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Abstract: The time-fractional Cattaneo equation is an equation where the fractional order α ∈ (1, 2)
has the capacity to model the anomalous dynamics of physical diffusion processes. In this paper,
we consider an efficient scheme for solving such an equation in two space dimensions. First, we
obtain the space’s semi-discrete numerical scheme by using the compact difference operator in the
spatial direction. Then, the semi-discrete scheme is converted to a low-order system by means of
order reduction, and the fully discrete compact difference scheme is presented by applying the L2-1σ

formula. To improve the computational efficiency, we adopt the fast discrete Sine transform and
sum-of-exponentials techniques for the compact difference operator and L2-1σ difference operator,
respectively, and derive the improved scheme with fast computations in both time and space. That
aside, we also consider the graded meshes in the time direction to efficiently handle the weak
singularity of the solution at the initial time. The stability and convergence of the numerical scheme
under the uniform meshes are rigorously proven, and it is shown that the scheme has second-order
and fourth-order accuracy in time and in space, respectively. Finally, numerical examples with
high-dimensional problems are demonstrated to verify the accuracy and computational efficiency of
the derived scheme.

Keywords: time-fractional Cattaneo equation; compact difference operator; L2-1σ method; fast
discrete Sine transform; sum of exponentials

1. Introduction

Let Ω ⊂ R2 be a bounded rectangle domain and T be the fixed time. In this pa-
per, we study the efficient numerical scheme for solving the following time-fractional
Cattaneo equation:

∂tu(x, t) + κ CDα
0,tu(x, t) = µ∆u(x, t) + f (x, t), in Ω× (0, T], (1)

where the boundary and initial conditions are u(x, t) = 0 on ∂Ω× (0, T] and u(x, 0) = u0(x),
∂tu(x, 0) = u1(x) in Ω. Here, x = (x1, x2).The parameters κ and µ are the positive constants
related to the relaxation time and diffusion properties, respectively. The source term f and
the initial conditions u0 and u1 are given suitable functions. The Laplacian ∆ is defined by
∆ = ∂2

x1
+ ∂2

x2
. The Caputo derivative CDα

0,t with α ∈ (1, 2] is given by

CDα
0,tv(t) =

1
Γ(2− α)

∫ t

0
(t− s)1−αv′′(s)ds,

where Γ(·) is the Gamma function.
The time-fractional Cattaneo Equation (1) provides a flexible and efficient way to

model the anomalous dynamics of physical diffusion processes, especially the general
dynamics crossover behaviors [1,2]. In recent years, many efforts have been made in the
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theoretical and numerical study of such a time-fractional equation or its variants. See [2,3]
for the theoretical case and [1,4–6] for the numerical case, just to name a few. One may refer
to these two review papers [7,8] or this book [9] for further details.

In [4], Zhao and Sun proposed a compact Crank–Nicolson scheme for solving the
time-fractional Cattaneo Equation (1). Ren and Gao also constructed an alternating di-
rection implicit (ADI) compact difference scheme by adding a small term to improve the
computational efficiency for the two-dimensional problem [5]. The temporal convergence
order of both of the above two methods is the order 3− α, where 1 < α < 2. Later on,
Chen and Li proposed a temporal second-order ADI Galerkin scheme by applying the
Galerkin finite element method in space and the L2-1σ method in time [6]. In [1], Chen and
Nong developed two efficient, fully discrete schemes for solving Equation (1) based on the
Galerkin finite method in space and the convolution quadrature in time. Error estimates
and numerical experiments show that their schemes are efficient when dealing with differ-
ent data regularity in Equation (1). It seems that the schemes mentioned above still have
some limitations, especially in the high-dimensional and non-smooth solution problems.
This motivated us to develop an efficient numerical scheme to cope with such situations.

For the high-dimensional time-fractional model, there are two ways to improve the
computational efficiency of the numerical scheme. One involves the spatial direction, such
as with the ADI technique, fast discrete Sine transforms (DSTs), and so on (see [6,10]). The
other one involves the temporal direction, such as with the fast convolution quadrature
and sum-of-exponentials (SOE) techniques (see [11–14]). In this paper, we focus on the DST
and SOE techniques.

The DST technique has attracted the interest of many scholars in recent years, mainly
because it avoids the direct inversion for the coefficient matrix of the linear discrete systems
and, at the same time, ensures the convergence accuracy of the difference operators [15,16].
In [15], Wang, et al. proposed an efficient fourth-order compact finite difference scheme for
solving the Poisson equation based on the fast discrete Sine transform and greatly reduced
the computational cost by avoiding matrix inversion for the discretized system. There has
been some work in recent years on the application of the DST technique in numerically
solving high-dimensional time-fractional equations (see [10,17,18]).

The SOE technique is an efficient way to reduce the computational complexity caused
by the non-locality of fractional derivatives [13,19]. In [13], Yan et al. presented the fast L2-
1σ (denoted by FL2-1σ) formula by employing the SOE technique with the kernel function
in the Caputo derivative. Subsequently, some numerical studies of time-fractional models
based on this approach have emerged (see [10,19] and the corresponding references therein).
In [19], Liang et al. proposed a fast difference scheme for solving the one-dimensional
time-fractional telegraph equation based on the FL2-1σ formula. In [10], Li et al. derived a
fast compact difference scheme for solving subdiffusion equations by applying the FL2-1σ

in time and the compact difference operator in space. It is worth mentioning that the
compact difference operator is implemented by the DST via the fast Fourier transform (FFT)
algorithm. Therefore, their scheme is computationally efficient in both the time direction
and spatial dimensions.

