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Abstract: This paper mainly considers the parameter estimation problem for several types of differen-
tial equations controlled by linear operators, which may be partial differential, integro-differential and
fractional order operators. Under the idea of data-driven methods, the algorithms based on Gaussian
processes are constructed to solve the inverse problem, where we encode the distribution information
of the data into the kernels and construct an efficient data learning machine. We then estimate the
unknown parameters of the partial differential Equations (PDEs), which include high-order partial
differential equations, partial integro-differential equations, fractional partial differential equations
and a system of partial differential equations. Finally, several numerical tests are provided. The
results of the numerical experiments prove that the data-driven methods based on Gaussian processes
not only estimate the parameters of the considered PDEs with high accuracy but also approximate
the latent solutions and the inhomogeneous terms of the PDEs simultaneously.

Keywords: data-driven methods; Gaussian processes; inverse problems; partial integro-differential
equations; fractional partial differential equations

1. Introduction

In the era of big data, the study of data-driven methods and probabilistic machine-
learning methods has increasingly attracted researchers [1–3]. Exploiting data-driven
methods and machine-learning methods to solve the forward and inverse problem of
partial differential equations (PDEs) has been valued [4–11], and (deep) neural networks
are preferred [12–20].

Compared with other machine-learning methods, such as regularized least-squares
classifiers (RLSCs) [21] and support vector machines (SVMs) [22], Gaussian processes
possess a strict mathematical basis and coincide with the Bayesian estimation method in
essence [23]. Raissi et al. (2017) [24] considered a new algorithm for the inverse problem
of the PDEs controlled by linear operators based on Gaussian process regression. Differ-
ent from classical methods, such as the Tikhonov regularization method [25], Gaussian
processes solve inverse problems of the PDEs from the perspective of statistical inference.

In the Gaussian processes, the Bayesian method is introduced to encode the distribu-
tion information of the data into structured prior information [26], so as to construct an
efficient data learning machine, estimate the unknown parameters of the PDEs, infer the
solution of the considered equations and quantify the uncertainty of the prediction solution.
The research on Gaussian processes solving the forward and inverse problem of the PDEs
is a new branch of probabilistic numerics in numerical analysis [27–34].

In this paper, the inverse problem is to estimate the unknown parameters of the
considered equations from (noisy) observation data. We extend the Gaussian processes
method to deal with the inverse problem of several types of PDEs, which include high-
order partial differential equations, partial integro-differential equations, fractional partial
differential equations and the system of partial differential equations.
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Finally, several numerical tests are provided. The results of the numerical experiments
prove that the data-driven methods based on Gaussian processes not only estimate the
parameters of the considered PDEs with high accuracy but also approximate the latent
solutions and the inhomogeneous terms of the PDEs simultaneously.

The sections of this paper are organized as follows. In Section 2, the basic workflow
of Gaussian processes solving the inverse problems of the PDEs is provided. Section 3
describes the estimation algorithm of the fractional PDEs and the linear PDEs system based
on Gaussian processes in detail. In Section 4, numerical experiments are performed to
prove the validity of the proposed methodology. Finally, our conclusions are given in
Section 5.

2. Mathematical Model and Methodology

The following partial differential equations are considered in this paper,

Lφ
x u(x) = f (x), (1)

where x represents a vector of D dimensions, u(x) is the latent solution of (1), f (x) is the
inhomogeneous term, Lφ

x is a linear operator, and φ represents the unknown parameter.
For the sake of simplicity, we can introduce the following heat equation as an example,

Lφ

(t,x)u(t, x) :=
∂

∂t
u(t, x)− α

∂2

∂x2 u(t, x) = f (t, x), (2)

where heat diffusivity α is the unknown parameter φ.
Assume that we obtain observations {xu, yu} and

{
x f , y f

}
from the latent solution

u(x) and the inhomogeneous term f (x), respectively, then we can estimate the unknown
parameter φ and approximate the latent solutions of the forward differential equations
system according to the posterior results. However, one of the advantages of the methods
used in this paper is that we do not need to consider the initial and boundary conditions of
problems, because (noisy) observation data from the latent solution and the inhomogeneous
term can give enough distribution information of the functions.

