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Abstract: In this paper, an implicit difference scheme is proposed and analyzed for a class of nonlinear
fourth-order equations with the multi-term Riemann-Liouvile (R-L) fractional integral kernels. For
the nonlinear convection term, we handle implicitly and attain a system of nonlinear algebraic
equations by using the Galerkin method based on piecewise linear test functions. The Riemann-—
Liouvile fractional integral terms are treated by convolution quadrature. In order to obtain a fully
discrete method, the standard central difference approximation is used to discretize the spatial
derivative. The stability and convergence are rigorously proved by the discrete energy method. In
addition, the existence and uniqueness of numerical solutions for nonlinear systems are proved
strictly. Additionally, we introduce and compare the Besse relaxation algorithm, the Newton iterative
method, and the linearized iterative algorithm for solving the nonlinear systems. Numerical results
confirm the theoretical analysis and show the effectiveness of the method.

Keywords: fourth-order nonlinear equation; multi-term kernels; finite difference method;
stability; convergence

1. Introduction

Partial integro-differential equations (PIDEs) have been applied widely in physical
models, chemistry and biology [1-4]. Additionally, the fractional reaction-subdiffusion
equation is believed to provide a powerful tool for the modeling plenty of natural phe-
nomena in physics, biology, and chemistry [5-7]. Many numerical methods have been
extensively studied. In [8], Sanz-Serna was the first to propose the difference scheme for non-
linear integro-differential equations; then, Lopez-Marcos [9] made a direct extension and
considered the difference method for a class of nonlinear partial integro differential equa-
tions. Tang [10] considered a finite difference scheme for nonlinear PIDEs, approximated
the differential term using the Crank-Nicolson scheme, and dealt with the integral term
with the product trapezoidal method. Fairweather and Pani [11] used the backward Euler—
Galerkin method for some partial integral differentials and derived the prior error estimates.
Xu [12-14] also completed a series of studies for nonlinear integro-differential equations. A
class of fractional convection—diffusion equations with variable coefficients are solved with
the Sinc-Legendre collocation method [15], and nonlinear fractional convection—diffusion
equations are solved using the homotopy analysis method [16]. For more development of
numerical methods and analysis of the fractional reaction—subdiffusion equations, we refer
the readers to [17-19].
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This paper is devoted to the study of an implicit difference scheme for the nonlinear
fourth-order equation with the multi-term Riemann-Liouvile fractional integral kernels

up(x, t) +u(x, t)ux(x, t) — Lqu(x, t) + Lou(x,t) = f(x,t), 1)
0<t<T, 0<x<IL,

the initial condition and the boundary value conditions are

u(x,0) =u(x), 0<x<IL, 2)

u(0,t) = u(L,f) = uxx(0,t) = uyx(L,t) =0, 0<t<T, (3)

respectively, where f(x,t) and u°(x) are the given smooth functions. Additionally, the £;u
and £ou are defined by

Lau(x, 1) = s (%, 1) + T Uy (x,1), 0<wa; <1, (4)
Lou(x, 1) = Uyxxx (X, 1) + T?Uyyrx (x,8), 0<ap <1, (5)

where for v = a1,a45, 0 < 7 < 1, Z7 denote the R-L fractional integral operator [2]
defined by

Tro(t) = /Otﬁ(t —s)g(s)ds = r(l,,) /Ot(t _ )T lg(s)ds, t > 0. ©)

For the fourth-order nonlinear partial differential equations, many scholars have
carried out extensive research [9,20-23]. In the paper, we propose the backward Euler
scheme and convolution quadrature finite difference method for (1)—(3). The nonlinear
convective term in our equation deals with Galerkin method, which attains an advantage
over the scheme in [23]. We also introduce and compare three nonlinear iterative methods,
including the Besse relaxation algorithm, the Newton iterative method, and the linearized
iterative algorithm, to solve the nonlinear systems. We also discuss the advantages and
disadvantages of three kinds of methods. The existence and uniqueness of numerical
solutions for nonlinear systems are proved strictly. The stability and convergence are
rigorously proved by the discrete energy method.

The outline of the paper is as follows. In Section 2, the backward Euler implicit
difference scheme is derived. In Section 3, it is proved that the stability of the difference
scheme under the L2 and H! norms. In particular, the existence of the backward Euler
implicit difference scheme is proved by the Leray-Schauder Theorem. In the Section 4,
convergence is proved, and the uniqueness of solution is also proved. The numerical
examples are given to check our analysis in Section 5. Finally, this paper ends with a brief
conclusion in Section 6.

2. The Construction of the Fully Discrete Scheme
J
is the mesh points. For a positive integer N, we introduce the time-step size k := %, the

nodes t, := nk (0 < n < N), and the intermediate nodes t,_1i=1ty — % (1<n<N).
Additionally, we define the following grid functions:

_1
2
Uf = u(xj,tn),f]ﬁ = f(xj,tn),0<j<J,0<n <N.

Giving grid function U = {U]’?]O <j<7J,0<n< N} Some notations are defined
as follows
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1 1

2 E(an 1) @)
AU = Ul — Uy, AU = UL, — U

1

o (Wi — Uil )s

GU = Z(Uf Ui, & U =

n __ n n n __
AU =Ur-Ur,, AU =
vuj =2 (u+1+u"+u;1_1), 5§u]”—ﬁ(5 ur, —o:Ur);
5;‘;u;ﬂ—h (oRUly — 263Ul + 63U ).

