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Abstract: We construct soliton solutions of the complex time fractional Schrodinger model (tFSM), as
well as the space–time fractional differential model (stFDM), leading wave spread through electrical
transmission lines model (ETLM) in low pass with the help of modified simple equation scheme.
The approach provides us with generalized rational exponential function solutions with some free
parameters. A few well-known solitary wave resolutions are derived, starting from the generalized
rational solutions selecting specific values of the free constants. The precise solutions acquired via
the technique signify that the scheme is comparatively easier to execute and attractive in view of
the results. No auxiliary equation is needed to solve any nonlinear fractional models by the scheme.
Additionally, we observed that the numerical results are very encouraging for researchers conducting
further research on stFDMs in mathematics and physics.

Keywords: modified simple equation scheme; exact solitary wave; the complex time fractional
Schrodinger model; the electrical transmission lines model

1. Introduction

The technique of fractional differentiation is helpful when expressing the recollection
and heritable character of materials and process. Modeling of microscopic multifaceted
dynamics in the fields of fluid dynamics, diffusive convey in biological modeling, physical
science, signal processing, networking systems, system detection, electromagnetic waves,
earthquake happenings, astrophysics, and finance is impossible without using a fractional
derivative [1–8] instead of classical differential models. The Riemann–Liouville derivative
or Grunwald–Letnikov derivative or Caputo derivative are the three ways of defining
fractional derivatives [1–6]. In recent times, fractional nonlinear progressive models have
played a significant rule in the modeling of various microscopic multifaceted dynamics
phenomena. These mathematical tools have been highlighted in many research studies due
to their numerous forms in diverse applications in the above fields. Due to a few limitations
of the derivatives, a comfortable fractional derivative was introduced in the literature [8,9].
For a clear understanding of the physical character of fractional differential models, it is
essential to acquire precise or numerical solutions of the fractional nonlinear evolution
models. In the last five decades, dynamical researchers have faced many complexities
when it comes to inventing the precise solutions of fractional nonlinear evolution models.
Recently, some effective new techniques have been proposed and improved the old methods
for searching for exact solutions to the fractional differential models with nonlinearity. The
proposed techniques in recent literature are first integral [9], (1/G)-expansion method [10],
homotopy perturbation transform [11], unified [12], exp-function [13], Ricatti equation [14],
modified extended tanh [15], modified simple equation [16],(G′/G)-expansion [17], Hirota
bilinear [18], variable coefficients [19,20] methods, and so on. Among these techniques,
the MSE scheme [17] is more effective and concise when it comes to deriving the solitonic
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nature of both fractional and non-fractional nonlinear differential models. In addition to
this, Jumarie [21] proposed a modified Riemann–Liouville fractional derivative to convert
the FPDM to an ordinary differential model (ODM). Many dynamical researchers have
used the above techniques [8,9,22] as an accurate conversion method from FPDM to ODM,
searching for precise solutions to fractional nonlinear models.

The goal of the present research is to derive precise solutions of a complex tFSM [22–24]
and a stFDM, overriding wave transmission into a low pass ETLM [25] using the MSE
method. We will establish more general solutions in-terms of exponential functions involv-
ing free constants via direct integrations of the scheme; selecting different conditions on the
free constants, various periodic, soliton, and other solitary wave solutions will be derived.

The complex tFSM was proposed by Nick Laskin in 1999, with the form [22–24]:

∂γφ

∂tγ
+ i

∂2φ

∂x2 +
∂

∂x
(|φ|2φ) = 0, 0 < γ < 1 (1)

The above fractional model of a nonlinear Schrodinger model (FSM) is the most effi-
cient universal model in quantum mechanics, which describes various physical nonlinear
systems. For example, a nonlinear Schrodinger equation is used to illustrate the progression
of low motion-changing envelopes of quasi mono-chromatic emissions in a feebly nonlinear
dispersion medium. The nonlinear Schrodinger model (NLSM) never describes the time
progression of a quantum status. Such a Schrodinger model has found its various applica-
tions in complicated wave transmission in inhomogeneous dispersive medium, as follows:
dynamics in particle accelerators [26], non-uniform dielectric media, solitary waves in
piezoelectric semiconductors, proposing Bose–Einstein condensates in hydrodynamics
field theory and plasma wave propagation, nonlinear optical waves, quantum condensates,
and heat pulse in solids [27–31].

