : K
(√

2 a3b
(

a4 + 6a2b2 + b4
))
−
(

a2 + b2
)2(

3a2 + b2
)
< 0,

while (12) and (13) are transformed into

CD2 < 0 : K(4a4b4 − (b4 − a4)2)− 4(a4 + b4) < 0,

and
CD3 < 0 : K(b4 − a4)2 − 2(a4 + b4) < 0,

respectively. Obviously, the set {(a, b, K) | a > 19/10, b > 0, K > 0} for c1 > (19/10)4 and
the set {(a, b, K) | a, b > 17/10, K > 0} for c2 > (17/10)4 are of our concern.

The main idea of our computational proof is as follows. CD1 = 0, CD2 = 0 and
CD3 = 0 divide {(a, b, K) | a > 19/10, b > 0, K > 0} or {(a, b, K) | a, b > 17/10, K > 0}
into a number of regions. In a fixed region, the signs of CD1, CD2 and CD3 are invariant.
Therefore, we only need to select one sample point from each region, and then determine
the signs of CD1, CD2 and CD3 at these selected sample points. If at all the sample points
where CD1 < 0 and CD2 < 0 are satisfied CD3 < 0 is also true, then it can be concluded
that CD1 < 0 and CD2 < 0 implies CD3 < 0.

For simple cases, sample points could be easily selected. However, in general, the selec-
tion might be extremely complicated and could be automated using, e.g., the partial cylindri-
cal algebraic decomposition (PCAD) method [24]. For the case of c1 > (19/10)4, the PCAD
method permits us to select 44 sample points from the set {(a, b, K) | a > 19/10, b >
0, K > 0}, which are all listed in Table 1. It is observed from Table 1 that at all the sample
points where both CD1 < 0 and CD2 < 0 are true, CD3 < 0 is also true. For the case of
c2 > (17/10)4, we consider {(a, b, K) | a, b > 17/10, K > 0}, where 359 sample points are
selected by our implementation. We do not give the corresponding table due to the space
limitation, but our calculations show that CD1 < 0 and CD2 < 0 also imply CD3 < 0. It
should be noted that all the involved computations are symbolic instead of numerical,
which means the obtained results are precise and imply the correctness of this corollary.

Table 1. Selected Sample Points for {(a, b, K) | a > 19/10, b > 0, K > 0}.

Sample Point of (a, b, K) CD1 < 0 CD2 < 0 CD3 < 0

(a = 77/32, b = 89/128, K = 31/1024) true true true

(a = 77/32, b = 89/128, K = 2189/4096) true false true

(a = 77/32, b = 89/128, K = 97/64) true false false

(a = 77/32, b = 377/256, K = 47/1024) true true true

(a = 77/32, b = 377/256, K = 479/2048) true false true
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Table 1. Cont.