Motivated by the work in [10], we aim to develop a fast compact difference scheme for
solving Equation (1). To this end, we derive a compact difference scheme by applying the
L2-1σ formula in time and compact difference operator in space. Then, the SOE and DST
techniques are both adopted to improve the computational performance of the derived
scheme. The contributions of our paper are as follows. First, we construct a compact
difference scheme with fast computation in both the temporal and spatial directions, which
effectively handles the high computational cost caused by the high spatial dimension and
the non-locality of the Caputo derivative (see the numerical scheme (10)). Second, we
present the rigorous stability and error estimate for the uniform mesh-based fast compact
difference scheme (see Theorems 1 and 2). Third, extensive numerical experiments are
designed to verify the accuracy and efficiency of the fast compact difference scheme (see
the Section 5, Tables 1 and 2 for the accuracy; Table 5 and Figure 1 for efficiency).Besides,
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the fast compact difference scheme based on graded meshes in time is adopted to handle
non-smooth solution problems (see Tables 3 and 4 in Section 5).

This paper is organized as follows. In Section 2, we present the fully discrete difference
scheme based on the compact difference operator for the Laplacian in space and the L2-
1σ formula for the Caputo derivative in time. In order to improve the computational
performance of the derived scheme, we further adopt the DST and SOE techniques to
obtain the fast compact difference scheme in Section 3. In Section 4, the stability and
error estimate of the fast compact difference scheme based on the uniform meshes are
provided rigorously. Numerical examples and the conclusions of this paper are given in
Sections 5 and 6, respectively.

2. The Compact Difference Scheme

In this section, we first approximate the Laplacian ∆ in Equation (1) by applying
the compact difference operator and then find the low-order system for the space’s semi-
discrete scheme with the aid of the reduced-order method so that the fully discrete scheme
of the equation can be obtained by using the second-order L2-1σ formula.

To this end, we introduce some useful notations in the following. Suppose the rectangle
domain Ω = [xL

1 , xR
1 ]× [xL

2 , xR
2 ]. Let the spatial step size be hk = (xR

k − xL
k )/Mk and the

grid points be xk,jk = xL
k + jkhk (jk = 0, 1, · · · , Mk), where Mk (k = 1, 2) is a positive integer.

The fully discrete grids on Ω are given by Ωh = {xh = (x1,j1 , x2,j2)|0 ≤ jk ≤ Mk (k = 1, 2)}.
We will use M without a subscript to denote M1 (or M2) when M1 = M2, unless otherwise
specified. The inner and boundary grids are denoted by Ωh = Ωh ∩Ω and ∂Ωh = Ωh ∩ ∂Ω,
respectively. We denote the space of the grid function as Vh = {v|v = (vh)xh and vh = 0
for xh ∈ ∂Ωh}.

For the grid function vh = v(xh) with the index vector h = (i1, i2) at the kth position

(k = 1, 2), the compact difference operator is given by ∆kvik =
δ2

k
Hk

vik , where

Hkvik =
(

I +
h2

k
12

δ2
k

)
vik .

Here, we have

δ2
k vik =

δkvik+
1
2
− δkvik− 1

2

hk
and δkvik+

1
2
=

vik+1 − vik
hk

.

Therefore, for xh ∈ Ωh, we have ∆v(xh) = ∆hvh + O(h4) with ∆hvh = (∆1 + ∆2)vh
and h = (h1, h2).

When employing the compact difference operator ∆h for the discretization of the
Laplacian ∆ in (1), one has

∂tu(xh, t) + κ CDα
0,tu(xh, t) = µ∆hu(xh, t) + f (xh, t) + Rx(t),

from which we obtain the following space semi-discrete scheme:

∂tuh(t) + κ CDα
0,tuh(t) = µ∆huh(t) + fh(t), (2)

where uh(t) ≈ u(xh, t) and the truncation error Rx(t) = O(h4).
Next, we introduce the L2-1σ formula for the approximation of the Caputo derivative

CDβ
0,t with β ∈ (0, 1). Let the temporal step size be τ = T/Nt. Here, Nt is a positive integer.

Denote tn = nτ, where n ≥ 0 and tn+ 1
2
= (tn + tn+1)/2. For a given function g(t), denote

δtgn+ 1
2 =

g(tn+1)− g(tn)

τ
, gn+ 1

2 =
g(tn+1) + g(tn)

2
,

δ̂tgn =
1

2τ
((2σ + 1)g(tn+1)− 4σg(tn) + (2σ− 1)g(tn−1)),
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and gn+σ = σg(tn+1) + (1 − σ)g(tn), where σ = 1 − β/2. For more details about the
difference operator δ̂t, one may refer to Lemma 2.1 of [20].

We state the L2-1σ formula as follows [21]. If g(t) ∈ C3[0, T], then

CDβ
0,tg(t)|t=tn+σ = Dβ

τ gn+σ + O(τ3−β), (3)

where Dβ
τ gn+σ = ∑n

k=0 w(n+1)
n−k (g(tk+1) − g(tk)) and for n = 0, w(1)

0 = a0τ−β/Γ(2 − β),
where n ≥ 1, we have

w(n+1)
k =

τ−β

Γ(2− β)


a0 + b1, k = 0,
ak + bk+1 − bk, k = 1, 2, · · · , n− 1,
an − bn, k = n.

(4)

Here , a0 = σ1−β, ak = (k + σ)1−β − (k− 1 + σ)1−β, k ≥ 1, and

bk =
(k + σ)2−β − (k− 1 + σ)2−β

2− β
− (k + σ)1−β − (k− 1 + σ)1−β

2
, k ≥ 1.