As with other machine-learning methods, Gaussian processes can be applied to solve
regression problem and classification problem. Moreover Gaussian processes can be seen
as a class of methods called kernel machines [35]. However, compared with other kernel
machine methods, such as support vector machines (SVMs) and relevance vector machines
(RVMs) [36], the strict probability theory of Gaussian processes limits the popularization
of this method in industrial circles. Another drawback of Gaussian processes is that the
computational cost may be expensive.

2.1. Gaussian Process Prior

Take a Gaussian process prior hypothesis as follows,

u(x) ∼ GP(0, kuu(x, x′; θ)), (3)

and assume that covariance function kuu(x, x′; θ) has the following squared exponen-
tial form,

kuu(x, x′; θ) = σ2
u exp(−1

2

D

∑
d=1

wd(xd − x′d)
2
), (4)

where θ is the hyper-parameters of the kernel (covariance function) kuu, for Equation (4),
θ =

(
σ2

u , (wd)
D
d=1
)
. Any prior information of u(x), such as monotonicity and periodicity,

can be encoded into the kernel kuu.
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Since the linear transformation of Gaussian processes, such as differentiation and
integration, is still Gaussian, we can obtain

Lφ
x u(x) = f (x) ∼ GP(0, k f f (x, x′; θ, φ)), (5)

where the covariance function is k f f (x, x′; θ, φ) = Lφ
xL

φ
x′kuu(x, x′; θ).

Moreover, the covariance function between u(x) and f (x′) is ku f (x, x′; θ, φ) =

Lφ
x′kuu(x, x′; θ) and the covariance function between f (x) and u(x′) is k f u(x, x′; θ, φ) =

Lφ
x kuu(x, x′; θ). The proposal and reasoning of Equation (5) are the core of Gaussian pro-

cesses to estimate the unknown parameters of the PDEs [24]. In this step, the parameter
information of the PDEs is encoded into the kernels k f f , ku f and k f u. Furthermore, we can
utilize the joint density function of u(x) and f (x) for maximum likelihood estimation of
parameters φ. The greatest contribution of Gaussian process regression is that we transform
the unknown parameters φ of the linear operator Lφ

x into the hyper-parameters of the
kernels k f f , ku f and k f u.

By Mercer’s theorem [37], a positive definite covariance function k(x, x′) can be decom-

posed into k(x, x′) =
∞
∑

i=1
λi ϕi(x)ϕi(x′), where λi and ϕi are eigenvalues and eigenfunctions,

respectively, satisfying
∫

k(x, x′)ϕi(x)dx = λi ϕi(x′). {
√

λi ϕi}∞
i=1 is treated as a set of or-

thogonal basis and a reproducing kernel Hilbert space (RKHS) is constructed [38], which
can be seen as a kernel trick [38]. However, the covariance function in Equation (4) has no
finite decomposition. Different covariance functions, such as rational quadratic covariance
functions and Matérn covariance functions should be selected under different prior infor-
mation [23]. The most important thing is that the kernel considered should cover the prior
information [24].

2.2. Data Training

From the properties of the Gaussian processes [23], we find

y ∼ GP(0, K), (6)

where y =

[
yu
y f

]
, K =

[
kuu(xu, xu; θ) + σ2

u I ku f (xu, x f ; θ, φ)
k f u(x f , xu; θ, φ) k f f (x f , x f ; θ, φ) + σ2

f I

]
.

According to (6), we train the parameters φ and the hyper-parameters θ by minimizing
the following negative log marginal likelihood,

− log p(y|xu, x f , φ, θ, σ2
nu , σ2

n f
) =

1
2

log |K|+ 1
2

yTK−1y +
N
2

log 2π, (7)

where N is the length of y, and we consider a Quasi–Newton optimizer L− BFGS− B for
training [39].

Add noise on the observed data of formula (6), we introduce notations that yu =
u(xu) + εu and y f = u(x f ) + ε f , where εu ∼ N(0, σ2

u I) and ε f ∼ N(0, σ2
f I). Assume that

εu and ε f are mutually independent additive noise.
The training procedure is the core of the algorithm, which reveals the “regression

nature” of Gaussian processes. Furthermore, it is worth mentioning that the negative
log marginal likelihood (7) is not only suitable for training the model, it automatically
trades off between data-fit and model complexity. While minimizing the term 1

2 yTK−1y
in Equation (7), we use the term log |K| to penalize the model complexity [23]. This
regularization-like mechanism is a key property of Gaussian process regression, which
effectively prevents overfitting.
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In truth, model training is solving parameters φ and hyper-parameters {θ, σ2
u , σ2

f } by
minimizing Equation (7), and this defines a non-convex optimization problem, which is
friendly to machine learning. Heuristic algorithms can be introduced to solve it, such as
the whale optimization algorithm [40] and the ant colony optimization algorithm [41]. It is
also worth noting that the computational cost of training has a cubic relationship with the
amount of the training data due to the Cholesky decomposition of the covariance functions
in (7), and the papers [42–44] considered this conundrum.