We also shed light on a FPDM with the property of nonlinearity recitation the wave
proliferation in low–pass electrical spread line [25]:

∂2αφ

∂t2 − v
∂2α

∂t2

(
φ2
)
+ B

∂2α

∂t2

(
φ3
)
− ρ2 ∂2αφ

∂x2 −
ρ4

12
∂4αφ

∂x4 = 0; 0 < α < 1, (2)

Solitary signal solutions of electrical transmission lines model are essential for diverse
applications of the areas, such as linking wireless transmitters and recipients with their
antennas, satellite signals processing, mobile networking systems, computer networking,
and superior speed CPU information buses. Furthermore, in an electronic communication
system, a transmission line is a dedicated model, whereas previous formation was premed-
itated to transmit alternately during the progression of radio incidence. NLTLs are also
ensuring an efficient path to verify how the excitations perform within the nonlinear media
and modeling in the exotic chattels of media schemes.

2. Properties of Conformable Fractional Derivative

Now, we want to go over the conformable fractional derivatives [8,9,31–33]: let the
function ϕ : [0, ∞)→ < ; this derivative of ϕ for order γ is described by

Tγ(ϕ)(t) =
lim

δ→ 0+
ϕ(t+δt1−γ)−ϕ(t)

δ ,t > 0 and 0 < γ ≤ 1, where Tγ is the conformable

fractional differential operator.
Some important properties:

(i) Tγ(aϕ + bφ) = aTγ(ϕ) + bTγ(φ), ∀a, b ∈ <
(ii) Tγ(tβ) = βtβ−γ, ∀β ∈ <
(iii) Tγ(ν) = 0, ν = const.
(iv) Tγ(ϕ ◦ φ)(t) = t1−γ ϕ′(φ(t))φ′(t)

(v) Tγ(
ϕ
φ ) =

φTγ(ϕ)−ϕTγ(φ)

φ2
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3. The Fractional Complex Transformation

In this portion, we have discussed the fractional transformation for the fractional-
order PDE,

P(φ,
∂γφ

∂tγ
,

∂φ

∂x
,

∂φ

∂y
,

∂2γφ

∂t2γ
,

∂2φ

∂t2 ) = 0, t ≥ 0, 0 < γ ≤ 1, (3)

where u = u(x, t) is an unknown function; P is a polynomial function due to a few
particular variables, involving higher nonlinearity with utmost-order derivatives of the
unknown function. To find the solution of Equation (3), we use the modified simple
equation (MSE) method [16]. We have executed some key steps of the MSE scheme. The
steps are:

Step 1: Thinking of a transformation of a complex time fractional nonlinear model,
u(x, t) = u(ζ) exp(iτ) with traveling wave variables

ζ = ik(x− 2gtγ

γ
) and τ = (gx− htγ

γ
). (4)

Using u(x, t) = u(ζ) as well as a space–time fractional wave variable,

ζ =
k1

Γ(1 + γ)
tγ +

k2

Γ(1 + γ)
xγ, (5)

anyone isable to renovate the nonlinear FPDM Equation (3) to a nonlinear ODE:

K(u, u′, u′′, . . .) = 0 (6)

in which the upper dash signifies the derivative of u w.r. to ζ.
Step 2: In this step, we preserve the trial solution to Equation (6) as:

u(ζ) =
N

∑
i=0

ai

[
s′(ζ)
s(ζ)

]i

, (7)

where the constants ai(0, 1, 2, 3, . . . , N) and the function s(ζ) are unspecified to be cal-
culated, and in which aN 6= 0, whereas the solutions are predefined or expressed in the
form of a few recognized differential models in (G′/G)-expansion [17], and Ricatti equa-
tion schemes [14], but the MSE scheme s(ζ) is neither pre-identified nor a result of a
pre-identified differential model. These are the special characteristics of the MSE technique.
Thus, the solution is more useful and realistic according to this method.