By setting φh(t) = ∂tuh(t) for (2), we find the following lower-order system:

φh(t) + κ CDα−1
0,t φh(t) = µ∆huh(t) + fh(t). (5)

Therefore, by replacing CDα−1
0,t with the difference operator Dα−1

τ of the L2-1σ Formula (3)
in the space semi-discrete scheme (2), one has

φh(tn+σ) + κ Dα−1
τ φn+σ

h = µ∆huh(tn+σ) + fh(tn+σ) + Rn
xt,

δtu1/2
h = φh(t1/2) + r0,

δ̂tun
h = φh(tn+σ) + rn,

where the truncation error Rn
xt = O(τ2 + h4) and r0 = rn = O(τ2). By dropping the

small terms Rn
xt, r0, and rn, we have the following compact difference scheme for solving

Equation (1). We find the numerical solution φn
h of φ(xh, tn) for n ≥ 1 such that

φn+σ
h + κ Dα−1

τ φn+σ
h = µ∆hun+σ

h + f n+σ
h ,

δtu1/2
h = φ1/2

h ,
δ̂tun

h = φn+σ
h ,

(6)

where u0
h = u0(xh), φ0

h = u1(xh), and u(xh)|xh∈∂Ωh
= 0. From (6), we obtain the numerical

solution un
h of u(xh, tn) to (1): u1

h = u0
h + τ(φ1

h + φ0
h)/2 and for n ≥ 1:

un+1
h =

2τ

2σ + 1
(σφn+1

h + (1− σ)φn
h ) +

1
2σ + 1

(4σun
h − (2σ− 1)un−1

h ).

3. The Derivation of the Fast Compact Difference Scheme

In this part, we use the DST and SOE techniques to improve the computational
performance of the compact difference scheme (6).

By utilizing the discrete sine transform, one can derive that

v̂′′jk ≈ v̂jk
12
h2

k
·

sjk − 1
sjk + 5

:= v̂jk λ(jk ,Mk),

where sjk = cos( jkπ
Mk

) and 1 ≤ jk ≤ Mk − 1(k = 1, 2) (see [15] for more details about
the derivation).
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Therefore, the scheme in Equation (6) is equivalent to
φ̂n+σ

ν + κ Dα−1
τ φ̂n+σ

ν = µ
(

λ(j1,M1) + λ(j2,M2)
)

ûn+σ
ν + f̂ n+σ

ν ,

δtû1/2
ν = φ̂1/2

ν ,
δ̂tûn

ν = φ̂n+σ
ν ,

(7)

where ν is the index set defined by ν = {(j1, j2)|1 ≤ jk ≤ Mk − 1 (k = 1, 2)}. We can obtain
the numerical solution to Equation (1) by the following steps:

(a) Compute φ̂0
ν, û0

ν, and f̂ n
ν from φ0

h, u0
h, and f n

h by means of DST, where n ≥ 1;
(b) Compute φ̂n

ν by solving the system (7), and then obtain ûn
ν , where n ≥ 1;

(c) Obtain the numerical solutions φn
h and un

h from φ̂n
ν and ûn

ν , respectively, by means of
the inverse of DST, where n ≥ 1.

It is worth mentioning that if we solve numerical scheme (6) directly, the inverse of the
coefficient matrix needs to be solved at each time layer, and this leads to a computational
cost of O(M2

1 M2
2). If the DST technique based on FFT, that is the scheme (7) is used, then

the computational cost will be reduced to O(M1M2 log(M1M2)).
Next, we consider the SOE technique to further reduce the computational complexity

of the scheme (7) caused by the non-locality of the Caputo derivative.
Without loss of generality, we adopt the graded meshes tn = T( n

Nt
)γ in time, where

n = 0, · · · , Nt and γ ≥ 1 is a proper chosen temporal mesh grading parameter. Denote the

time step size τn = tn − tn−1. Set tn+σ = tn + στn+1 and Dτ gk = gk−gk−1

τk
. The fast L2-1σ

formula based on the graded meshes is defined as

FDβ
τn gn+σ = v0Dτ gn+1 +

Nexp

∑
k=1

vke−skστn+1 Hk(tn), (8)

where v0 = (στn+1)
1−β

Γ(2−β)
and Hk(tj) (j ≥ 0, k ≥ 1) is obtained by the following recurrence:

Hk(tj) = e−skτj Hk(tj−1) + ak,jDτ gj + bk,j(Dτ gj+1 − Dτ gj), (9)

with the initial value Hk(t0) = 0 [10]. Here, the coefficients ak,j = 1
sk
(1 − e−skτj) and

bk,j =
2

τj+τj+1

∫ tj
tj−1

(t− tj− 1
2
)e−sk(tj−t)dt. The weights vk(k ≥ 1) and the points sk(k ≥ 1) in

Formula (8) are chosen to satisfy∣∣∣∣∣ t−β

Γ(1− β)
−

Nexp

∑
k=1

vke−skt

∣∣∣∣∣ ≤ ε, ∀t ∈ [t1, T],

where ε is the absolute tolerance error and the number of exponentials Nexp satisfies

Nexp = O
(

log
1
ε

(
log log

1
ε
+ log

T
τ1

)
+ log

1
τ1

(
log log

1
ε
+ log

1
τ1

))
.

We remark that the letter F in the difference operator FDβ
τn (see the left-hand side of the

Formula (8)) represents the word “fast”, which refers to the fact that the corresponding for-
mula uses the SOE technique to improve the computational performance. It is shown in [13]
that the number of exponentials Nexp = O(log Nt) when T � 1 and Nexp = O

(
log2 Nt

)
when T ≈ 1. The total computational cost for the fast L2-1σ Formula (8) is O(NtNexp) with
storage O(Nexp).
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By replacing the classical L2-1σ formula in the numerical scheme (7) with the above fast
L2-1σ formula based on graded meshes, we have the following fast compact difference scheme:

φ̂n+σ
ν + κ FDα−1

τn φ̂n+σ
ν = µ

(
λ(j1,M1) + λ(j2,M2)

)
ûn+σ

ν + f̂ n+σ
ν ,

δ̃tû1/2
ν = φ̂1/2

ν ,˜̂δtûn
ν = φ̂n+σ

ν ,

(10)

where δ̃tû1/2
ν = û1

ν−û0
ν

τ1
and

˜̂δtûn
ν =

τn + 2στn+1

τn + τn+1
Dτ ûn+1

ν − τn+1(2σ− 1)
τn + τn+1

Dτ ûn
ν . (11)

We will simply denote the fast compact difference scheme (10) as the FL2-1σ(γ) scheme
in what follows if no ambiguity arises.