2.3. Gaussian Process Posterior

By the conditional distribution of Gaussian processes [23], the posterior distribution
of the prediction u(x∗) at point x∗ can be directly written as

u(x∗)
∣∣∣∣[ yu

y f

]
∼ GP(qT

u K−1y, kuu(x∗, x∗)− qT
u K−1qu), (8)

where qT
u =

[
kuu(x∗, xu), ku f (x∗, x f )

]
.

By the deduction of [11], the posterior distribution of the prediction f (x∗) at the point
x∗ can be written as

f (x∗)
∣∣∣∣[ yu

y f

]
∼ GP(qT

f K−1y, k f f (x∗, x∗)− qT
f K−1q f ), (9)

where qT
f =

[
k f u(x∗, xu), k f f (x∗, x f )

]
.

The posterior mean of (8) and (9) can be seen as the predicted solution of u(x) and
f (x), respectively. Furthermore, the posterior variance is the direct result of the Bayesian
method, which can be used to measure the reliability of the prediction solution.

3. Inverse Problem for Fractional PDEs and the System of Linear PDEs

This section provides the process to estimate the unknown parameters of fractional
PDEs and the system of linear PDEs in detail when Gaussian processes are used. However,
the processing of these two types of PDEs is more complicated than the other two types of
PDEs considered in this paper.

3.1. Processing of Fractional PDEs

The following fractional partial differential equations are considered,

Lφ

(t,x)u(t, x) :=
∂α

∂tα
u(t, x)−Q

∂2

∂x2 u(t, x) = f (t, x), (10)

where φ = Q and the fractional order α is a given parameter, u(t, x) is a continuous real
function absolutely integrable in R2, and its arbitrary-order partial derivatives are also
continuous function absolutely integrable in R2. The fractional partial derivative in (10) is
defined in the Caputo sense [45] as the following

∂α

∂tα
u(t, x) =

1
Γ(n− α)

∫ t

−∞

1

(t− τ)α−n+1
∂nu(τ, x)

∂τn dτ, (11)

where α is a positive number (n− 1 < α ≤ n, n ∈ N+), and Γ() is the gamma function.
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The key step of solving (10) is the deriving of kernels with the fractional order opera-
tors. By [46,47], the four-dimensional Fourier transforms are applied with respect to the
temproral variable (t, t′) and with respect to the spatial variable (x, x′) on kuu[(t, x), (t′, x′)]
to obtain k̂uu[(υ, ω), (υ′, ω′)], as the excellent properties of the squared exponential covari-
ance function kuu[(t, x), (t′, x′)] assures the feasibility of the Fourier transform of derivatives
of kuu, on the basis of that kuu and its partial derivatives vanish for

√
t2 + x2 + t′2 + x′2 →

+∞. We find the following intermediate kernels,

k̂ f f [(υ, ω), (υ′, ω′)] = [(−iυ)α(−iυ′)α −Q(−iυ)α(−iω′)2−
Q(−iω)2(−iυ′)α + Q2(−iω)2(−iω′)2]k̂uu[(υ, ω), (υ′, ω′)],
k̂u f [(υ, ω), (υ′, ω′)] = [(−iυ′)α −Q(−iω′)2]k̂uu[(υ, ω), (υ′, ω′)],
k̂ f u[(υ, ω), (υ′, ω′)] = [(−iυ)α −Q(−iω)2]k̂uu[(υ, ω), (υ′, ω′)].

(12)

Then, we perform the inverse Fourier transform on k̂ f f [(υ, ω), (υ′, ω′)], k̂u f [(υ, ω), (υ′, ω′)]

and k̂ f u[(υ, ω), (υ′, ω′)] to obtain kernels k f f [(t, x), (t′, x′)], ku f [(t, x), (t′, x′)] and
k f u[(t, x), (t′, x′)], respectively. Furthermore, the other steps are exactly the same as de-
scribed in Section 2.

