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Abstract: This paper deals with the asymptotic synchronization of fractional-order complex dynami-
cal networks with different structures and parameter uncertainties (FCDNDP). Firstly, the FCDNDP
model is proposed by the Riemann–Liouville (R-L) fractional derivative. According to the property of
fractional calculus and the Lyapunov direct method, an original controller is proposed to achieve the
asymptotic synchronization of FCDNDP. Our controller is more adaptable and effective than those
in other literature. Secondly, a sufficient condition is given for the asymptotic synchronization of
FCDNDP based on the asymptotic stability theorem and the matrix inequality technique. Finally, the
numerical simulations verify the effectiveness of the proposed method.

Keywords: fractional order; complex dynamical networks; asymptotic synchronization; parameter
uncertainties

1. Introduction

Fractional calculus is a popularization of integrals and differentials of integer orders.
Although the history of fractional calculus and integer calculus is not very discrepant, the
results show that fractional calculus is very important for the expression of the model. In
addition to the memory function of fractional calculus, the characterization of a complex
system has the advantages of simple modeling, clear physical meaning of parameters
and exact description [1–3]. Because of these advantages, it can be applied in many
fields, such as physics [4], engineering [2], chemistry [5], information processing [6], secure
communication [7], thermal systems [8], and robot control problems [9], etc. Since fractional-
order calculus makes a tool more precise with regard to the description of memory and
genetic properties of multifarious materials and processes, it is extremely important to
introduce fractional calculus into complex dynamic network models.

Complex networks have been widely used in different disciplines such as physics,
biology and sociology because of complex network topology and spatiotemporal evolu-
tion of systems [10]. In real life, they might be applied in neural networks [11], social
networks [12], ecological networks [13], electric networks [14] and other networks. These
networks share or exchange opinions with each other in a certain link based on multi-nodes,
so that the complex network can be used in nature, as well as various systems in society.
This has made many scholars study complex networks.

Since chaotic synchronization is proposed, the synchronization of complex networks
has become a popular topic in the field of complex networks. Because the fractional-
order complex network with synchronous behavior is a common and vital nonlinear
phenomenon, it exists widely in nature and human society. Therefore, understanding and
controlling the fractional-order synchronization of complex networks has theoretical and
practical significance. In addition, the controllability of fractional complex networks has
turned into a popular topic, and our ability to control natural or technological systems
is reflected in our understanding and ultimate proof of them [15]. Hence, the study the
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synchronization problem of fractional complex networks has important implications. So
far, many synchronization methods are used to research complex networks, such as global
synchronization [16], adaptive synchronization [17], projection synchronization [18] and
finite time synchronization [19].

However, most papers study the synchronization problem of fractional-order systems
with the same structure. In practical application, due to the inevitable mismatch of param-
eters and functions in genuine execution, the drive system and the response system are
not quite the same [20]. From an engineering viewpoint, it is truly challenging to keep
the two systems consistent. Therefore, it is of extraordinary importance to research the
synchronization of complex networks with different structures.

The uncertainty of parameters should be considered due to the existence of envi-
ronmental disturbances when we analyze the stability of complex networks. We know
that the modified model parameters are usually unable to get an accurate value. The
main reason is that when the model is applied to actual engineering, it will be affected
by interference from the environment, leading to the uncertainty of parameters. In the
dynamic behavior analysis of a nonlinear system, the influence of such parameter uncer-
tainties cannot be ignored, because they may damage the stability, synchronization or other
characteristics of the system [21]. Thus, it is indispensable to study the system problems
with uncertain parameters.