One can observe that, compared with the numerical scheme (6), the FL2-1σ(γ) scheme (10)
reduces the overall computational cost from O(N2

t M2
1 M2

2) to O(NtNexpM1M2 log(M1M2)),
which greatly improves the computational efficiency of the original scheme (6).

When γ = 1, the graded meshes recover the uniform one. Thus, in this case, we
shall use τ instead of τn in (10) unless otherwise specified. The corresponding scheme
based on uniform meshes is called the FL2-1σ(1) scheme. When γ > 1, the grid points in
the time direction are concentrated near the origin, which is beneficial for the numerical
solution to capture the weak singularity solution, thus improving the accuracy loss of the
scheme caused by the non-smooth solution. This will be verified by numerical examples in
Section 5.

4. Stability and Error Estimates

We studied the stability and error estimates for the FL2-1σ(1) scheme (10) in this section.
For any given grid function v ∈ Vh, the discrete L2 norm is given by ‖v‖ =

√
(v, v)h

with the discrete inner product (u, v)h = (h1h2)∑xh∈Ωh
uhvh. The discrete H1 semi-norm

and H1 norm are denoted as |v|1 =
√
‖∇hvh‖2 =

√
‖δ1vh‖2 + ‖δ2vh‖2 and ‖v‖1 =√

‖v‖2 + |v|21, respectively. Here, ∇h = (δ1, δ2). In light of the embedding theorem, we

can conclude that for any given v ∈ Vh, the discrete H1 semi-norm |v|1 and H1 norm ‖v‖1
are equivalent.

Using the recursive relationship of the historical term Hk(tj) in Equation (9), one may

reformulate the expression of the difference operator FDβ
τ based on the uniform meshes as

follows (or see [10,13] more details on the derivation):

FDβ
τ gn+σ =

n

∑
k=0

W(n+1)
n−k (g(tk+1)− g(tk)),

where W(n+1)
n−k are defined as W(1)

0 = w(1)
0 when n = 0, and for n ≥ 1, we have

W(n+1)
k =


A0 + B1, k = 0,
Ak + Bk+1 − Bk, k = 1, 2, · · · , n− 1,
An − Bn, k = n.

(12)

Here, A0 = W(1)
0 , An−k =

1
τ

∫ tk+1
tk

∑
Nexp
j=0 vje

−sj(tn+σ−s)ds, and

Bn−k =
1
τ2

∫ tk+1

tk

Nexp

∑
j=0

vje
−sj(tn+σ−s)(s− tk+ 1

2
)ds.

We need the following lemma:
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Lemma 1. The weights W(n+1)
k in Equation (12) have the following properties:

m−1

∑
k=1

(W(k+1)
k−1 −W(k+1)

k ) ≤ 9ε(m− 1)
4Γ(1− β)

+
4− 3β

τβΓ(3− β)
(m− 1 + σ)1−β,

and
m−1

∑
k=1

W(k+1)
k ≤ ε(m− 1)

Γ(1− β)
+

(m− 1 + σ)1−β

τβΓ(2− β)
.

Proof. In light of Lemma 3.3 in [19] and the definitions of W(n+1)
k in Equation (12), one

may readily obtain the desired results.

Let the symbol c be a positive constant which is independent of the temporal and
spatial step sizes. The stability of the scheme (10) is described as follows:

Theorem 1. The FL2-1σ(γ) compact difference scheme (10) with γ = 1 is stable in the sense that

‖um
h ‖

2
1 ≤ c

(
‖φ0

h‖
2 + ‖∇hu0

h‖
2

+τ
m−1

∑
n=1
‖∇hεn+σ

h ‖2 + τ‖∇hε
1
2
h ‖

2 + τ
m−1

∑
n=0
‖ f n+σ

h ‖2
)

,

where εn+σ
h and ε

1
2
h are the perturbations of δ̂tun

h = φn+σ
h + εn+σ

h and δtu
1
2
h = φ

1
2
h + ε

1
2
h , respectively.

Proof. In light of the equivalence of schemes (6) and (7), one only needs to consider the
following scheme instead of (10):

φn+σ
h + κ FDα−1

τ φn+σ
h = µ∆hun+σ

h + f n+σ
h ,

δtu1/2
h = φ1/2

h ,
δ̂tun

h = φn+σ
h .

(13)

We first consider the case n ≥ 1 for (13). By taking the discrete inner product on both
sides of (13) with ϕn+σ

h , we have

(φn+σ
h , φn+σ

h )h + (κ FDα−1
τ φn+σ

h , φn+σ
h )h = (µ∆hun+σ

h , φn+σ
h )h + ( f n+σ

h , φn+σ
h )h.