3.2. Processing of the System of Linear PDEs

Consider the systems of linear partial differential equations as follows,{
Lφ,1

x u1(x) + Lφ,2
x u2(x) = f1(x),

Lφ,3
x u1(x) + Lφ,4

x u2(x) = f2(x),
(13)

where x represents a vector of D dimensions, Lφ,1
x , Lφ,2

x , Lφ,3
x and Lφ,4

x are linear operators,
and φ denotes the unkonwn parameters of (13).

Assume the following prior hypotheses

u1(x) ∼ GP(0, k11
uu(x, x′; θ1)),

u2(x) ∼ GP(0, k22
uu(x, x′; θ2)),

(14)

to be two mutually independent Gaussian processes, and the covariance functions have a
squared exponential form (4). Adding noise to the observed data, we introduce notations
that yu1

= u1(xu1) + εu1 , yu2
= u2(xu2) + εu2 , y f1

= f1(x f1) + ε f1 and y f2
= f2(x f2) + ε f2 ,

where εu1 ∼ N(0, σ2
u1

I), εu2 ∼ N(0, σ2
u2

I), ε f1 ∼ N(0, σ2
f1

I) and ε f2 ∼ N(0, σ2
f2

I).
According to the prior hypotheses, we find

y ∼ GP(0, K), (15)

where y =


yu1
yu2
y f1
y f2

, K =


k11

uu + σ2
nu1

Inu1
k12

uu k11
u f k12

u f
k21

uu k22
uu + σ2

nu2
Inu2

k21
u f k22

u f
k11

f u k12
f u k11

f f + σ2
n f1

In f1
k12

f f
k21

f u k22
f u k21

f f k22
f f + σ2

n f2
In f2

,

k12
uu = 0, k11

u f = Lφ,1
x′ k11

uu, k12
u f = Lφ,3

x′ k11
uu, k21

u f = Lφ,2
x′ k22

uu, k22
u f = Lφ,4

x′ k22
uu, k21

uu = 0,

k11
f u = Lφ,1

x k11
uu, k12

f u = Lφ,2
x k22

uu, k21
f u = Lφ,3

x k11
uu, k22

f u = Lφ,4
x k22

uu, k11
f f = Lφ,1

x L
φ,1
x′ k11

uu+

Lφ,2
x L

φ,2
x′ k22

uu, k12
f f = Lφ,1

x L
φ,3
x′ k11

uu + Lφ,2
x L

φ,4
x′ k22

uu, k21
f f = Lφ,3

x L
φ,1
x′ k11

uu + Lφ,4
x L

φ,2
x′ k22

uu, k22
f f =

Lφ,3
x L

φ,3
x′ k11

uu + L
φ,4
x L

φ,4
x′ k22

uu.
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According to (15), parameters φ and hyper-parameters {θ1, θ2} can be trained by
minimizing the following negative log marginal likelihood

− log p(y|xu1 , xu2 , x f1 , x f2 , φ, θ1, θ2, σ2
nu1

, σ2
nu2

, σ2
n f1

, σ2
n f2

) =
1
2

log |K|+ 1
2

yTK−1y +
N
2

log 2π,

where N is the length of y.
After the training step, we can write the posterior distribution of u1, u2, f1 and f2

as follows,

u1(x∗)|y ∼ GP(qT
u1

K−1y, k11
uu(x∗, x∗)− qT

u1
K−1qu1

),
u2(x∗)|y ∼ GP(qT

u2
K−1y, k22

uu(x∗, x∗)− qT
u2

K−1qu2
),

f1(x∗)|y ∼ GP(qT
f1

K−1y, k11
f f (x∗, x∗)− qT

f1
K−1q f1

),
f2(x∗)|y ∼ GP(qT

f2
K−1y, k22

f f (x∗, x∗)− qT
f2

K−1q f2
),

(16)

where

qT
u1

=
[
k11

uu(x∗, xu1), k12
uu(x∗, xu2), k11

u f (x∗, x f1), k12
u f (x∗, x f2)

]
,

qT
u2

=
[
k21

uu(x∗, xu1), k22
uu(x∗, xu2), k21

u f (x∗, x f1), k22
u f (x∗, x f2)

]
,

qT
f1
=
[
k11

f u(x∗, xu1), k12
f u(x∗, xu2), k11

f f (x∗, x f1), k12
f f (x∗, x f2)

]
,

qT
f2
=
[
k21

f u(x∗, xu1), k22
f u(x∗, xu2), k21

f f (x∗, x f1), k22
f f (x∗, x f2)

]
.