Step 3: Integers N of Equation (7) has to be estimated through balancing the uppermost-
order derivative as well as the uppermost-order nonlinear terms of u(ζ) from Equation (7).

Step 4: Inserting Equation (7) together with Equation (5) to evaluate the s(ζ). After
simplification, one can get an expression in

(
1

s(ζ)

)
. Setting all coefficients of the expression

in different powers of s(ζ) to zero, we attain a few constraints for ai(0, 1, 2, . . . , N) together
with other necessary parameters. Equation (3) can solve this by using these values.

Step 5: Putting values of the obtained constants in the previous step4 and s(ζ) into
Equation (7), we yield the solutions of Equation (3).

4. Solution of Complex Fractional Models via MSE Scheme

This sector will apply the MSE procedure to acquire the innovative precise solution to
the complex tFSM and the stFDM governing wave transmission in low pass ETLM.

4.1. The Complex tFSE

Consider the complex tFSM, which is defined in Equation (1). Let us consider the
transformation for complex FSM φ(x, t) = s(ζ) exp(iτ), and corresponding traveling
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variables are ζ = ik(x + 2gtγ

γ ), τ = (gx + htγ

γ ) and adapt this complex nonlinear FSM to
thenonlinear integer order SM as:

∂γφ
∂tγ = i(gs + 2hks′) exp(iτ)
∂2φ

∂x2 = −(h2s + 2hks′ + k2s′′) exp(iτ)
∂

∂x (|φ|
2φ) = i(h3s + 3k2s′′) exp(iτ)

(8)

We achieve the complex PSE with the help of Equation (10),

(g− h2)s− k2s′′ + hs3 + 3ks2s′ = 0 (9)

balancing s′′ and s2s′′on Equation (9), ⇒ n = 1
2 . Thus, pertaining to a recent transformation

s(ζ) = u
1
2 (ζ) in Equation (9), we clasp into ODEs

4hu3 + 4(g− h)u2 + 6ku2u′ + k2u′2 − 2k2uu′′ = 0 (10)

Case 1: Balancing the highest uu′′ with the terms of nonlinearity u2u in Equation (10)
present ⇒ n = 1 .

As a result, Equation (7) reduces to

u(ζ) = `0 + `1

(
s′(ζ)
s(ζ)

)
(11)

where `0 and `1 6= 0.
Differentiating Equation (11) two times and situating Equation (11), as well as deriva-

tives to Equation (10), we have an expression in sk, (k = 0, 1, 2, . . .). Linking coefficients of
the expression of identical power of s to zero, we gain a constraint solving yields with the
ethics for `0 and `1.

− 4`2
0h2 + 4h`3

0 + 4`2
0g = 0, (12)

−8`0`1h2s′(ζ) + 12h`2
0`1s′(ζ) + 6k`2

0`1s′′(ζ)− 2k2`0`1s′′′(ζ)
+8`0`1gs′(ζ) = 0

, (13)

−4`2
0h2(s′(ζ))2 + 12h`0`

2
1(s
′(ζ))2 − 6k`2

0`1(s′(ζ))
2 + 6k2`0`1s′(ζ)s′′(ζ)+

12k`2
1`0s′(ζ)s′′(ζ)− 2k2`2

1s(ζ)s′′′(ζ) + k2`2
1(s
′′(ζ))2 + 4`2

1g(s′(ζ))3 = 0
, (14)

4h`3
1(s
′(ζ))3 − 4k2`0`1(s′(ζ))

3 − 12k`0`
2
1(s
′(ζ))3 + 4k2`2

1s′′(ζ)(s′(ζ))2+

6k`3
1s′′(ζ)(s′(ζ))2 = 0

, (15)

− 3k2`2
1(s
′(ζ))

4 − 6k`3
1(s
′(ζ))

4
= 0. (16)