We can use Lemma 1 and the estimate for the discrete operator ∆h presented in (3.14) of
[10] such that

3
2
(
∆hun+σ

h , φn+σ
h

)
h <

(
∆hun+σ

h , φn+σ
h

)
h <

(
∆hun+σ

h , φn+σ
h

)
h, (14)

From this, we derive that

‖φn+σ
h ‖2 +

κ

2
FDα−1

τ ‖φn+σ
h ‖2 ≤ −µ(∇hun+σ

h ,∇hφn+σ
h )h + ( f n+σ

h , φn+σ
h )h. (15)

Note that δ̂tun
h = φn+σ

h + εn+σ
h , so it follows from Lemma 3.5 of [20] and the Cauchy–

Schwarz inequality that

−µ(∇hun+σ
h ,∇hφn+σ

h )h = −µ(∇hun+σ
h ,∇h δ̂tun

h)h + µ(∇hun+σ
h ,∇hεn+σ

h )h

≤ − µ

4τ
(En+1 − En) + µ‖∇hun+σ

h ‖‖∇hεn+σ
h ‖,

where En+1 = (2σ+ 1)‖∇hun+1
h ‖2− (2σ− 1)‖∇hun

h‖
2 +

(
2σ2 + σ− 1

)
‖∇hun+1

h −∇hun
h‖

2.
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By using the inequality ab ≤ εa2 + 1
4ε b2 with ε > 0, we obtain

‖∇hun+σ
h ‖‖∇hεn+σ

h ‖ ≤ 1
4
‖∇hun+σ

h ‖2 + ‖∇hεn+σ
h ‖2.

Therefore, the inequality (15) has the following estimate:

‖φn+σ
h ‖2 +

κ

2
FDα−1

τ ‖φn+σ
h ‖2 +

µ

4τ
En+1

≤ µ

4τ
En +

µ

4
‖∇hun+σ

h ‖2 + µ‖∇hεn+σ
h ‖2 + ( f n+σ

h , φn+σ
h )h,

In other words, we have

‖φn+σ
h ‖2 +

κ

2
W(n+1)

0 ‖φn+1
h ‖2 +

κ

2

n

∑
k=1

(W(n+1)
n−k+1 −W(n+1)

n−k )‖φk
h‖

2 +
µ

4τ
En+1

≤ κ

2
W(n+1)

n ‖φ0
h‖

2 +
µ

4τ
En +

µ

4
‖∇hun+σ

h ‖2 + µ‖∇hεn+σ
h ‖2 + ( f n+σ

h , φn+σ
h )h.

We sum up n from n = 1 to n = m− 1 for the above inequality and obtain

m−1

∑
n=1
‖φn+σ

h ‖2 +
κ

2

m−1

∑
n=1

W(n+1)
0 ‖φn+1

h ‖2 +
κ

2

m−1

∑
n=1

n

∑
k=1

(W(n+1)
n−k+1 −W(n+1)

n−k )‖φk
h‖

2 +
µ

4τ
Em

≤ κ

2

m−1

∑
n=1

W(n+1)
n ‖φ0

h‖
2 +

µ

4τ
E1 +

µ

4

m−1

∑
n=1
‖∇hun+σ

h ‖2 (16)

+µ
m−1

∑
n=1
‖∇hεn+σ

h ‖2 +
m−1

∑
n=1

( f n+σ
h , φn+σ

h )h.

Since

m−1

∑
n=1

n

∑
k=1

(W(n+1)
n−k+1 −W(n+1)

n−k )‖φk
h‖

2

=
m−1

∑
n=1

(
n

∑
k=2

(W(n+1)
n−k+1 −W(n+1)

n−k )‖φk
h‖

2 + (W(n+1)
n −W(n+1)

n−1 )‖φ1
h‖

2

)

=
m−1

∑
k=2

m−1

∑
n=k

(W(n+1)
n−k+1 −W(n+1)

n−k )‖φk
h‖

2 +
m−1

∑
n=1

(W(n+1)
n −W(n+1)

n−1 )‖φ1
h‖

2

=
m−1

∑
k=2

(W(m)
m−k −W(k+1)

0 )‖φk
h‖

2 +
m−1

∑
n=1

(W(n+1)
n −W(n+1)

n−1 )‖φ1
h‖

2,

we have

m−1

∑
n=1

W(n+1)
0 ‖φn+1

h ‖2 +
m−1

∑
n=1

n

∑
k=1

(W(n+1)
n−k+1 −W(n+1)

n−k )‖φk
h‖

2

=
m

∑
k=2

W(m)
m−k‖φ

k
h‖

2 +
m−1

∑
n=1

(W(n+1)
n −W(n+1)

n−1 )‖φ1
h‖

2

≥ C f
m

∑
k=2
‖φk

h‖
2 −

(
9ε(m− 1)
4Γ(1− β)

+
4− 3β

τβΓ(3− β)
(m− 1 + σ)1−β

)
‖φ1

h‖
2,

where Lemma 1 and the boundness of W(m)
m−k presented in Lemma 4.1 of [13] are used. Here,

C f = min{W(1)
0 , W(n+1)

n } and β = α− 1.
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The term Em has the estimate Em ≥ 1
σ‖∇hum

h ‖
2 (see Lemma 3.5 of [20]). Thus, one has

the further estimate for the inequality (16):

m−1

∑
n=1
‖φn+σ

h ‖2 +
κC f

2

m

∑
k=2
‖φk

h‖
2 +

µσ−1

4τ
‖∇hum

h ‖
2

≤
(

9ε(m− 1)
4Γ(1− β)

+
4− 3β

τβΓ(3− β)
(m− 1 + σ)1−β

)
‖φ1

h‖
2 (17)

+

(
ε(m− 1)
Γ(1− β)

+
(m− 1 + σ)1−β

τβΓ(2− β)

)
‖φ0

h‖
2 +

µ

4τ
E1

+
µ

4

m−1

∑
n=1
‖∇hun+σ

h ‖2 + µ
m−1

∑
n=1
‖∇hεn+σ

h ‖2 +
m−1

∑
n=1

( f n+σ
h , φn+σ

h )h.