To construct the scheme fully, we first introduce the first-order quadrature rule [20,21]
to approximate the R-L fractional integral Z7 ¢(t)

n—1
IV¢(tn) = Gal@) =K' ), wy_po! =K' ) wpe" 7, ®)
p=1 p=0

by the generating power series (6(¢)) ™7 = (1 — )7, the quadrature weights w; can be
attained by

Zw gF=0-0 ©)

Further, the quadrature weights wz can be computed by

1)--- -1
wg:1,w;=7(7+ ) (r+vp )’ p=1,2--- (10)
p!
Let E(¢)(ty) = Z7¢(ty) — 4, (@), we can obtain the quadrature error in the next lemma.
Lemma 1 ([3,14]). Let ¢(t) be a real and continuously differentiable function in 0 < t < T, and

@t (t) is continuous and integrable for 0 < t < T. Then, based on the Equation (9), the error of the
convolution quadrature is bounded by

IE(¢) ()| < CKEL Vg +c1</ n— )7 (s)|ds

+CK? / |pe(s)|ds,

]

where the constant C does not rely on k .
Lemma 2. Let u(x,t) € Cif([o, L] x (0,T]), for1 <j<]J—1,1<n < N;it holds that
[(R)?| = 1Tt (x5, 1) — G (03U;)| < C(K"n™1~1 4 12).

Proof. By using the Taylor expansion with integral remainder [24-26], we obtain

9%u 1 1 9%y
52 (% tn) = s — 7h2 [a (% +sh, ty) (11)
84u

5 ——(xj—sh, ty)](1—5)%ds,1 <j<J-1,1<n<N,
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by triangle inequality, we obtain
(R)JI = [Ty, 1) — G (63U

o
n
< T urx(xj, tn) — dn' (uxx(xj,-))|

+ant (e (x,)) — Gt (63U;), 1< j<J=1,1<n < N.

n—1 a
Since 4! (1) = k™1 pgowzl = r(}q) fot”(tn —s)m~1l.1ds = r(lx gy, then
n AtX 'l 84
ES T AL LA
u .
+@( j = st by )] (1= ) ds| + [T 1w (37, tn) — ' (1t (x),-)
X1
< o tn 1<j<J-1,1<n<N.

r(ﬁq + 1)I
By Lemma 1, we obtain
1T tx (X, tn) — ot (U (x7,7)) | S Cn™1 7 1kM,1 < j<J—-1,1<n<N.
The proof is finished. [J
Lemma 3. Let u(x,t) € Cgf([O, L x (0,T]),for1 <j<J—1,1<n <N, weknow
|<R2>7‘ = | "t (X3, tn) — G’ ( ;‘?U]’)| < C(n* 27k + 1),

Proof. By using the Taylor expansion with integral remainder, we have

o*u 1 1%
86u 3 .
a6( —sh,ty)](1—5)°ds,1<j<]J—-1,1<n<N.

Similarly to Lemma 2, we can complete the proof of the Lemma 3. O

We now derive the backward Euler implicit difference scheme for the problem (1)—(3).
Considering (1) at the point (x;, t,), we obtain

ur(xj, tn) + u(xj, tn)ux (xj, tn) — L1u(xj, tn) + Lou(xj, tn) (13)
:f(xj/tl’l)/ 1§]§]_1/1§n§N

Next, we discretize the (13) one by one. First, from Lemmas 2 and 3, we obtain

{Iﬂluxx(xj,tn)q;';l( Uj)+(Ry)}, 1<j<]J-1,1<n<N,

Ty (), 0) = B2 (03U) + (R)!, 1<j<J-11<n<N, 14)
and
{ e (3, 1) = U + (Ry)",
U (), 1) = 03U + (Ra),
where

{ (Ra) = —Lh2 [([24 (xj + sh, ta) + z( xj — sh, ty)](1 - s)3ds,

(Rq)? = —Ln? 01[—6(x]+sh ta) + 2 (xj — sh, £,)](1 — 5)3ds.
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Thus, we have
Lqu(xj tn) = txx(Xj,tn) + I urr (%), tn) (15)
= SFUN + G (63U)) + (R + (Ra),
]-S]S]_]-/]-SnSN/
and
£2u(x]-, tn) = Mxxxx(xj/ tn) +le2uxxxx(xj/ tn) (16)

= GUI + 2 (5:U)) + (Ra)! + (Ra) .
1<j<J]-1,1<n<N.

Second, for the nonlinear convection term uu,, we discretize it by the Galerkin method

with piecewise linear test functions

ur, U U, ur, - ur
+1 —1 Y1 -1
u(xj, tn)ux(xj, tn) = — 3] = 2h] + (Rs)f

= 6h(U”AU”+A(U”) 2 +0(1?),

1<;j<]-1,1<n<N.

Third, for ut(x]-, ty), we have
ur(xj,tn) = U+ (Re)j, 1<j<]J-11<n<N,

where

192y
= —k/ Fv) (xj,tu—1 + sk)sds.

Substituting (14)—(18) into (13), we obtain

SUI + — (UIAUT + A(UT)?) — k4 2 w,L 03U}

h(
o 44 1P 2 4 _
k”‘Zsz U —oul + .Ul = f +RY,
1§]§]—1,1SHSN,
in which

R = (R1)j = (Ro)] = (Rs) = (Ra)] — (Rs) — (Re)j,
1<j<]-1,1<n<N.