Equation (12) implies

`0 = 0,
h2 − g

h
and from Equation (16), we attain

`1 = − k
2

, ∵ `1 6= 0

Phase 1: `0 = 0, `1 = − k
2

Using Equation (15) together with Phase1, we obtain

s′(ζ) =
k

2h
s′′(ζ). (17)
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Equation (13) is given by using Equation (17); then,

s′′′(ζ)
s′′(ζ)

=
g
k

. (18)

Integrating Equation (18) implies

s′′ = c1 exp(
g
k

ζ), (19)

where c1 is the arbitrary constant.
From Equation (17), by putting the value of s′′. from Equation (19),

s′ =
k

2h
c1 exp(

g
k

ζ). (20)

Again, integrating Equation (20),

s(ζ) = c2 +
k2c1

2gh
exp(

g
k

ζ), (21)

where c1 and c2 are arbitrary constants.
Thus, the solution is

φ(x, t) =

− k
2

k
2h c1 exp(igk(x− ktγ

γ ))

c2 +
k2c1
2gh exp(igk(x− ktγ

γ ))

1/2

exp
[

i(gx +
htα

γ
)

]
(22)

For the particular value c2 = k2c1
2gh , the solution of Equation (22) reduces to soliton solution

φ(x, t) =
[
− g

4
(1 + tanh(

igk
2

(x +
ktγ

γ
)))

]1/2
exp

[
i(gx +

htα

γ
)

]
(23)

For the particular value c2 = − k2c1
2gh , the solution of Equation (22) reduces to soliton solution

φ(x, t) =
[

g
4

{
1 + coth(

igk
2

(x +
ktγ

γ
))

}]1/2
exp

[
i(gx +

htα

γ
)

]
(24)

Phase 2: `0 = h2−g
h , `1 = − 1

2 k,
Equation (15), together with Phase 2, gives

s′(ζ) =
kh

2(3h2 − 2g)
s′′(ζ). (25)

Equation (13) is given by using Equation (25); then,

s′′′(ζ)
s′′(ζ)

=
10h4 + 6g2 − 16h2g

kh(3h2 − 2g)

′
(26)

Integrating Equation (26) implies

s′′ = c1 exp
[
(

10h4 + 6g2 − 16h2g
kh(3h2 − 2g)

)ζ

]
, (27)

where c1 is the arbitrary constant.
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Equations (25) and (27) imply the following,

s′(ζ) =
kh

2(3h2 − 2g)

[
c1 exp

{
(

10h4 + 6g2 − 16h2g
kh(3h2 − 2g)

)ζ

}]
. (28)

Again, integrating Equation (28), then

s(ζ) = c2 +
k2h2c1

2(10h4 + 6g2 − 16h2g)
exp

[
(

10h4 + 6g2 − 16h2g
kh(3h2 − 2g)

)ζ

]
, (29)

where c1 and c2 are arbitrary constants.
Thus, the solution is

φ(x, t) =

h2 − g
h
−

k2hc1
4(3h2−2g) exp{R}

c2 +
k2h2c1

2(10h4+6g2−16h2g) exp{R}

1/2

exp(iτ), (30)

where R =
[

10h4+6g2−16h2g
kh(3h2−2g)

]
ik(x + 2gtγ

γ ) and τ = i(gx + htα

γ ).

For the particular value c2 = k2h2c1
2(10h4+6g2−16h2g) , the solution of Equation (30) reduces to

soliton solution

φ(x, t) =
[

h2 − g
h
− (10h4 + 6g2 − 16h2g)

4(3h2 − 2g)
(1 + tanh(

R
2
))

]1/2

exp
[

i(gx +
htα

γ
)

]
, (31)

For the particular value c2 = − k2h2c1
2(10h4+6g2−16h2g) , the solution of Equation (30) reduces

to soliton solution

φ(x, t) =
[

h2 − g
h

+
(10h4 + 6g2 − 16h2g)

4(3h2 − 2g)

{
1 + coth(

R
2
)

}]1/2

exp
[

i(gx +
htγ

γ
)

]
, (32)

Remark 1. Alam and Li [24] investigated the tFSM with the help of the Riccati equation as
an Auxiliary equation that was not always suitable, but our solutions are derived directly via
integration without help of an Auxiliary equation. In addition to this, we obtained more general
solutions Equations (22) and (30), including arbitrary constants c1, c2 For arbitrary choice of the
parameters, all similar solutions of [24] are possible, and there are even more other solutions. See
Appendix A of Ref. [24].