Since

m−1

∑
n=1

( f n+σ
h , φn+σ

h )h

≤ 1
2

m−1

∑
n=1

(
1

4ε1
‖ f n+σ

h ‖2 + ε1‖φn+σ‖2 +
1

4ε2
‖ f n+σ

h ‖2 + ε2‖φn+σ‖2
)

≤ c

(
m−1

∑
n=1

1
ε1
‖ f n+σ

h ‖2 + ε1

m−1

∑
n=1
‖φn+σ‖2 + ε2

m

∑
n=2
‖φn‖2 + ‖φ1‖2

)
,

by choosing suitable ε1 and ε2 values, the inequality (17) yields

‖∇hum
h ‖

2 ≤ c
(
‖φ0

h‖
2 + ‖φ1

h‖
2 + ‖∇hu0

h‖
2 + ‖∇hu1

h‖
2

+τ
m−1

∑
n=1
‖∇hun

h‖
2 + τ

m−1

∑
n=1
‖∇hεn+σ

h ‖2 + τ
m−1

∑
n=1
‖ f n+σ

h ‖2
)

. (18)

Next, we consider the bound of ‖φ1
h‖

2 + ‖∇hu1
h‖

2 on the right-hand side of (18). To
this end, we operate the discrete inner product on both sides of the numerical scheme (6)

with φ
1
2
h for n = 0 and find

(φσ
h , φ

1
2
h )h + κ(FDα−1

τ φσ
h , ϕ

1
2
h )h = µ(∆huσ

h , φ
1
2
h )h + ( f σ

h , φ
1
2
h )h.

Observing that FDα−1
τ φσ

h = W(1)
0 (φ1

h − φ0
h), and using the equality δtu

1
2
h = φ

1
2
h + ε

1
2
h , we

obtain

(φσ
h , φ

1
2
h )h +

κW1
0

2
(‖φ1

h‖
2 − ‖φ0

h‖
2) = −µ(∇huσ

h ,∇hδtu
1
2
h )h + µ(∇huσ

h ,∇hε
1
2
h )h + ( f σ

h , φ
1
2
h )h. (19)

Following the idea in the proof of Theorem 4.1 of [6] for the case n = 0, we further have

(φσ
h , φ

1
2
h )h =

1
2
(σφ1

h + (1− σ)φ0
h, φ1

h + φ0
h)h

=
1
2

(
σ‖φ1

h‖
2 + (1− σ)‖φ0

h‖
2 + (φ0

h, φ1
h)h

)
≥ 1

2

(
σ‖φ1

h‖
2 + (1− σ)‖φ0

h‖
2
)
− 1

2

(
ε1‖φ1

h‖
2 +

1
4ε1
‖φ0

h‖
2)
)

=
1
4
‖φ1

h‖
2 +

1
2

[
1− σ− 1

4(σ− 0.5)

]
‖φ0

h‖
2,

where we choose ε1 = σ− 1
2 > 0.
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For the first term on the right-hand side of Equation (19), we have

−µ(∇huσ
h ,∇hδtu

1
2
h )h

= −µ

τ
(σ∇hu1

h + (1− σ)∇hu0
h,∇hu1

h −∇hu0
h)h

= −µ

τ
(σ‖∇hu1

h‖
2 − (1− σ)‖∇hu0

h‖
2) +

µ

τ
(2σ− 1)(∇hu0

h,∇hu1
h)h

≤ −µ

τ
(σ‖∇hu1

h‖
2 − (1− σ)‖∇hu0

h‖
2) +

µ

τ
(2σ− 1)

(
ε2‖∇hu1

h‖
2 +

1
4ε2
‖∇hu0

h‖
2
)

= − 1
2τ
‖∇hu1

h‖
2 +

µ

τ

(
1− σ +

(2σ− 1)2

4µ(σ− 0.5)

)
‖∇hu0

h‖
2,

where we let ε2 = σ−0.5
2σ−1 > 0.

The second term on the right-hand side of Equation (19) has the following estimate:

µ(∇huσ
h ,∇hε

1
2
h )h

= µ(σ∇hu1
h + (1− σ)∇hu0

h,∇hε
1
2
h )h

≤ µ(σ‖∇hu1
h‖

2 + (1− σ)‖∇hu0
h‖

2)‖∇hε
1
2
h ‖

2

≤ µσε3‖∇hu1
h‖

2 + µσ
1

4ε3
‖∇hε

1
2
h ‖

2 + µ(1− σ)ε4‖∇hu0
h‖

2 + µ(1− σ)
1

4ε4
‖∇hε

1
2
h ‖

2.

By suitably choosing the parameters ε3 and ε4 ( e.g., let ε3 = 1
σ (

1
2τ − 1) > 0 and ε4 = 1−σ

4 > 0),

and noting that W(1)
0 = w(1)

0 = t1−β
σ

τΓ(2−β)
, we can derive that

‖φ1
h‖

2 + ‖∇hu0
h‖

2 ≤ c
(
‖φ0

h‖
2 + ‖∇hu0

h‖
2 + τ‖∇hu0

h‖
2 + τ‖ f σ

h ‖
2 + τ‖∇hε

1
2
h ‖

2
)

.

This together with (18) leads to

‖∇hum
h ‖

2 ≤ c
(
‖φ0

h‖
2 + ‖∇hu0

h‖
2

+τ
m−1

∑
n=0
‖∇hun

h‖
2 + τ

m−1

∑
n=1
‖∇hεn+σ

h ‖2 + τ‖∇hε
1
2
h ‖

2 + τ
m−1

∑
n=0
‖ f n+σ

h ‖2
)

.

By applying the Gronwall inequality to the above estimate and the equivalence of the H1

norm and H1 semi-norm, one has the desired result. All of this ends the proof.

Finally, we present the convergence result for the FL2-1σ(1) scheme (10). Let en
h =

u(xh, tn)− un
h and en

h = φh(xh, tn)− φn
h . From Lemma 2.3 of [13], we have

CDβ
0,tg(t)|t=tn+σ = FDβ

τ gn+σ + O(τ3−β + ε).