Although the system with parameter uncertainty will make the system more complex,
the complex network with parameter uncertainty is closer to reality. Therefore, it has
become a hot area of research for scholars. In 2008, based on the linear matrix inequalities
(LMI) technique, Shen gave a sufficient condition for the boundedness ensure of neural
networks with uncertain parameters [22]. In 2012, Wong derived the robust synchroniza-
tion of fractional-order complex networks with uncertain parameters based on the nature
of a Kronecker product and the stability of fractional-order systems by applying nonlin-
ear control [23]. In 2013, Li designed a state estimator for the problem of fractal-order
complex networks with uncertain parameters by using LMI technology and matrix sin-
gular value decomposition [24]. In 2015, combining the Lyapunov stability theorem and
homeomorphic mapping theorem, Samli obtained some prime sufficient conditions for
the existence uniqueness and asymptotic stability [25]. In 2016, based on the fractional
Lyapunov direct method, Ding obtained a new standard for global projection synchro-
nization of the nonuniform fractional neural networks [26]. In 2018, using the property of
fractional calculus and the Lyapunov direct method, Hu revealed some new properties
of fractional calculus and asymptotic stability theorems for nonautonomous fractional
calculus systems with Riemann–Liouville derivatives [27]. In 2020, Udpin derived a new
exponential stability standard for uncertain discrete-time neural networks based on the
discrete Halanay inequality and some other inequalities techniques [28]. In 2022, based on
the property of fractional calculus and the fractional direct Lyapunov method, Aadhithiyan
obtained a method to realize the asymptotic synchronization of the drive and response
systems in nonidentical complex networks using neoteric control [29]. Because the system
contains the parameter uncertainty, the interference of the system is very large still, so
how to reduce or eliminate the influence of the uncertainty is an imminent issue. Coupled
with the need for synchronization of nonidentical complex networks in the industry, the
study of synchronization of fractional-order complex networks with different structures is
still necessary.

The primary contribution of this paper can be briefly summed up as follows: (i) we
propose a new fractal-order complex dynamical network model with different structures
and parameter uncertainties; (ii) we conduct synchronization analysis of FCDNDP. Based
on fractional differential theory and the Lyapunov direct method, we establish the criterion
to guarantee the synchronization of the drive response model; (iii) contrasted with the
existing results in the literature, the method is more general and less conservative.
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2. Preliminaries

Definition 1 ([1]). The Caputo derivative with ξ-order of function is defined as

C
t0

Dξ
t f (t) =

1
Γ(m− ξ)

∫ t

t0

(t− υ)m−ξ−1 f (m)(υ)dυ, (1)

where Γ(·) is Gamma function, t ≥ 0, m− 1 < ξ < m, m ∈ Z+. Particularly, when 0 < ξ < 1,

C
t0

Dξ
t f (t) =

1
Γ(1− ξ)

∫ t

t0

(t− υ)−ξ f (m)(υ)dυ. (2)

Definition 2 ([1]). The Riemann–Liouville derivative with ξ-order of function is defined as

R
t0

Dξ
t f (t) =

1
Γ(ξ)

∫ t

t0

f (υ)
(t− υ)1−ξ

dυ, (3)

where Γ(·) is Gamma function, and 0 < ξ < 1.

Lemma 1 ([30]). When f (t) has a continuous first derivative, then

C
t0

Dξ
t (

1
2

f T(t)Q f (t)) ≤ f TQC
t0

Dξ
t f (t), (4)

where ξ ∈ (0, 1) and Q is an arbitrary n-order positive definite matrix.

Lemma 2 ([31]). Let ε> 0, for ∀W ∈ Rn , H ∈ Rn and the n× n matrix A, then the following
formula holds

2WT AH ≤ ε−1WT AATW + εHT H. (5)

Property 1 ([1]). When 0 < ξ < 1 and f (t) is a continuous function, we have

R
t0

D−ξ
t

C
t0

Dξ
t f (t) = f (t)− f (t0).

Property 2 ([1]). Let C be the constant; we can obtain

R
to D−ξ

t C =
C(t− to)

−ξ

Γ(1− ξ)
,

where 0 < ξ < 1 and Γ(·) is Gamma function.

Lemma 3 ([27]). Let f (t) be a continuous function, then the following formula holds

R
t0

Dξ
t ( f (t)− f (t0)) =

C
t0

Dξ
t f (t),

where 0 < ξ < 1 .

Lemma 4 ([27]). If ξ ∈ (0, 1) , f (t) is the continuously differentiable function, then

R
t0

Dξ
t f T(t)P f (t) ≤ (t− t0)

−ξ

Γ(1− ξ)
f T(t0)P f (t0) + 2 f T(t)PR

t0
Dξ

t ( f (t)− f (t0)), (6)

where P ∈ Rn×n is a positive definite matrix.