By Lemmas 1-3, there is a constant C independent of & and k, which satisfies
[RY| < Cn 1k 4 n2 k2 4 12),1<j<]-1,1<n<N.
The following initial and boundary value conditions can be attained

Ug =Uj =0, Uy =63Uf =0(h?), 1<n<N.
up =u(x), 0<j<J.

(17)

(18)

(19)

(20)

(21)
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Omitting the small terms in (19) and (21), and replacing U;’ with its numerical ap-
proximation u}“, 1 <j<J—-1,1<n < N, we obtain the backward Euler implicit
difference scheme

5t1/l]7«l + 6h( ”Au +A( ) ) — 21147 +£2M;1 = f]f’l,

ug =uj =0, Oofuf = ozuf =0, (22)

and

Sy = Sl + ' (63u), 1<j<]-1,1<n<N,

Soult = Sgulf + 42 (0yuy), 1<j<]-1,1<n<N,
where
(—262ul +62ul)/h?,j=1,1<n <N,

Shut = (SFuf g —20%uf + 8w ) /W22 < j<]-21<n <N,

(0Fuf_, —28%uf 1)/W?j=]—-1,1<n<N.

3. Existence and Stability

In this section, we analyze the L? stability, L* stability, and existence of the backward
Euler implicit difference scheme (22).

Firstly, we shall introduce some notations and lemmas that will be used for the proof of
the stability. Let Vj, = {s|s = (so,s1,...,5]),S0 = s; = 0}. For any grid functions s, g € V},,
we denote

J-1
(s,8) = h]; 5igj lslleo = mmax {lsjl}, sl = y/s.5). (23)

Lemma 4 ([27,28]). For any function s defined on Vy,, we obtain
VL
Islleo < = 13us]l
Lemma 5 ([9,29]). Lets,g € V), then
(6%, 8) Z h(0xsjt1)(0xgj+1)-
Lemma 6 ([24,25,30]). Foranys,g € Vy, such that 5%30 = 5%5 7 = 0; then, we have
(6%s,9) Z h(é

Lemma 7 ([31]). Let B(t) = t*~1/T(a) be defined in Equation (6); B(t) € L1°¢(0,00) is a
positive type if and only if

Re(B(t)) >0,  forte C,Re(t) >0,
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where Re denotes the real part, B denotes the Laplace transform of B(t).

Lemma 8 ([24,25]). If {bo, b1, ..., by, ...} is a real-valued sequence such that E(z) = E b,z"

n=
is analyticin D = {z € C : |z| < 1}, then for any positive integer N and any (V1,V?, ...,
VN) e RN,

N n
Y ( Ebn pVE)V" >0,
n=1 p=1

if and only if
Re@(z) >0, forzeD.
It is noticed that the generating function (9) satisfies the condition of Lemma 8.

3.1. Stability
Theorem 1. (Lz—stability) Assume that {u;?|1 <j<J—1,1<n < N} is the solution of the
backward Euler implicit difference scheme (22). We can obtain

n .
"] < [lu° +2k} [Ifl, 1<n<N.
Proof. Taking the inner product of (22) with u", for1 < n < N, we obtain the following formula

(6pu”, u™y + !

6h< u"Au" 4+ A(u" — k™ Zw (82uP,u") (24)

— (2u", u") + k™2 Z w)? (54u” u™y + (0%, uy = (f", u").

From [9,22,32], we have
(W Au" + A(u™)?,u") =0,

then for N > 1, (24) can be rearranged
N N n
2k Z (Spu™, uy — 2kt Z Z (52147” ) (25)
n=1 n=1 =

N N
—2k Z (3u", u"y +2k Y (S3u", u")

n=1

N
2K+l 2 Z w)? §4u" u™y =2k 2<f”,u">, 1<n<N.
n=1p=1 n=

Next, we estimate the terms in (25) one by one. First, it is clear that

1
<5tun,un> _ ﬂ<un_unfl’un_unfl_~_un_f_unfl>

1

> ny2 _ n—1/2

> (P = ),

we arrive at
N
2k Y (G, uy > [[uM|2 — [l (26)

n=1
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Second, utilizing Lemmas 4, 5, 7, and 8, we have

N
—2k Y (03", u") — 2kM1 2 2 Wyl (03P, u") (27)
n=1 n=1p=1
N -1 N
= 2kY By (Sxuf)(Sxu) + 2k 2 Wyl h 2 (6xuf
n=1 j=1 =1

£

N J-1 J-1
= 2khY Z (6xu!) (Bxutl) + 2k 0 Y [
n=1j=1 j=1

n
Z (SXu )oxuf]
n=1 p=1

> 0, 1<n<N.

Additionally,

2k Z (62u™, ™) + 2kt Z Zw (6%uP,u™) (28)
n=1p=1

n

— J—1
2k Z Z h(Sul)(3ul') 4 2k Z Y Wik, ) h((s,%uf)(aiu;“)
j=1

n=1j=1 n=1p=1

N J-1 J-1 N n
2k Y Zh (O3ull) (63ult) + 2k h Z (szapzs,%uf)(sgu;?

n=1 j= j=1 n=1 p=1

> 0, 1§n§N.