Therefore, in light of (2), (6), and (13), one may find the following error equations:
en+σ

h + κ FDα−1
τ en+σ

h = µ∆hen+σ
h + R̃n+σ

h ,
δte1/2

h = e1/2
h + r̃1/2

h ,
δ̂ten

h = en+σ
h + r̃n+σ

h ,
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where R̃n+σ
h = O(τ2 + h4 + ε), r̃1/2

h = O(τ2), and r̃n+σ
h = O(τ2). By applying the stability

result of Theorem 1, we obtain the error bound in the H1 norm as follows:

‖en
h‖

2
1 ≤ c

(
‖e0

h‖
2 + ‖∇he0

h‖
2

+τ
m−1

∑
n=1
‖∇h r̃n+σ

h ‖2 + τ‖∇h r̃
1
2
h ‖

2 + τ
m−1

∑
n=0
‖R̃n+σ

h ‖2
)

≤ c(τ2 + h4 + ε)2.

The above estimate leads to the following error estimate of the FL2-1σ(1) scheme (10).
The corresponding proof is thus omitted:

Theorem 2. Let u(xh, tn) and un
h be the solutions to Equation (1) and numerical scheme (10),

respectively. Suppose the solution u(x, t) belongs to the function space C6,3
x,t (Ω× [0, T]). Then, for

γ = 1, we have
‖(u(xh, tn)− un

h)‖
2
1 ≤ c(τ2 + h4 + ε).

Remark 1. In practice, the absolute tolerance error ε in the scheme (10) is always set to a very small
number so as not to affect the temporal or spatial convergence accuracy. In this sense, the convergence
result in Theorem 2 can be understood as O(τ2 + h4).

Remark 2. Although the nonuniform mesh-based FL2-1σ(γ) scheme (i.e., γ > 1) can effectively
handle non-smooth solution problems, its stability and error estimates are more difficult. In [10],
Li et al. successfully gave a rigorous proof of the stability and convergence of the FL2-1σ scheme
based on the nonuniform meshes, but their derived scheme mainly deals with the subdiffusion
problem. It seems that the application of their ideas here is not obvious, and further investigation
is needed.

5. Numerical Examples

Two numerical examples will be presented to verify the convergence theoretical results
and efficiency of the FL2-1σ scheme (10). In the numerical examples, the computational
domain is Ω = (0, 1)2, and the parameters κ and µ are both one. Using the equivalence of
the H1 norm and H1 semi-norm, we calculated the H1 norm error at t = tn by e(n, h) =
|u(xh, tn)− un

h |1. The corresponding convergence orders in time and in space were obtained
by log(e(n, h)/e(2n, h)) and log(e(n, h)/e(n, h/2)), respectively. We always set the absolute
tolerance error ε = 10−10 in (10) so that it did not contaminate the temporal or spatial
convergence orders.

Example 1 (Accuracy). Consider the following problem with zero Dirichlet boundary conditions:{
∂tu(x, y, t) + CDα

0,tu(x, y, t) = ∆u(x, y, t) + f (x, y, t), (x, y, t) ∈ Ω× (0, 1],
u(x, y, 0) = sin(πx) sin(πy), ∂tu(x, y, 0) = 0,

where

f (x, y, t) = sin(πx) sin(πy)
(

ηtη−1 + 2π2(1 + tη) +
Γ(η + 1)

Γ(η + 1− α)
tη−α

)
.

The exact solution is u = (1 + tη) sin(πx) sin(πy) with the fixed parameter η > 1.
We considered two cases, η = 3.5 and η = 1.5, to verify the accuracy of the FL2-1σ(γ)

scheme (10). For these two cases, we applied the uniform mesh-based and nonuniform mesh-based
FL2-1σ(γ) scheme (10), respectively, to obtain the numerical results. See Tables 1 and 2 for the first
case and Tables 3 and 4 for the second case. We remark that the H1 norm errors here and below were
obtained at the final time T.
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Table 1. The H1-norm errors in time for the smooth case in Example 1 with h = 1/64.

Nt
α = 1.1 α = 1.5 α = 1.9

H1 Error Rate H1 Error Rate H1 Error Rate

40 2.66× 10−4 - 6.73× 10−4 - 1.29× 10−3 -
80 6.69× 10−5 1.99 1.69× 10−4 2.00 3.23× 10−4 2.00

160 1.68× 10−5 1.99 4.22× 10−5 2.00 8.07× 10−5 2.00
320 4.27× 10−6 1.98 1.05× 10−5 2.01 2.01× 10−5 2.00

Table 2. The H1-norm errors in space for the smooth case in Example 1 with τ = 1/4000.

M
α = 1.1 α = 1.5 α = 1.9

H1 Error Rate H1 Error Rate H1 Error Rate

4 2.31× 10−3 - 2.22× 10−3 - 2.15× 10−3 -
8 2.72× 10−4 3.09 2.62× 10−4 3.09 2.53× 10−4 3.09
16 2.05× 10−5 3.73 1.96× 10−5 3.74 1.89× 10−5 3.74
32 1.38× 10−6 3.89 1.26× 10−6 3.96 1.16× 10−6 4.03

Table 3. The H1-norm errors in time for the non-smooth case in Example 1 with h = 1/64 and
α = 1.5.

Nt
γ = 1 γ = 1.5 γ = 2

H1 Error Rate H1 Error Rate H1 Error Rate

40 5.86× 10−5 - 1.85× 10−4 - 3.70× 10−4 -
80 3.98× 10−5 0.56 4.42× 10−5 2.06 9.28× 10−5 2.00
160 2.22× 10−5 0.84 1.03× 10−5 2.10 2.31× 10−5 2.00
320 1.15× 10−5 0.94 2.27× 10−6 2.18 5.52× 10−6 2.07

Table 4. The H1-norm errors in space for the non-smooth case in Example 1 with τ = 1/1000 and
α = 1.5.