Lemma 5 ([27]). Let y = 0 be an equilibrium point of the nonautonomous fractional differential
equation R

t0
Dξ

t y(t) = g(t, y) which satisfies the Lipschitz constant c > 0, and ξ ∈ (0, 1). If we sup-
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pose that there is a Lyapunov function v(t) = V(t, y) and some class-K functions λp(p = 1, 2, 3),
which satisfy the following equations

λ1(‖y‖) ≤ v(t) ≤ λ2(‖y‖), (7)

R
to Dξ

t v ≤ (t− to)
−ξ

Γ(1− ξ)
v(to)− λ3(y(t)), (8)

where for all t ≥ t0, then the equilibrium point of the fractional-order equation is asymptotically stable.

Model Description

In this paper, we can consider the following drive system and response system of
fractional-order complex dynamical networks, as follows [29]:

C
t0

Dξ
t φp(t) = Aφp(t) + Bγφp(t) + c

N

∑
q=1

dpqΛ1φq(t), (9)

and

C
t0

Dξ
t ϕp(t) = (E0 + ∆E)ϕp(t) + (G0 + ∆G)ηϕp(t) + k

N

∑
q=1

LpqΛ2 ϕq(t) + ωp(t), (10)

where 0 < ξ < 1, φp(t) and ϕp(t) are the state of the p -node of the above systems, A and E0
are the real constant matrices, and B and G0 indicate the weight association matrices. γφp(t)
and ηϕp(t) express the vector-valued nonlinear functions. D = (dpq)N×N and L = (lpq)N×N
are the external coupling matrices which denote the link between node p and q. If they
have a direct link between node p to q, dpq > 0 and lpq > 0; otherwise, dpq = 0 and lpq = 0.
Λ refers to the internal coupling matrix, a link between two subsystems. ωp(t) expresses
the control input. ∆E and ∆G are the parameter uncertainties, such that,

E = (E0 + ∆E), G = (G0 + ∆G). (11)

The parameter uncertainties ∆E and ∆G can be given by

E0(t) = H1Ξ1K1, G0(t) = H2Ξ2K2, (12)

where Hi and Ki(i = 1, 2) are positive constant matrices, and uncertain Ξi(t)(i = 1, 2) are
the matrices which are unknown and satisfy the following condition

Ξi(t)(Ξi(t))T ≤ I, (13)

where I is an identity matrix.
We consider that the drive system is not quite the same as the response system; then,

the error vector is defined by

υp(t) = ϕp(t)− φp(t). (14)

The error system can be expressed by

C
t0

Dξ
t υp(t) = C

t0
Dξ

t ϕp(t)−C
t0

Dξ
t φp(t). (15)
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By substituting (9) and (10) into (15), we can write

C
t0

Dξ
t υp(t) =(E0 + ∆E)ϕp(t) + (G0 + ∆G)ηϕp(t) + k

N

∑
q=1

LpqΛ2 ϕq(t)

− Aφp(t)− Bγφp(t)− c
N

∑
q=1

dpqΛ1φq(t).

(16)

One can obtain

C
t0

Dξ
t υp(t) =(E0 + ∆E)ϕp(t)− Aφp(t)− (E0 + ∆E)φp(t) + (E0 + ∆E)φp(t)

+ (G0 + ∆G)ηϕp(t)− Bγφp(t)− (G0 + ∆G)ηφp(t)

+ (G0 + ∆G)ηφp(t) + k
N

∑
q=1

LpqΛ2 ϕq(t)− c
N

∑
q=1

dpqΛ1φq(t)

− k
N

∑
q=1

LpqΛ2φq(t) + k
N

∑
q=1

LpqΛ2φq(t) + ωp(t).