Substituting (26)—(28) into (25), and using the Cauchy-Schwarz inequality, we have

N
™12 < ) -2k Y 1F - (29)

n=1

Taking ||uM| = max ||u"|, we obtain
0<n<N
N M 0 i 0 LI
™1 < a1 < ®l 42k ) 1P < lu®l] + 26 3 11 (30)
i=1 i=1

The proof of the Theorem 1 is finished.
O

Theorem 2. (Hl-stability)Assume that {u;?|1 <j<J—1,1<n < N} is the solution of the
backward Euler implicit difference scheme (22). Then, it holds that

N
[l < [y +2k Y |f"h, 1<n<N.

n=1

Proof. Taking the inner product of (22) with 72k§%u”, for1 < n < N, we have

k
— 2k (8pu™, 82u™) — 3 (WA + Au "2, 52um) (31)
+ 2kt Zw (82uP, 82u™) + 2k (6%u™, 52u™)

p=

— 2!t Z wy? (54up S2umy — 2k (0%, 62u™y = —2k(f",52u™).
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Since
— (U Au" + Au™)?, 82u™) = (Ox (" Au™ + A(uu)), Sxu™)
]7
héx( ”Au"+A(u uj ))5xu
]:1
J-1
= jgl héw (uf (ufy g —ufq) + (ufpqultyy —ul qui ))ocuf
J-1
= jgl h5x((u;’ + u;-’ﬂ)u;ﬁrl - (u’<1 + u;z_l)u;?_l)éxu;’
J-1
— j;l h(Sx(u;’ + u7+1)5xu;7+15xu ]Zl hoy (u +uil 1)0x xttf_q O]
J-1
- j§1 hox (uf + uf, ) 0xuf, 10 2 héx (uf + ;) oxuf,  oxu]
= hox(uj_y + uj)oxufoxuj_y — hox (u0+u1)5 ull bu
=0.
Then, we have
—%w"Au” + A(u")?,52u™) = 0.
For N > 1, (31) can be rearranged
— 2k Z (Opu”, 65u") + 2K1 Z Z Wy, (Ozuf, o3u’) (32)
n=1 n= 1p
N
+2k Y (53", 07u") — 2k T2 Z Z Wy, (Oxuf, o3u)
n=1 n=1p=1
N N
-2k ) (63u™, 62u"y = —2k ) (f",82u"), 1<n<N.
n=1 n=1
Since
(o, &y > o ('~ ),
then
N
—2k Y (6u”, 52u™)y > [uN[F — |u0)3. (33)
n=1
By Lemma 8, we have
2k Z (02u", 62u") + 2kM1+1 2 2 Wyl (Szub, S3u) (34)

n=1p=1
> 0, 1<n<N.
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Further, by Lemmas 4, 5, 7, and 8, we have

N
—2k2<5§u”,5§ ) gkretl Z Zw (6%uP, 8%u™) (35)
n=1 n=1p=1
AN N 3 1 - 3 3
= ZkE' h(63ulf) (63ul) + 2k F ZZw Zhé uf) (63u’)
n=1j=0 n= 1p 1
N J-1 N
= ZZ h(o3uf) (53”+2k“2+1hzz Zw“z oqul)ogul
n=1j=0 j=0 n=1 p=
> 0, 1<n<N.

Substituting (33)-(35) into (32), and using the Cauchy-Schwarz inequality, we have
N2 02 al
lu™ T < |u’lg +2k2 L g "1 (36)
n=1
Similarly to Equation (30), we finish the proof of the Theorem 2. [

3.2. Existence

Next, we will use the Leray-Schauder Theorem [33] to prove the existence of numerical
solutions for the scheme (22).

Theorem 3. Giving two positive integers |, N, and u® € R/=1, the Equation (22) has a solution
u" forl <n < N.

Proof. We can employ the mathematical induction to prove the Theorem 3. Since u® € R/~1,
for given u™,1 < m < n — 1, we will prove that Equation (22) has a solution for u".
At the beginning, we define the mapping X : R' =1 — R/=1 by

X(v) := —%(mv + A()?) + k20 + k1 wg 620 — k2 wi26t0 — kéto.

Then, u" is a solution of (22) if and only if

in which
F=u"l 4 gt 2 Wyl ,o3ul — k2t 2 Wy ,xu? + kf".
p= r=

Next, we need to prove that the mapping &(-) = X(-) + f has a fixed point. We
consider an open ball £ = A(0,r) in R/~! endowed with the norm | - || in (23). Suppose
that for A > 1 and u" in the boundary of £,

' = (u") = X(u") + f. (37)
Since (vAv + A(v)?,v) = 0, using Lemmas 5 and 6, we obtain
(X(u™),u"™)y <O0.

Taking the inner product of (37) with 1", we have

Ml |2 < (F,uy < I Fu") < (||f!|2+ " ][?).
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Thus,

LF11?

2r2

£12 n|2 £112
Ay < LIAAE A fum” L vl

— 1) <
<3 w2 et

+

N[ —

It is noted that the above inequality contradicts with hypothesis A > 1 for large r.
Hence, (37) has no solution on L. By the Leray-Schauder Theorem [33], there is a fixed
point of & in the closure of £. The proof of existence Theorem is finished. [

4. Uniqueness and Convergence
4.1. Convergence

Let

r=Ur—ul0<j<]1<n<N.