4.2. The stFDM Governing Wave Propagation in Low-Pass ETLM

Consider the following stFDM governing wave transmission in low pass ETLM, which
is given in Equation (2). Here, v, ρ, B are unknown invariables and φ(x, t) is the voltage
within the TLM. Here, x indicates the proliferation space co-ordinate and t indicates the
idle time. Substantial evaluation facts of Equation (2) with Kirchhoff’s rule are specified
Ref. [25].

Let us consider φ(x, t) = u(ξ),

ξ =
k1

Γ(1 + α)
·tα +

k2

Γ(1 + α)
·xα. (33)

Convert this nonlinear complex ETL Equation (2) into the ODE via the beyond
Equation (33).

Then, ETL Equation (2) is reduced to the following ODE

(k2
1 − ρk2

2)u− k2
1vu2 + Bk2

1u3 − ρ4

12
k2

2u′′ = 0 (34)
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Balancing the term u′′(ξ) and u3(ξ) of Equation (34) provides ⇒ n = 1 .
We assumed the auxiliary solution of Equation (34);

u(ξ) = a0 + a1

(
s′(ξ)
s(ξ)

)′
(35)

where a0 and a1 6= 0 are constants.
Differentiating Equation (35) two times, and setting Equation (35) as well as derivatives

interested in Equation (34), we have an expression of sk, (k = 0, 1, 2, . . .). Connecting
coefficients of the expression of identical supremacy of s to zero, we attain a constraint;
solving it yields the values for a0 and a1.

Bk2
1a3

0 − k2
1va2

0 − a0 Ak2
2 + a0k2

1 = 0, (36)

−a1 Ak2
2s′(ξ) + k2

1a1s′(ξ)− 2vk2
1a0a1s′(ξ) + 3Bk2

1a2
0a1s′(ξ)

− 1
12 a1 A4k2

2s′′′(ξ) = 0,
(37)

− va1k2
1(s
′(ξ))

2
+ 3Bk2

1a0a2
1(s
′(ξ))

2
+

1
4

A4k2
2a1s′′(ξ)s′(ξ) = 0, (38)

Bk2
1a3

1(s
′(ξ))

3 − 1
6

A4k2
2a1(s′(ξ))

3
= 0. (39)

Equation (39) implies

a1 = 0, a1 = ± A2k2√
6Bk1

.

Again, from Equation (36),

a0 = 0, a0 =
vk1 ±

√
L

2Bk1
,

where L = 4ABk2
2 + v2k2

1 − 4Bk2
1.

Phase 1: a0 = 0, a1 = A2k2√
6Bk1

Equation (38), together with Phase 1, gives

s′(ξ) =
√

6BA2k2

4vk1
s′′(ξ). (40)

From Equation (37) with Phase 1, by using Equation (40),

s′′′(ξ)
s′′(ξ)

=
3
√

6B
vA2k1k2

(k2
1 − A2k2) (41)

Integrating Equation (41) implies

s′′ = c1 exp(
3
√

6B
vA2k1k2

(k2
1 − A2k2). (42)

From Equation (40)

s′ =
√

6BA2k2

4vk1
c1 exp(

3
√

6B
vA2k1k2

(k2
1 − A2k2)). (43)

Again, integrating Equation (43), we reach

s(ξ) = c2 + c1
A4k2

2
12(k2

1 − A2k2)
exp(

3
√

6B
vA2k1k2

(k2
1 − A2k2)). (44)
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Thus, the solution is