(17)

Assumption 1. For any p = 1, 2, · · ·, N, the nonlinear function fp(·) satisfies the Lipschitz
condition if ∃ a constant c > 0, such that

| fp(χ1)− fp(χ2)| ≤ c|χ1 − χ2|, χ1, χ2 ∈ R. (18)

3. Main Results

In this section, studying the asymptotic synchronization problem of FCDNDP is
similar to the stability analysis of the equilibrium point error model. By applying the R− L
fractional derivative, we initially propose an original controller and then present the vital
criteria for asymptotic stability.

Theorem 1. Let the Assumption 1 hold and scalar 0 < ξ < 1; the FCDNDP is asymptotically
stable if the controller of form (ii) satisfies the criteria (i):

(i) Ω < 0,

(ii) ωp(t) = (A− E)φp(t) + Bγϕp(t)− Gηϕp(t) + c
N
∑

q=1
dpqΛ1 ϕq(t)− k

N
∑

q=1
LpqΛ2φq(t),

where

Ω =PE0 + ET
0 (t)P + ε−1

1 PH1HT
1 P + ε1T1TT

1 + ε−1
2 PH2HT

2 P + ε2T2TT
2 + ε3θ1

+ ε−1
3 PGGT P + ε−1

4 PBBTX + ε4θ2 + k
N

∑
q=1

LpqΛ2 + c
N

∑
q=1

dpqΛ1.

Proof. It follows from the error system (17) that the Lyapunov function can be designed as

V(t) = υT
p (t)Pυp(t). (19)

Computing the derivative of the (19) along the error system, we can obtain

R
t0

Dξ
t Vp(t) = R

t0
Dξ

t (υ
T
p (t)Pυp(t)). (20)

According to Lemma 4, (20) can be composed as

R
t0

Dξ
t Vp(t) =

(t− t0)
−ξ

Γ(1− ξ)
(υT

p (t0)Pυp(t0)) + 2υT
p (t)PR

t0
Dξ

t (υp(t)− υp(t0)). (21)
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Based on the Lemma 3, (21) can be composed as

R
t0

Dξ
t Vp(t) =

(t− t0)
−ξ

Γ(1− ξ)
(υT

p (t0)Pυp(t0)) + 2υT
p (t)PC

t0
Dξ

t υp(t). (22)

Substituting the error system (17) into the (22), we can obtain

R
t0

Dξ
t Vp(t) =

(t− t0)
−ξ

Γ(1− ξ)
(υT

p (t0)Pυp(t0)) + 2υT
p (t)P{(E0 + ∆E)ϕp(t)− Aφp(t)

− (E0 + ∆E)φp(t) + (E0 + ∆E)φp(t) + (G0 + ∆G)ηϕp(t)− Bγφp(t)

− (G0 + ∆G)ηφp(t) + (G0 + ∆G)ηφp(t) + k
N

∑
q=1

LpqΛ2 ϕq(t)

− c
N

∑
q=1

dpqΛ1φq(t)− k
N

∑
q=1

LpqΛ2φq(t) + k
N

∑
q=1

LpqΛ2φq(t) + ωp(t)}.

(23)

Applying the controller ωp(t) into (23), we have the following formula

R
t0

Dξ
t Vp(t) =

(t− t0)
−ξ

Γ(1− ξ)
(υT

p (t0)Pυp(t0)) + 2υT
p (t)P{(E0 + ∆E)ϕp(t)− Aφp(t)

− (E0 + ∆E)φp(t) + (E0 + ∆E)φp(t) + (G0 + ∆G)ηϕp(t)

− Bγφp(t)− (G0 + ∆G)ηφp(t) + (G0 + ∆G)ηφp(t)

+ k
N

∑
q=1

LpqΛ2 ϕq(t)− c
N

∑
q=1

dpqΛ1φq(t) + Bγϕp(t)

− k
N

∑
q=1

LpqΛ2φq(t) + k
N

∑
q=1

LpqΛ2φq(t) + (A− E)φp(t)

− Gηϕp(t) + c
N

∑
q=1

dpqΛ1 ϕq(t)− k
N

∑
q=1

LpqΛ2φq(t)}.