Subtracting (22) from (19), we obtain the following error equations

5;567 + &(e}‘Ae}’ + A(e;?)z) — £1e}1 + Sze;? = (R1)7 - (Rz)}1

—(Ra)! — (Ra)! — (Rs)! — (Rg)! — & ((Ry)! + (Rs)"),
1<j<J-11<n<N

(38)
eg:e?:o, 1<n<N,
=0 0<j<],
where
n __ n n n n
(R7)]- = UjAef + A(ej u; ), (39)
(Rg);? = e;?ALI]*’ + A(E?U]’ﬂ).

To complete the proof of convergence, we provide the following Lemmas.

Lemma 9 ([34]). (Discrete Gronwall’s inequality) If A, is a non-negative real sequence and satisfies
n—1 5
An <8+ deAm/ n >0,
m=0
where ¢, is non-descending and non-negative sequence, dyy > 0, then it holds that
n—1 5
Ap < épexp( Z dn), n>0.
m=0

Lemma 10. For Vs, g €V}, it holds that

(i) (ghs,8) + (A(g)7,
(i1) (gAg,s) + (A(gs), g) = 0.

©
N
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Proof. (i) By the definition of (-, -), we have

(g0s,8) + (A(g)%s)
J—1

-1
=h Z 8i(sjt1—sj-1)gj +h Z(gj+18j+1 — 8j-18j-1)5]
—hZ& 15j8j-1 h):gu 1gJ+h28131] 1
]_ ]_
—h Z 8j+18j+15j
=

= hgj-15;87-1 — hgos180 + hgysj-18) — hg1s081
=0.

The proof of (ii) are similar to (i). Thus, Lemma 10 is proved. O

Lemma 11. When Uy = Uj = 0 and ey = ej = 0, then it holds that

N
k ;(H(Rﬂ}’\l + I R)FI + 1 (Ra)F | + [[(Ra)F [+ [[(Rs) )

+[(Re)jII) < C(T)(k + 1?).

Proof. Utilizing the conditions Uy = Uy = 0 and eg = ¢j = 0.
Firstly, by (15), Lemmas 1 and 2, we have

N N
kY NRO7I+k Y (R3] | (40)
n=1 n=1
N J-1
<k Z Z h[C(n—1km 4 K2))2
n=1 \ j=1
N N )
< Ck Y (KMn™~t 4+ 1) < Ck()_ t3} k) + C(Nk)K?
n= n=1
tn ™
< Ck(/ $1171ds) + C(T)H? < Ck(“—) + C(T)I? < C(T)(k+12).
to 1
Secondly,
N N J-1 N
kY NRs)j I =k Y (| Y h((Rs)})? <k} Z h(Ch?)? (41)
n=1 n=1 \ j=1 n=1 \ j=
< C(T)h?
Thirdly,

N N J-1 N J-1
kY IR =kY (| Y h((Re)!)* <k}, h(Ck)? < C(T)k. (42)
n=1 n=1 j=1 n=1 j=1
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Finally, by (16), Lemmas 1 and 3, we have
N N
kY (RPN +K Y (Ra)T (43)
n=1 n=1
N |J-1
<k Z h[C(n%2—1k%2 4+ h2)]2
n=1 \ j=1
tN
< Ck(/ s~ 1ds) + C(T)?
to
T 2 2
Ck(T) + C(T)h* < C(T)(k+ h?).
2
Combining (40)—(43), we have
N
k3 (IR + 1R+ 1 (Ra) 2+ I1(Ra) | + 1| (Rs) 2 (44)
n=1

+I(Re)}1I) < C(T) (k+ K?).
Therefore, we are done with this proof. [

Lemma 12. Set ¢ := {Ju(x, t)|, [ux(x,t)|}, for Uy = Uy = 0, e9 = e = 0,

max
(x,)€[0,L] % (0,T]
1 <n < N, we have

[((Rg)", €")| < 3cphlle" >

Proof. By Lemma 10, for Vs, g € V},, it holds that

(sj110+8 +5j1A_g,s),

N —

(A(gs),s) =

then, we obtain

(AU, ey = 1

2(6;7+1A+U” —I—e;LlA,U”,e"),l <n<N. (45)

Utilizing the boundary conditions Uy = U; = 0,¢p = ¢; = 0 and using the Cauchy-
Schwarz inequality, we obtain

(el AU e < AU o] (€], €™
J—1

= [[ALU" [ Y B e
j=1

IN
=
+
<
_=
3
N
)
+
—_
e
_|_
~
—3
>

1 -1
= Slau(} h(elg)? + [le"]1%)
=1

1 or
< slasu oo (3 h(ef)? + [le" 1)
j=2
< A U |eolle™]? 1 < n < N.

Additionally, we can get

[{ef_18-U",e")| < |A_U"|ole"]|?, 1 < < N.
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Thus, we obtain

[((Rg)",e")]|

(" AU™ + A(e"U™), )|

= [{"AU", €") + S (ef 1 A U" +ef AU, e")|

1

5
1

IAU" [eole" [ + 5 (1A U" oo + [ A-U" [o0) l|e" [

IN

A

3¢ph|le"||?,1 < n < N.