φ(x, t) =
A4k2

2c1

4vk1

 exp(± 3
√

6B
vA2k1k2

(k2
1 − A2k2)

c2 + c1
A4k2

2
12(k2

1−A2k2)
exp(± 3

√
6B

vA2k1k2
(k2

1 − A2k2)

. (45)

For the particular value c2 =
c1 A4k2

2
12(k2

1−A2k2)
, the solution of Equation (45) reduces to

soliton solution

ϕ(x, t) =

[
−

3(k2
1 − A2k2

2)

2vk1

{
1± tanh(

3
√

6B
2vA2k1k2

(k2
1 − A2k2)

}]
. (46)

For the particular value c2 = − k2c1
2gh , the solution of Equation (45) reduces to soliton solution

ϕ(x, t) =

[
3(k2

1 − A2k2
2)

2vk1

{
1± coth(

3
√

6B
2vA2k1k2

(k2
1 − A2k2)

}]
. (47)

Phase 2:

a0 =
vk1 ±

√
L

2Bk1
, a1 = ± A2k2√

6Bk1

Equation (38), together with Phase 2, gives

s′(ξ) =
√

6BA2k2

2(−vk1 ± 3
√

L)
s′′(ξ). (48)

From Equation (38) with Phase 3, then applying Equation (48),

s′′′(ξ)
s′′(ξ)

=
3
√

6BA2k2

{
4B(Ak2

2 − k2
1) + (vk1 ±

√
L)(vk1 ∓ 3

√
L)
}

2BA4k2
2(vk1 ± 3

√
L)

(49)

Integrating Equation (49) implies

s′′ = c1 exp(±Qξ). (50)

where Q =
3
√

6BA2k2{4B(Ak2
2−k2

1)+(vk1±
√

L)(vk1∓3
√

L)}
2BA4k2

2(vk1±3
√

L)
.

From Equation (48)

s′ =
−
√

6BA2k2

(vk1 ± 3
√

L)
c1 exp(±Qξ). (51)

Again, integrating Equation (51), then

s(ξ) = c2 − c1H exp(Qξ). (52)

where H =
A4Bk2

2
3{4B(A2k2−k2

1)+(vk1+
√

L)(vk1−3
√

L)} .

Thus, the solution is

φ(x, t) =
(vk1 ±

√
L)

2Bk1
−

A4k2
2c1

2k1(vk1 ± 3
√

L)

[
exp(±Qξ)

c2 − c1H exp(±Qξ)

]
(53)

For the particular value c2 = −c1H, the solution of Equation (53) reduces to soliton solution

φ(x, t) =
(vk1 ±

√
L)

2Bk1
+

A4k2
2

4k1H(vk1 ± 3
√

L)

[
1± tanh(

Qξ

2
)

]
. (54)
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Additionally, for the particular value c2 = c1H, the solution of Equation (53) reduces
to soliton solution

φ(x, t) =
(vk1 ±

√
L)

2Bk1
−

A4k2
2

4k1H(vk1 ± 3
√

L)

[
1± coth(

Qξ

2
)

]
. (55)

where H =
A4Bk2

2
3{4B(A2k2−k2

1)+(vk1+
√

L)(vk1−3
√

L)} , Q =
3
√

6BA2k2{4B(Ak2
2−k2

1)+(vk1±
√

L)(vk1∓3
√

L)}
2BA4k2

2(vk1±3
√

L)

and L = 4ABk2
2 + v2k2

1 − 4Bk2
1.

Remark 2. Abdoulkary et al. [25] investigated the total differential model that governed wave
transmission in low pass ETLM with help of the Auxiliary equation, but we integrated stFDM-
governing wave transmission in low pass ETLM directly via integration without the help of any
Auxiliary equation. This conformable fractional derivative covers all the phenomena of a total
differential model and is able to explain more with fractionality.