(24)

The above formula can be simplified as

R
t0

Dξ
t Vp(t) =

(t− t0)
−ξ

Γ(1− ξ)
(υT

p (t0)Pυp(t0)) + 2υT
p (t)P{(E0 + ∆E)υp(t)

+ (G0 + ∆G)ηυp(t) + k
N

∑
q=1

LpqΛ2υq(t)

+ Bγυp(t) + c
N

∑
q=1

dpqΛ1υq(t)}.

(25)

Utilizing the Lemma 2 into (25), we have

2υT
p (t)P(E0 + ∆E)υp(t) ≤2υT

p (t)PE0υp(t) + 2υT
p (t)P∆Eυp(t)

≤υT
p (t)(PE0 + ET

0 P)υp(t) + 2υT
p (t)PH1Ξ1T1υp(t)

≤υT
p (t)(PE0 + ET

0 P)υp(t) + υT
p (t)ε

−1
1 PH1HT

1 Xυp(t)

+ υT
p (t)ε1T1TT

1 υp(t)

≤υT
p (t){PE0 + ET

0 (t)P + ε−1
1 PH1HT

1 P + ε1T1TT
1 }υp(t),

(26)
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and

2υT
p (t)P(G0 + ∆G)ηυp(t) ≤ υT

p (t){ε−1
2 PH2HT

2 P + ε2T2TT
2 + ε−1

3 PGGT P + ε3θ1}

2υT
p (t)PBγυp(t) ≤ υT

p (t){ε−1
4 PBBT P + ε4θ2}.

(27)

By substituting (26) and (27) into (25), we get

R
t0

Dξ
t Vp(t) ≤

(t− t0)
−ξ

Γ(1− ξ)
(υT

p (t0)Pυp(t0)) + 2υT
p (t){PE0 + ET

0 (t)P

+ ε−1
1 PH1HT

1 P + ε1T1TT
1 + ε−1

2 PH2HT
2 P

+ ε2T2TT
2 + ε−1

3 PGGT P + ε3θ1 + ε−1
4 PBBT P + ε4θ2

+ k
N

∑
q=1

LpqΛ2 + c
N

∑
q=1

dpqΛ1}υp(t).

(28)

The above formula can be further simplified as

R
t0

Dξ
t Vp(t) ≤

(t− t0)
−ξ

Γ(1− ξ)
(υT

p (t0)Pυp(t0))− λmin(−Ω)υp(t)Tυp(t)

≤ (t− t0)
−ξ

Γ(1− ξ)
(υT

p (t0)Pυp(t0))−
λmin(−Ω)

λmax(P)
υp(t)T Pυp(t)

≤ (t− t0)
−ξ

Γ(1− ξ)
(υT

p (t0)Pυp(t0))− χVp(t),

(29)

where χ = λmin(−Ω)
λmax(P) , utilizing Lemma 5, and if Ω < 0 is satisfied, we infer that the error

system (17) is asymptotically stable. Then, we find that the FCDNDP is asymptotically
synchronized under the original feedback controller.

In the light of the above Theorem 1, we can obtain the following corollary.

Corollary 1. If the fractional-order complex network is composed of N nodes, which can be de-
picted as

C
t0

Dξ
t φp(t) = Aφp(t) + Qφp(t) + Bγφp(t) + c

N

∑
q=1

dpqΛ1φq(t), (30)

and

C
t0

Dξ
t ϕp(t) = Eϕp(t) + Yϕp(t) + Gηϕp(t) + k

N

∑
q=1

LpqΛ2 ϕq(t) + ωp(t), (31)

which is similar to system (9),

Y = (Y0 + ∆Y), ∆Y = H3Ξ3K3,

where Q and Y0 are the real constant matrices, and other parameters are the same as system (9) and
system (10). We can obtain the fractional-order complex network which is composed of the system (30)
and system (31). They are asymptotically synchronized. The proof for Corollary 1 is similar to Theorem 1.

4. Numerical Simulation

In this part, two numerical instances are presented to illustrate the effectiveness of the
proposed method.