The proof is proved. O

Theorem 4. (L2-convergence) Suppose that the problem (1)~(3) has smooth solution u(x,t) €
cﬁf([o, L] x (0,T)), {u;?|0 <j <J,1<mn < N} is the solution of difference scheme (22). We
can obtain

max [|U" — u"|| < C(T)(k+ H?).
1<n<N

Proof. Taking the inner product of the (38) with ", summing up for n from 1 to N, utilizing
(26) and Lemma 8, and noting

(e"Ae" 4 A(e")?,e") =0

we can obtain

N

[eN]|* < [1e%]|* + 2k Y (R} — RS — R§ — R (46)
n=1

~R5 —Rg — 7 (R7 + Rg),e”), 1 <m < N.

It is noted that when ¢ = 0, we have

e <2k2 IRTI + IRz [ + ([R5 ]| + [IRE [ + [R5 | (47)
n=1

+IIR IIE”H—ZkZ 6h 7+ R§),e"),1<n<N.

Since
RZ,e™) = (U"Ae™ + A(e"U™), e
7
J—-1
= Z h(U’?Ae]’-’ —l—A(e}ill]"’))e}1

Z h(UF(efq —efog) + (efy Uy —¢f qUfy))ef

:jgh((Uﬁu;H)eyﬂ (Up + U )er et us)

J—-1
:zlh(uuu el el — ;h(U”+U” el el

-N

]z R(UP + U, el qet 2 R(UP + U, el et
= h(Uj_; + U} )efe}_4 h(U0 + uj)etey
0



Fractal Fract. 2022, 6, 443

15 of 23

Combining (48), Lemma 12 and inequality (40), (47) can be written as
N2 ul
1M < 2k Y (IRT] + IRE || + [[R5]]
n=1

N
RGN + RS+ IRG D[l || + cok 3 [le”]|*,1 < n < N.

n=1

Taking appropriate M such that |[eM|| = Jmax, |le" || and using Lemma 11, we obtain
<n<

IIf—’NII < [leM] (49)

IN

ZkZ IRT| + IRz [ + ([R5 ]| + IR ][ + RS ]| + [|Rg[) +60k2||6"||

< C(T)(k+h?) + éok Z lle™ |-
n=1

Further

N-1
(1= Gok) €N < C(T)(k+K?) +cok Y [|e"]|- (50)
n=0

Using discrete Gronwall inequality, for k < %, we obtain
eV < 2exp{2&NK}YC(T) (k4 h?) < C(T)(k + h?).
O

4.2. Uniqueness

Theorem 5. Under the assumptions in Theorem 4—for h is small enough and k = o(h% )—then
the difference scheme (22) has a unique solution.

Proof. Set u" € R" 1 and v" € R*1,0 < n < N to be the solutions of (22). Since 1 = 99,
we assume " = v for 0 < m < n — 1. Next, we need to prove u" = v".
First, using (22), we have

1 n n
—(u]- Auj (51)

o (uj — v-)—éz(u — 0 )—1—54(14 —v])—|—6h

]
—I—A(u' )2 — v”Av' - A(v?)z)

o a2 o o ay o4 P
—klzw 5u ZJ k22w (5u vl).

Second, taking the inner product of (51) with u" — v", and using Lemmas 5, 6, and 8,
we obtain

1 s
Sl = o2 = u" "t =22

< —61—h<u”Au” + AU — " A" — AV, U — ")
1
= —6—h<u"A(u” -0+ (W —")AV + A" — o) (Wt 4+ 0"),u" — o).
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Since
(WA —o") + (u" — ") A" + A(u" — ") (u" +0"),u" — ")
= ((u" —o")AV" + A" (u" — ")), u" —o").
Then,
" —o"|? < a2 (52)
—%((u” —0"AY" + A" (1" —o")),u" — ")
< 3—kh|((u” — 0" A" + A" (1" —o")), ut — o).
Further, we have
(" —o")AV" + A(0" (1" —0")), u" — ™) (53)

1
< [ 80" floo[u" = 0"[[* + S (1A +0"[loo + | A—0"[|eo) 1" — 0" 2.
Rearranging, we have

80" o = 1g§ﬁl{lu7ﬂ—vﬁl\} (54)

1;;?])(,1“0?“ = Vil + Vi = Vil [+ Vi — o[}

IN

< 2|V — 0"||oo + Ch < 2172 || V" — 0"|| + Ch
< Ch i(k+Hh?)+Ch.
Additionally,
[{(u" —0™")AV" + A(0" (1" — ™)), u" —ov")| (55)
< C[h™2 (k + h2) + h||u" — 0" |2
Thus, we ottain
Ju" — o"|| < C(K*h™2 + khz + k) |[u" — "||. (56)

Using inequality (56), we have ||u" — v"||?> = 0 for k = o(h%) as h — 0 and finish
the proof. O

5. Numerical Results

In this section, we solve this problem (1)-(3) with L = T = 1 by difference scheme (22).
We provide three iterative methods [32,35,36]: the Besse relaxtion algorithm (Besse), the
Newton iterative method (Newton), and the linearized iterative algorithm (linearized), to
solve the nonlinear system (22). Let MaxStep = 300 and eps = 1.0 x 107> and

E(h k) = J hE(UJN - u]N)Z,
j=1

E(2h, k)
E(h, k)

), rate' = logz(w).