5. Graphical Representations
5.1. The Physical Illustration of Solutions to the Complex tFSM

In this subsection, we will illustrate one of the results of the complex tFSM. The achieve
solutions are explored, but a few are illustrated as real and complex plots in Figures 1 and 2
for the same unknown parametric values of k = 0.5, γ = 0.5, h = 1, g = - 2, t = 2, respec-
tively. The figures indicate fluctuations in amplitude, direction, and wave deformation,
as well as differences in the particle-type nature of waves in favor of all gained solutions.
The result is φ(x, t) to Equation (22) for solution Set 1. For Set 2, we get a similar type of
solution which is not illustrated below.
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The obtained solutions may illustrate the progression of low motion in changing
envelopes of quasi monochromatic emissions in feebly nonlinear dispersion medium, and
may be applicable in complicated wave transmission in inhomogeneous dispersive medium
as: dynamics in particle accelerators [26], non-uniform dielectric media, solitary waves in
piezoelectric semiconductors, proposals of Bose–Einstein condensates in hydrodynamics
field theory, quantum condensates, and heat pulse in solids [27–31].
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5.2. The Physical Illustration of Solutions to stFDM-Governing Signal Transmission in
Low-Pass ETLM

Two set of outcomes are carried out in this study of ETLM. Entire solutions are
explored, but a few are illustrated in Figure 3 of Equation (46). The figures indicate the
fluctuations in amplitude, direction, wave shape, as well as particle-type nature of waves
in favor of every gained signal with space x, time t. The solitary wave via φ(x, t) is part of
Equation (46) of solution Set 1. Equation (54) of solution Set 2 is represented in Figure 4.
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The obtained solutions may be illustrated solitary signals of an electrical transmis-
sion lines model, and will be very essential to its diverse application in different areas,
such as linking wireless transmitters and recipients with their antennas, satellite signals
processing, mobile networking system, computer networking, and superior speed CPU
information buses.
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6. Concluding Remarks and Future Tasks

We have applied the modified simple equation scheme to the complex tFSM and the
stFDM governing wave proliferation in low pass ETLM due to construction of solitary wave
solutions. We have retrieved generalized rational exponential function solutions of the
fractional-order models, including some arbitrary parameters via direct integrations of the
scheme. Selecting different conditions on the free constants, various periodic, soliton and
other solitary wave solutions are derived. The acquired results among liberated constants
might be significant to elucidate various worldly phenomena, including special solitonic
behaviors. Ultimately, we conclude that this scheme is capable of execution on a range
of nonlinear FEMs that arise in mathematics, physics, and engineering branches. In the
near future, it is suitable for researcher to modify these models on the generalized fraction
derivative [34], as it provides more advance phenomena of a conformable derivative. We
shall convey this in applications on various nonlinear complex models in the near future.
Moreover, bright bell, dark bell, rogue wave, and interactions solutions [35] will be the next
step of interesting researchers on such fractional models.
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Appendix A

The solutions of Alam and Li [24] are as follows:

S1 =

√√√√{1
4

βk + (−1
4

λ2 + µ)
k√

λ2 − 4µ
× tanh{

√
λ2 − 4µ

2
ik(x +

3k(k− 2)β

α(k− 4)
tα)}

}
exp(iη).

S2 =

√√√√{1
4

βk + (−1
4

λ2 + µ)
k√

λ2 − 4µ
× coth{

√
λ2 − 4µ

2
ik(x +

3k(k− 2)β

α(k− 4)
tα)}

}
exp(iη).
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S3 =

1
4

βk + (−1
4

λ2 + µ)
k

ik(x + 3k(k−2)β
α(k−4) tα)


1/2

exp(iη).

S4 =

√√√√{1
4

βk− (−1
4

λ2 + µ)
k√

λ2 − 4µ
× tan{

√
4µ− λ2

2
ik(x +

3k(k− 2)β

α(k− 4)
tα)}

}
exp(iη).

S5 =

√√√√{1
4

βk− (−1
4

λ2 + µ)
k√

λ2 − 4µ
× cot{

√
4µ− λ2

2
ik(x +

3k(k− 2)β

α(k− 4)
tα)}

}
exp(iη).

where η = 0.5
{
−βkx + k2(λ2 − 4µ)tα/α

}
and other solutions are similar.
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