M
γ = 1 γ = 1.5 γ = 2

H1 Error Rate H1 Error Rate H1 Error Rate

4 2.52× 10−3 - 2.52× 10−3 - 2.52× 10−3 -
8 3.00× 10−4 3.07 2.97× 10−4 3.09 2.96× 10−4 3.09

16 2.56× 10−5 3.55 2.22× 10−5 3.74 2.06× 10−5 3.84
32 5.05× 10−6 2.34 1.33× 10−6 4.07 3.41× 10−7 5.92

When η = 3.5, the solution of the equation satisfied the smoothness requirement of Theorem 2.
From the numerical results in Tables 1 and 2, it can be observed that the accuracy of the scheme (10)
was O(τ2 + h4) for different fractional orders α, which is consistent with the theoretical result of
the convergence accuracy.

When η = 1.5, the second-order partial derivative of u with respect to t was ∂2
t u(x, y, t) =

η(η− 1)tη−2 sin(πx) sin(πy), which was unbounded at t = 0 when η < 2. Therefore, the solution
was not sufficiently smooth in this case. In order to capture the weak singularity solution at the
initial point, we let the temporal mesh grading parameter be γ > 1. From the numerical results
in Tables 3 and 4, one can see that by selecting a different γ value (i.e., γ = 1.5 and γ = 2), the
theoretical convergence of the scheme (10) was restored, which shows that the scheme (10) based on
graded meshes indeed captured the weak singularity solution and could significantly improve the
convergence accuracy.
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Example 2 (Computational efficiency). In this example, we studied the computational perfor-
mance for the FL2-1σ scheme (10). For the sake of simplicity, the case η = 3.5 in the above example
was used. To better reveal that the scheme (10) had improved computational efficiency, we compared
it with the two schemes (6) and (7). The numerical results are demonstrated in Table 5 and Figure 1.

Table 5. Comparison of CPU time of three schemes (6), (7), and (10) for Example 1 with h = 1/64
and τ = 0.004/2k.

α Scheme
k = 1 k = 2 k = 3

H1 Error CPU (s) H1 Error CPU (s) H1 Error CPU (s)

(6) 1.66× 10−6 3.86 3.69× 10−7 9.85 4.78× 10−8 28.03
1.1 (7) 1.80× 10−6 1.59 5.18× 10−7 5.50 1.96× 10−7 19.56

(10) 1.81× 10−6 1.03 5.04× 10−7 1.99 2.08× 10−7 3.98

(6) 4.39× 10−6 3.67 1.14× 10−6 9.59 3.28× 10−7 27.68
1.5 (7) 4.25× 10−6 1.43 9.97× 10−7 5.23 1.85× 10−7 19.22

(10) 4.25× 10−6 0.94 9.97× 10−7 1.96 1.85× 10−7 3.98

(6) 8.33× 10−6 3.77 2.12× 10−6 9.77 5.72× 10−7 28.13
1.9 (7) 8.19× 10−6 1.56 1.98× 10−6 5.38 4.34× 10−7 19.66

(10) 8.19× 10−6 0.97 1.98× 10−6 1.98 4.34× 10−7 4.07
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Figure 1. Comparison of computational costs with fixed α = 1.5. (The dashed lines below the
numerical curves are the corresponding fitted curves, which are shifted down here for the convenience
of observation.)

From Table 5, we can observe that when the spatial step size h was fixed, the accuracy of all
three schemes increased as the number of temporal nodes increased. However, their computational
cost also increased. With the fixed same number of spatial and temporal nodes, the accuracies of
these threes scheme were almost the same, but the scheme (6) based on the direct solver took the most
time, followed by the scheme (7), while the FL2-1σ(γ) scheme (10) took the least time, and this time
consumption gap increased with the increase in the number of temporal nodes.

For the case where α = 1.5, when the time step size τ was fixed to 1/4, and the spatial grid
became denser, similar phenomena to those in Table 5 could be observed in the left subplot of Figure 1.
In particular, we compared the computational efficiency of the two numerical schemes (7) and (10) by
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plotting the CPU time versus Nt in a log-log style. In order to numerically quantify the complexity
of these two schemes, we expressed the CPU time in the form of Nr

t using least squares fitting and
reported the corresponding order r in the legend of the right subplot of Figure 1. One can see that
the order r of the FL2-1σ(γ) scheme (10) was about one, while that of the DST-based scheme (7) was
near two. This indicates that the proposed scheme (10) based on the DST and SOE techniques is
more competitive in solving high-dimensional time-fractional problems. For other cases, such as
α = 1.1 and 1.9, similar numerical results were also obtained, and they are not presented here for
the sake of brevity.

6. Conclusions

In this paper, we proposed a fast compact difference scheme with O(τ2 + h4) conver-
gence accuracy to solve the two-dimensional time-fractional Cattaneo Equation (1). This
scheme is based on the DST and SOE techniques and has the ability of fast calculation in
both time and space. The stability and error estimate of the numerical scheme (10) based
on uniform meshes are presented rigorously. Numerical examples show that this scheme is
efficient and suitable for numerically solving high-dimensional time-fractional problems.

We remark that the results obtained in this paper can easily be generalized to other
high-dimensional problems. Aside from that, one may notice that although numerical
experiments have shown that the scheme (10) based on graded meshes can improve the
accuracy of solving high-dimensional non-smooth solution problems, the analysis of its
corresponding numerical theory is not an easy job. Such an issue deserves further study
and will be one of our upcoming research directions.

We note that the scheme presented in this paper is only for linear problems with
constant coefficients, while in practical problems, the equations are often accompanied by
variable coefficients or nonlinear terms. In the following work, we will try to extend the
methods of this paper to solve variable coefficients and nonlinear problems.
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