Fractal Fract. 2022, 6, 441 8 of 18

Example 1. Suppose that the following FCDNDP is composed of N nodes, and every node is a
n-dimensional system which is given as follows

C
t0

Dξ
t φp(t) = Aφp(t) + Bγφp(t) + c

N

∑
q=1

dpqΛ1φq(t), (32)

and

C
t0

Dξ
t ϕp(t) = (E0 + ∆E)ϕp(t) + (G0 + ∆G)ηϕp(t) + k

N

∑
q=1

LpqΛ2 ϕq(t) + ωp(t), (33)

where p = 1, 2, 3, 4. c = 0.01; k = 0.02; ςφp(t) = (0.25 ∗ tanh(x1(t)), 0.25 ∗ tanh(x2(t)), 0.25 ∗
tanh(x3(t)), 0.25 ∗ tanh(x4(t))); ηϕp(t) = (8.10 ∗ tanh(x1(t)), 8.10 ∗ tanh(x2(t)), 8.10 ∗
tanh(x3(t)), 8.10 ∗ tanh(x4(t))).

The parameter matrices and weight connection matrices can be expressed as

A =


−20.15 0 0 0

0 −5.98 0 0
0 0 −12.47 0
0 0 0 −16.56

, B =


0.2 0 0.5 0.78
0 −1.15 1 0.35

0.3 1 −1 0
0 0 0 −2.15

,

E =


−2.14 0 0 0

0 −0.16 0 0
0 0 −5.57 0
0 0 0 −0.23

, D =


1 0.025 0.1 0.6
−2.1 1 0 1

0 −1 −2.25 1
1 0 1 −1.35

.

Meanwhile, the inner coupling matrices can be expressed as

Λ1 =


0.25 0 0 0

0 0.25 0 0
0 0 0.25 0
0 0 0 0.25

, Λ2 =


0.35 0 0 0

0 0.35 0 0
0 0 0.35 0
0 0 0 0.35

.

The matrices of parameter uncertainties can be expressed as

H1 =


0.1 0 0 0
0 0.5 0 0
0 0 0.2 0
0 0 0 0.3

, K1 =


0.2 0 0 0
0 0.1 0 0
0 0 0.2 0
0 0 0 0.5

,

Ξ1 =


cos(x1(t)) 0 0 0

0 cos(x2(t)) 0 0
0 0 cos(x3(t)) 0
0 0 0 cos(x4(t))

.
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The external coupling matrices can be expressed as

dpq =



−1 0 1.5 0 2.5 −2.1 1 −1 0.2 −2.25
−2 −1.5 0 −0.2 0.1 −0.5 0 1.5 0.1 −3
0 −1 −3 0 1 −1.5 0 −1.25 −1.15 1

2.5 0 1.5 −2 1.5 0 −1.5 0 −2 0.5
0 −1 0 1 −2.25 −1.45 −1.5 3 0.5 −1.1
−1.01 0 2 −2 1 −1.5 0 1 −1 0

0.5 0 −1 2.1 0 1.5 −1.5 −1.5 1.01 1.45
−2 0.1 −1.01 1 −1.5 0 −1 −1.45 2.25 −0.2
1 −2.5 0 1.5 −1 0.2 0.5 1 −1.15 −1.25

1.5 −3 0.5 −0.5 0 −1.15 3 0 0.2 −1


,

Lpq =



−2 0 0 1.5 −1.5 3 −1 0 1 0.5
−1 −1 0 1 −3.5 0 0.25 2 1.5 0
0 1 −3.5 0.5 0.25 0 0 1.5 −2.25 −0.5
1 −1 −1.25 −0.15 0 1 2 −2.5 0 −1.5
−0.15 2.25 −1 0 −1 2 0 −0.15 0.25 3

0 −0.26 −3 0 0 −1 2 1 −1 −1
−1.25 0 0.25 −1.25 2 0 −2.5 −0.15 0 0.25

0 −1.5 1 0 1 −2.25 1.5 −1 0.15 0
2.25 1.25 0 1.5 0.5 1 −1 0 −0.25 −2
−0.5 0 1 −2 0 0.5 −3 1 0 −1.5


.