Sample Point of (a, b, K) CD1 < 0 CD2 < 0 CD3 < 0

(a = 77/32, b = 377/256, K = 225/256) true false false

(a = 77/32, b = 209/128, K = 119/2048) true true true

(a = 77/32, b = 209/128, K = 115/512) true false true

(a = 77/32, b = 209/128, K = 31/64) true false false

(a = 77/32, b = 209/128, K = 73/64) false false false

(a = 77/32, b = 227/128, K = 79/1024) true true true

(a = 77/32, b = 227/128, K = 195/1024) true false true

(a = 77/32, b = 227/128, K = 17/64) false false true

(a = 77/32, b = 227/128, K = 207/256) false false false

(a = 77/32, b = 243/128, K = 9/128) true true true

(a = 77/32, b = 243/128, K = 185/1024) false true true

(a = 77/32, b = 243/128, K = 259/1024) false false true

(a = 77/32, b = 243/128, K = 101/128) false false false

(a = 77/32, b = 35/16, K = 39/1024) true true true

(a = 77/32, b = 35/16, K = 343/2048) false true true

(a = 77/32, b = 35/16, K = 321/512) false true false

(a = 77/32, b = 35/16, K = 3/2) false false false

(a = 77/32, b = 667/256, K = 27/1024) true true true

(a = 77/32, b = 667/256, K = 589/4096) false true true

(a = 77/32, b = 667/256, K = 637/1024) false true false

(a = 77/32, b = 667/256, K = 97/64) false false false

(a = 77/32, b = 765/256, K = 27/1024) true true true

(a = 77/32, b = 765/256, K = 325/4096) false true true

(a = 77/32, b = 765/256, K = 343/2048) false false true

(a = 77/32, b = 765/256, K = 187/256) false false false

(a = 77/32, b = 435/128, K = 17/1024) true true true

(a = 77/32, b = 435/128, K = 241/4096) true false true

(a = 77/32, b = 435/128, K = 321/2048) false false true

(a = 77/32, b = 435/128, K = 187/256) false false false

(a = 77/32, b = 943/256, K = 39/4096) true true true

(a = 77/32, b = 943/256, K = 1023/8192) true false true

(a = 77/32, b = 943/256, K = 339/1024) true false false

(a = 77/32, b = 943/256, K = 239/256) false false false

(a = 77/32, b = 969/256, K = 33/4096) true true true

(a = 77/32, b = 969/256, K = 1019/8192) true false true

(a = 77/32, b = 969/256, K = 47/64) true false false

(a = 77/32, b = 555/128, K = 123/32, 768) true true true

(a = 77/32, b = 555/128, K = 1039/8192) true false true

(a = 77/32, b = 555/128, K = 383/512) true false false
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Remark 1. It is difficult but meaningful to find the necessary and sufficient condition that the
stability region of our model covers that of its analogue. However, we should mention that Corollary 1
is close to this necessary and sufficient condition because it can be proved by the symbolic computation
that Corollary 1 would be false if the condition is replaced with c1 > (18/10)4 or c2 > (16/10)4.

For example, if we set

c1=

(
469
256

)4
≈ 1.8324, c2=

(
711
512

)4
≈ 1.3894, K=

133
256
≈ 0.520,

which satisfies that c1 > (18/10)4, then one can verify that

CD1 =
19732367954412426944060794575906178572080970918849

22835963083295358096932575511191922182123945984
> 0,

CD2 = −2978317644286814417291621
1208925819614629174706176

< 0,

CD3 = − 462313018677420397986139
1208925819614629174706176

< 0.

In this case, we know both CD1 < 0 and CD2 < 0 are true does not imply that CD3 < 0 is true.
Moreover, if we set

c1=

(
4973
4096

)4
≈ 1.2144, c2=

(
3279
2048

)4
≈ 1.6014, K=

115
128
≈ 0.898,

which satisfies that c2 > (16/10)4, then we can verify that

CD1 =
1473408087700784653120374786339483004819598680136381150500196337

25711008708143844408671393477458601640355247900524685364822016
> 0,

CD2 = −10587335994218834247243889619379
10141204801825835211973625643008

< 0,

CD3 = − 1090191459559314074736442742157
10141204801825835211973625643008

< 0.

According to Corollary 1, diseconomies of scale stabilize the heterogeneous duopoly
game with a boundedly rational player and a naive player if the cost parameters are
large enough. This conclusion is consistent with the result by Fisher [2] as well as that
by McManus and Quand [16], that increasing marginal cost is a stabilizing influence
for homogeneous oligopolies under linear demand. We should mention that the studies
of [2,16] considered only homogeneous mechanisms of adjusting firms’ outputs and a linear
demand function, but we introduce heterogeneous players and a nonlinear demand to our
study. In contrast, Dubiel-Teleszynski [3] discovered that industries facing diseconomies
of scale are less stable than those facing constant marginal costs, which is different from
our findings.

4. Numerical Simulations

In this section, through numerical simulations, we demonstrate that the dynamic
behavior of a duopoly game in face of diseconomies of scale could be greatly distinct
from its analogue under constant return to scale. Our model would lose its local stability
through a period-doubling bifurcation (P(−1) = 0). Meanwhile, two possible routes to
complicated dynamics exist for its analogue: a cascade of period-doubling bifurcations and
a Neimark–Sacker bifurcation. In the sequel, we keep the two cost parameters c1 and c2
fixed at (c1, c2) = (0.5, 1.0) and vary the adjustment speed K of the first firm. Moreover,
the initial state of the iteration map (3) is assumed to be (x(0), y(0)) = (0.5, 0.5) in our
numerical simulations.

Figure 3 depicts the bifurcation diagrams against q1 and q2 concerning K, which shows
the dynamic behavior in the region of stability and the period-doubling route to chaos.
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An increase in the adjustment speed K has a destabilizing effect if keeping other parameters
fixed. Recalling Figure 2c, one can see that an increase of K brings the point upwards
along the line c1 = 1/2, then crossing the period-doubling bifurcation curve (the red one),
and finally out of the region of stability.