X
rate® = logy( E( )
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Example 1. In the first example, we consider the initial condition ¢(x) = sin 7tx, the source term

2ut* L 2(a 4 1)t%

) = sin2mx(— -
ft) = sin2nx(— 5=y ~ T2y )

2t% gl

in4 1-— —
Frsindr(l = 5oy T T v )
o1 D¢ tu toc1+vc+1
+4rPsin2mx — —
(I“(le—i-l) IFae+a;+1) T(a+m +2))

x2 2t0t2+0( ttJQ-HX-‘rl

+167t*sin2mx — —
(F(Déz-l-l) Fla4+ap+1) T(a+062+2))
Dl ttH-l

(167t*sin2rx + 4m?sin27x) (1 — - ).

I'(a+1) T(a+2)
and the exact solution is

Dl tuc+1

u(x,t) = sin2mx(1 — Twsl) F(zx+2))'

where o, 0 < o < 1is the reqular parameter.

Table 1 lists the L? norm errors; the corresponding spatial convergence rate; and the
total number of iterations of our scheme under different parameters a1 and «y, respectively.
Taking the temporal step k = 1/1024 and &« = 0.50, we can know from Table 1 that the
spatial convergence order is about order 2. Through comparison, it can be seen that the
numerical results of the three iterative methods have a small gap in the spatial direction.

Fix the spatial step h = 1/] = 1024 and a = 0.50. Table 2 shows that the temporal
convergence order is about order one. Through the comparison of three iteration methods,
we can find that the temporal convergence order of the Basse relaxation algorithm is not
very stable. In addition, the total number of iterations of the linear iterative algorithm is
less than the Newton iterative method.

Taking « = 0.5 fixed, Figure 1 shows the spatial convergence order for N = 1024,
and Figure 2 shows the convergence order in the time direction for | = 1024. It can be
seen that the numerical results of the convergence order are in good agreement with the
theoretical analysis.

10?

R Order = 2
o4 0,=035, a
—0~ ;=075 a

* @, =035, a

, = 0.65 (Besse)
,=025 (Besse)
, = 0.65 (Newton)
a, =025 (Newton)
a,=0.35, a,=0.65 (Linearized)
@,=0.25 (Linearized)

Max Error

10
10 10t 10°

Figure 1. The error and convergence orders in space with « = 0.50 and k = 1/1024, for Example 1.
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Max Error

10”

Order =1
+-a,=035 «

a, =065 o

% 0,=035, a,
—G- a,=065 a,
0,=035,

a, =065, a,

=0.25 (Besse)
=0.75 (Besse)
=0.25 (Newton)
=0.75 (Newton)
,=0.25 (Linearized)

=0.75 (Linearized)

10°
102

10

0

Figure 2. The error and convergence orders in time with « = 0.50 and & = 1/1024, for Example 1.

Table 1. The errors and convergence rates when k = 1/1024 and a = 0.50, for Example 1.

Methods 1,00 ] Error rate® Iterative
16 2.3245 x 102 — -
a; = 0.30 32 1.1700 x 1072 0.9904 —
ay =0.70 64 5.7776 x 1073 1.0179 —
128 2.7732 x 1073 1.0589 —
16 2.1483 x 1072 — —
Besse a; = 0.35 32 1.0779 x 1072 0.9950 —
ay = 0.65 64 5.3063 x 1073 1.0224 —
128 2.5347 x 1073 1.0659 —
16 1.8288 x 1072 - -
a; = 0.75 32 9.1218 x 1073 1.0035 —
ay = 0.55 64 44609 x 1073 1.0320 —
128 2.1079 x 103 1.0816 —
16 2.3456 x 102 — 46
a; = 0.30 32 1.1747 x 1072 0.9977 87
ay = 0.70 64 5.7882 x 1073 1.0211 155
128 2.7753 x 1073 1.0605 259
16 2.1633 x 102 — 46
Newton a; = 0.35 32 1.0811 x 1072 1.0007 87
ay = 0.65 64 5.3130 x 103 1.0249 155
128 2.5358 x 1073 1.0671 259
16 1.8353 x 1072 — 45
a; = 0.75 32 9.1346 x 1073 1.0066 86
ay = 0.55 64 44631 x 1073 1.0333 154
128 2.1078 x 1073 1.0823 259
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Table 1. Cont.

Methods ®1, & J Error rate* Iterative
16 2.3455 x 1072 - 46
a1 = 0.30 32 1.1747 x 1072 0.9976 87
ay = 0.70 64 5.7879 x 1073 1.0212 154
128 2.7751 x 1073 1.0605 259
16 2.1632 x 1072 — 46
Linearized a; = 0.35 32 1.0812 x 1072 1.0006 87
ay = 0.65 64 5.3132 x 1073 1.0250 154
128 25357 x 1073 1.0672 259
16 1.8353 x 102 — 45
a; = 0.75 32 9.1347 x 1073 1.0066 86
ay = 0.55 64 44626 x 1073 1.0335 153
128 2.1077 x 1073 1.0822 259
Table 2. The errors and convergence rates when & = 1/1024 and « = 0.50, for Example 1.
Methods 1,00 N Error ratet Iterative
16 2.3245 x 1072 - —
a; = 0.30 32 1.1700 x 10~2 0.9904 -
ay = 0.70 64 5.7776 x 1073 1.0179 —
128 2.7732 x 1073 1.0589 —
16 2.1483 x 1072 - —
Besse a; = 0.35 32 1.0779 x 1072 0.9950 —
ay = 0.65 64 5.3063 x 1073 1.0224 -
128 25347 x 1073 1.0659 -
16 1.8288 x 1072 — —
a; = 0.75 32 9.1218 x 1073 1.0035 —
ay = 0.55 64 44609 x 1073 1.0320 —
128 2.1079 x 1073 1.0816 —
16 2.3456 x 1072 - 46
a; = 0.30 32 1.1747 x 102 0.9977 87
ay = 0.70 64 5.7882 x 1073 1.0211 155
128 2.7753 x 1073 1.0605 259
16 2.1633 x 1072 - 46
Newton a; = 0.35 32 1.0811 x 102 1.0007 87
ay = 0.65 64 5.3130 x 103 1.0249 155
128 2.5358 x 1073 1.0671 259
16 1.8353 x 102 - 45
ay = 0.75 32 9.1346 x 1073 1.0066 86
ay = 0.55 64 44631 x 1073 1.0333 154
128 2.1078 x 1073 1.0823 259
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Table 2. Cont.