The simulation results are shown in Figures 1 and 2, which show the time waveforms
of the system errors ei1. Figure 1 shows the variation of the synchronization error system
without a controller. Figure 2 shows the variation of the synchronization error system
with a controller. Figures 3–10 show the variation in the synchronization error systems
ei2, ei3, ei4, eij(i = 1, 2, · · ·, 10; j = 1, 2, 3, 4). According to the simulation results and fig-
ures, one can obtain that the error system is driven to initial point, i.e., the FCDNDP is
synchronized, which verifies the validity of the proposed controller.
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Figure 1. Synchronization errors ei1(i = 1, 2, · · ·, 10) of the fractional-order system (32) and (33)
without the controllers.
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Figure 2. Synchronization errors ei1(i = 1, 2, · · ·, 10) of the fractional-order system (32) and (33) with
the controllers.
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Figure 3. Synchronization errors ei2(i = 1, 2, · · ·, 10) of the fractional-order system (32) and (33)
without the controllers.
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Figure 4. Synchronization errors ei2(i = 1, 2, · · ·, 10) of the fractional-order system (32) and (33) with
the controllers.
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Figure 5. Synchronization errors ei3(i = 1, 2, · · ·, 10) of the fractional-order system (32) and (33)
without the controllers.
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Figure 6. Synchronization errors ei3(i = 1, 2, · · ·, 10) of the fractional-order system (32) and (33) with
the controllers.
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Figure 7. Synchronization errors ei4(i = 1, 2, · · ·, 10) of the fractional-order system (32) and (33)
without the controllers.
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Figure 8. Synchronization errors ei4(i = 1, 2, · · ·, 10) of the fractional-order system (32) and (33) with
the controllers.
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Figure 9. Synchronization errors eij (i = 1, 2, · · ·, 10; j = 1, 2, 3, 4) of the fractional-order system (32)
and (33) without the controllers.
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Figure 10. Synchronization errors eij (i = 1, 2, · · ·, 10; j = 1, 2, 3, 4) of the fractional-order system (32)
and (33) with the controllers.
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Example 2. Suppose that the following FCDNDP is composed of N nodes and every node is a
n-dimensional system, which is given as follows

C
t0

Dξ
t φp(t) = Aφp(t) + Bγφp(t) + c

N

∑
q=1

dpqΛ1φq(t), (34)

and

C
t0

Dξ
t ϕp(t) = (E0 + ∆E)ϕp(t) + (G0 + ∆G)ηϕp(t) + k

N

∑
q=1

LpqΛ2 ϕq(t) + ωp(t). (35)

The parameter matrices and weight connection matrices can be expressed as

A =


−30.15 0 0 0

0 −7.99 0 0
0 0 −15.73 0
0 0 0 −24.89

, B =


1 0 0.5 0.35
0 −2.15 1 0.35
0 1 −1 0
0 0 0 −0.15

,

E =


−3.15 0 0 0

0 −0.52 0 0
0 0 −8.51 0
0 0 0 −0.45

, D =


−1.048 0.025 0.1 0.6
−2.1 0.85 0 1.87

0 −1 −3.25 −1
1.86 0 1 −1.35

.

Meanwhile, the inner coupling matrices can be expressed as

Λ1 =


0.25 0 0 0

0 0.25 0 0
0 0 0.25 0
0 0 0 0.25

, Λ2 =


0.35 0 0 0

0 0.35 0 0
0 0 0.35 0
0 0 0 0.35

.

The matrices of parameter uncertainties can be expressed as

H2 =


1 0 0 0
0 0.9 0 0
0 0 1 0
0 0 0 0.3

, K1 =


1 0 0 0
0 0.9 0 0
0 0 0.8 0
0 0 0 1

,

Ξ2 =


0.41 cos(x1(t)) 0 0 0

0 cos(x2(t)) 0 0
0 0 0.3 cos(x3(t)) 0
0 0 0 0.13 cos(x4(t))

.