As shown in Figure 3, the unique equilibrium E1 ≈ (0.493, 0.348) is locally stable
if K is less than 1.884. Afterward, a cascade of period-doubling bifurcations leading to
periodic cycles, which is most common in dynamic economic models, can be observed.
In particular, stable period-2 orbits occur when K ∈ (1.884, 2.233), and stable period-4
orbits arise when K ∈ (2.233, 2.297), which are followed by periodic orbits of higher orders.
From an economic point of view, it is quite realistic to assume that boundedly rational firms
cannot learn the pattern behind quantities and profits if long periodic dynamics take place.

(a) against q1 (b) against q2

Figure 3. The bifurcation diagrams of the iteration map (3) with respect to K if fixing the parameters
c1 = 0.5, c2 = 1.0 and setting the initial state as (x(0), y(0)) = (0.5, 0.5). The bifurcation diagrams
against q1 is given in (a), and that against q2 is given in (b).

As K increases from 2.316, our model starts to undergo chaotic dynamics. If chaos
appears, the pattern behind productions and profits is nearly impossible to learn, even
for completely rational players. It is known that chaotic attractors are fractal sets since at
small scales a chaotic attractor is approximately the Cartesian product of a Cantor set and a
line segment; thus it is roughly self-similar and has a box dimension that is not an integer.
Fractal patterns are quite common as nature is full of fractals. Herein, it is discovered
that fractal patterns are also widespread in economic systems. Moreover, at some values
of K greater than 2.316, periodic solutions of odd orders (see Figure 4 for period 5 and
period 7) could be discovered. We also observe other periods, e.g., 6, 10 and 20, through
our numerical simulations.

(a) period 5 (b) period 7

Figure 4. Periodic orbits of odd orders found in the bifurcation diagrams of the iteration map (3)
with respect to K against q1 if fixing the parameters c1 = 0.5, c2 = 1.0 and setting the initial state as
(x(0), y(0)) = (0.5, 0.5). An orbit of period 5 can be observed in (a), and an orbit of period 7 can be
observed in (b).
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Figure 5 shows phase portraits corresponding to four different values of K with the
other parameters fixed and demonstrates the evolution of dynamics after the appearance of
period 5 (also see Figure 4a). After an interval of chaos, periodic solutions of period 5 (see
Figure 5a) arise in our model. As the value of K increases, we can also observe a cascade of
period-doubling bifurcations inside the periodic window. In particular, Figure 5b depicts
the orbit of period 10 after a bifurcation. After that, cyclical chaotic areas can be found (see
the five dark pieces in Figure 5c), which is followed by one piece of the strange attractor (see
Figure 5d). Moreover, it seems that the areas around the original positions of the periodic
orbit are darker in Figure 5d; that is, points nearby the original periodic orbit are more
frequently visited even as chaotic dynamics take place.

(a) K = 2.434835 (b) K = 2.436036

(c) K = 2.437087 (d) K = 2.437237

Figure 5. The phase portraits if fixing the parameters c1 = 0.5, c2 = 1.0 and setting the initial state as
(x(0), y(0)) = (0.5, 0.5).

5. Concluding Remarks

In this paper, we investigated the local stability and the bifurcation of a heteroge-
neous duopoly model under the assumptions of an isoelastic demand and quadratic costs.
The nonlinearity of firms’ costs permits us to extend the applications of the standard
Cournot model to oligopolistic markets in face of diseconomies of scale. In our model, two
firms have different decision mechanisms: one is a boundedly rational player that adopts a
gradient adjusting mechanism; the other is a naive player that has a naive expectation of its
rival’s production plan.

Our work primarily studied how diseconomies of scale affect the dynamic behavior of
a heterogeneous duopoly game under an isoelastic demand. If the cost parameters are large
enough, we found that diseconomies of scale can stabilize the model, which is consistent
with the result by Fisher [2] as well as that by McManus and Quandt [16]. It should be
mentioned that the studies of [2,16] considered only homogeneous mechanisms of adjusting
firms’ outputs and a linear demand function. However, we introduced heterogeneous
agents and a nonlinear demand to our investigation. Furthermore, we unveiled another
crucial difference between our model and its analogue by Tramontana [13]: our model
loses its local stability through a period-doubling bifurcation, but its analogue could be
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destabilized through two possible routes, i.e., through a period-doubling bifurcation and a
Neimark–Sacker bifurcation.

The investigation of oligopoly models becomes complicated when the market demand
is nonlinear, and the costs are also nonlinear. To the best of our knowledge, under the
assumptions of an isoelastic demand and quadratic costs, no homogeneous oligopoly
models with boundedly rational players or with naive players have been discussed in the
current literature. We leave these models for future research.
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