Methods a1, &2 N Error ratet Iterative
16 2.3455 x 102 - 46
a; = 0.30 32 1.1747 x 1072 0.9976 87
ay =0.70 64 5.7879 x 1073 1.0212 154
128 2.7751 x 1073 1.0605 259
16 2.1632 x 1072 - 46
Linearized a1 = 0.35 32 1.0812 x 1072 1.0006 87
ay = 0.65 64 5.3132 x 1073 1.0250 154
128 2.5357 x 1073 1.0672 259
16 1.8353 x 1072 - 45
x1 =0.75 32 9.1347 x 1073 1.0066 86
xy = 0.55 64 44626 x 1073 1.0335 153
128 2.1077 x 1073 1.0822 259
Example 2. In the second Example, we take the exact solution
o
u(x,t) = sin nxm, 0<a<l.
Correspondingly, the initial condition is u®(x) = 0 and the inhomogeneous term is
flat) =
1 te 2712 sin(7rx ) 4™
Sin 71X ———— + 27w sin27rx 2+
I(a+1) (I’(zx+1)) I'(w+a;+1)
27 sin(rea)it + (7e* sin 7tx + 72 sin 77x) _2
F(a+ay+1) Fla+1)

It can be seen from Tables 3 and 4 that the spatial convergence order is about order
two and the temporal convergence order is about order one, respectively. It can be seen
that the numerical results are the same as Example 1 and the convergence order is in good
agreement with the theoretical analysis.

Table 3. The errors and convergence rates when k = 1/1024 and a = 0.50, for Example 2.
Methods 1, &2 ] Error rate® Iterative
aq = 0.30 16 9.6163 x 1073 — —
xy = 0.70 32 2.2743 x 1073 2.092 -
64 44453 x107* 2.423 -
Besse
ap = 0.35 16 9.7560 x 103 - —
xy = 0.65 32 2.3922 x 1073 2.073 -
64 55698 x 10~* 2.315 —
«1 = 0.30 16 9.6292 x 1073 - 2048
xy = 0.70 32 2.2840 x 1073 2.076 2048
64 45341 x 1074 2.333 2048
Newton
«1 =0.35 16 9.6486 x 1073 - 2048
xy = 0.65 32 2.3005 x 103 2.068 2048
64 4.6915 x 1074 2.294 2048
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Table 3. Cont.

Methods n1, & ] Error rate* Iterative
a; = 0.30 16 9.6291 x 1073 - 2048
ay = 0.70 32 2.2839 x 1073 2.076 2048
o 64 45330 x 104 2.333 2048
Linearized
a; = 0.35 16 9.6484 x 1073 — 2048
ay = 0.65 32 2.3004 x 1073 2.068 2048
64 46904 x 104 2.294 2048
Table 4. The errors and convergence rates when = 1/1024 and « = 0.50, for Example 2.
Methods ®1, K2 N Error ratet Iterative
ap = 0.30 16 1.2909 x 102 — —
ay = 0.70 32 6.4875 x 1073 0.993 —
64 3.2196 x 103 1.011 —
Besse
ap = 0.35 16 1.1689 x 102 - -
ay = 0.65 32 5.8697 x 103 0.994 —
64 29127 x 1073 1.011 -
a; = 0.30 16 1.2818 x 1072 — 62
ay = 0.70 32 6.4717 x 1073 0.986 109
64 3.2142 x 1073 1.010 192
Newton
a; = 0.35 16 1.1588 x 102 — 62
ay = 0.65 32 5.8495 x 103 0.986 110
64 2.9036 x 1073 1.011 192
a; = 0.30 16 1.2813 x 1072 — 48
ay = 0.70 32 6.4754 x 1073 0.985 9%
o 64 3.2101 x 1073 1.012 192
Linearized
a; = 0.35 16 1.1580 x 102 — 48
ay = 0.65 32 5.8529 x 1073 0.984 9
64 29054 x 1073 1.010 192

6. Concluding Remarks

In this paper, we propose an implicit difference scheme for a class of nonlinear fourth-
order equations with the multi-term Riemann-Liouvile fractional integral kernels. For
the nonlinear convection term, we use the Galerkin method based on piecewise linear
test functions. The Riemann-Liouvile fractional integral terms are treated by convolution
quadrature. The standard central difference approximation is used to discretize the spatial
derivative. The stability and convergence are rigorously proved by the discrete energy
method. The existence and uniqueness of the numerical solutions for nonlinear systems
are proved strictly. Lastly, we introduce and compare three iterative methods for solving
the nonlinear systems.
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