The external coupling matrices can be expressed as

dpq =



−1 0 1.5 0 2.5 −2.1 1 −1 0.2 −2.25
−2 −1.5 0 −0.2 0.1 −0.5 0 1.5 0.1 −3
0 −1 −3 0 1 −1.5 0 −1.25 −1.15 1

2.5 0 1.5 −2 1.5 0 −1.5 0 −2 0.5
0 −1 0 1 −2.25 −1.45 −1.5 3 0.5 −1.1
−1.01 0 2 −2 1 −1.5 0 1 −1 0

0.5 0 −1 2.1 0 1.5 −1.5 −1.5 1.01 1.45
−2 0.1 −1.01 1 −1.5 0 −1 −1.45 2.25 −0.2
1 −2.5 0 1.5 −1 0.2 0.5 1 −1.15 −1.25

1.5 −3 0.5 −0.5 0 −1.15 3 0 0.2 −1


,
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Lpq =



−2 0 0 1.5 −1.5 3 −1 0 1 0.5
−1 −1 0 1 −3.5 0 0.25 2 1.5 0
0 1 −3.5 0.5 0.25 0 0 1.5 −2.25 −0.5
1 −1 −1.25 −0.15 0 1 2 −2.5 0 −1.5
−0.15 2.25 −1 0 −1 2 0 −0.15 0.25 3

0 −0.26 −3 0 0 −1 2 1 −1 −1
−1.25 0 0.25 −1.25 2 0 −2.5 −0.15 0 0.25

0 −1.5 1 0 1 −2.25 1.5 −1 0.15 0
2.25 1.25 0 1.5 0.5 1 −1 0 −0.25 −2
−0.5 0 1 −2 0 0.5 −3 1 0 −1.5


.

Meanwhile, the other parameters are the same as in Example 1.
The simulation results are shown in Figures 11 and 12, which show the time waveforms

of the system errors ei1. Figure 11 shows the variation in the synchronization error system
without a controller. Figure 12 shows the variation in the synchronization error system
with a controller. Figures 13–20 shows the variation in synchronization error systems
ei2, ei3, ei4, eij(i = 1, 2, · · ·, 10; j = 1, 2, 3, 4). According to the simulation results and figures,
one can obtain that the error system is driven to the initial point, i.e., the FCDNDP is
synchronized, which verifies the validity of the proposed controller.
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Figure 11. Synchronization errors ei1(i = 1, 2, · · ·, 10) of the fractional-order system (34) and (35)
without the controllers.
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Figure 12. Synchronization errors ei1(i = 1, 2, · · ·, 10) of the fractional-order system (34) and (35) with
the controllers.
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Figure 13. Synchronization errors ei2(i = 1, 2, · · ·, 10) of the fractional-order system (34) and (35)
without the controllers.
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Figure 14. Synchronization errors ei2(i = 1, 2, · · ·, 10) of the fractional-order system (34) and (35) with
the controllers.
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Figure 15. Synchronization errors ei3(i = 1, 2, · · ·, 10) of the fractional-order system (34) and (35)
without the controllers.
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Figure 16. Synchronization errors ei3(i = 1, 2, · · ·, 10) of the fractional-order system (34) and (35) with
the controllers.
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Figure 17. Synchronization errors ei4(i = 1, 2, · · ·, 10) of the fractional-order system (34) and (35)
without the controllers.
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Figure 18. Synchronization errors ei4(i = 1, 2, · · ·, 10) of the fractional-order system (34) and (35) with
the controllers.
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Figure 19. Synchronization errors eij (i = 1, 2, · · ·, 10; j = 1, 2, 3, 4) of the fractional-order system (34)
and (35) without the controllers.
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Figure 20. Synchronization errors eij (i = 1, 2, · · ·, 10; j = 1, 2, 3, 4) of the fractional-order system (34)
and (35) with the controllers.

5. Conclusions

In this paper, by applying the fractional differential equation theory and differential
inclusion theory, a driving response system with different structures is established. The
driving system is a general driving model, and the response system is a response model
with parameter uncertainties. Based on the Lyapunov direct method, a sufficient condition
for the asymptotic synchronization of FCDNDP is established. When we deal with a similar
problem, this method can ensure that the obtained results have better application and less
conservatism. Finally, the validity and feasibility of the theoretical outcomes are confirmed
by two simulation instances. In the future, we hope to extend the technique proposed in
this paper to the asymptotic synchronization of FCDNDP with time delay.
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