(17)

4. Numerical Tests

This section provides four examples to prove the validity of the methodology proposed.
We consider the inverse problem of four types of PDEs, which include high-order partial
differential equations, partial integro-differential equations, fractional partial differential
equations and the system of partial differential equations.

Introduce the relative error L2 between the exact solution and the prediction solution
to represent the prediction error of the algorithm,

L2 =
√

∑
x∗

[u(x∗)− ū(x∗)]2
/√

∑
x∗

[u(x∗)]2, (18)

where x∗ represents the predicted point, u(x∗) is the exact solution at this point, and ū(x∗)
is the corresponding prediction solution.

4.1. Simulation for a High-Order Partial Differential Equation

Example 1.

Lφ

(t,x)u(t, x) := utttt − αuttxx + βuxxxxxxx = f , (19)

where (t, x) ∈ [0, 1]× [0, 2π], φ = (α, β). The exact solution is u(t, x) = e−t[cos(x) + sin(x)]
and the inhomogeneous term is f (t, x) = (−1 + α− β)e−t[cos(x) + sin(x)].

Numerical experiments are performed with the noiseless data of Example 1. We
denote that the amount of the training data of u(t, x) is Nu, and the number of the train-
ing data of f (t, x) is N f . Take Nu = 50 and N f = 40 in this subsection. Fix (α, β) to
be (1,1), and the estimated value (α̂, β̂) is (1.014005, 1.014634). Figure 1 shows the dis-
tribution of the training data of u(t, x) and f (t, x). Figure 2 shows the estimation error
|ū(t, x)− u(t, x)| and | f̄ (t, x)− f (t, x)| of u(t, x) and f (t, x), respectively. Figure 3 shows the
posterior standard deviation of the corresponding prediction solution. It can be seen from
Figures 2 and 3 that the posterior standard deviation is positively correlated with the
prediction error. The posterior distribution of Gaussian processes can return a satisfactory
numerical approximation to u(t, x) and f (t, x).
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(a) Training data for u(t, x)

(b) Training data for f (t, x)

Figure 1. High-order partial differential equation: training data for u(t, x) and f (t, x).

Table 1 shows the estimation values of (α, β) and the relative error L2 for u(t, x) and
f (t, x), where (α, β) is fixed to be (1, 1), (1, 2), (2, 1) and (2, 2), in turn. Furthermore, the
experimental results prove that the results of parameter estimation based on Gaussian
processes have relatively high accuracy when high-order PDEs are considered.

Table 1. High-order partial differential equation: estimated values of (α, β) and the relative error L2

for u(t, x) and f (t, x), where Nu = 50, N f = 40, and (α, β) is fixed to be (1, 1), (1, 2), (2, 1) and (2, 2)
in turn.

α̂ 1.014005 1.021724 2.006856 2.008363
β̂ 1.014634 2.032989 1.006408 2.020304
L2 for u 3.201 × 10−4 5.615 × 10−4 1.869 × 10−4 3.319 × 10−4

L2 for f 2.665 × 10−3 1.825 × 10−3 3.037 × 10−3 2.823 × 10−3



Fractal Fract. 2022, 6, 433 8 of 13

(a) Absolute error |ū(t, x)− u(t, x)|

(b) Absolute error | f̄ (t, x)− f (t, x)|

Figure 2. High-order partial differential equation: prediction error for u(t, x) and f (t, x).

(a) Standard deviation for u(t, x)

(b) Standard deviation for f (t, x)

Figure 3. High-order partial differential equation: Standard deviation for u(t, x) and f (t, x).
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4.2. Simulation for a Fractional Partial Differential Equation

Example 2.

Lφ

(t,x)u(t, x) :=
∂α

∂tα
u(t, x)−Q

∂2

∂x2 u(t, x) = f (t, x), (20)

where (t, x) ∈ (−∞, 1]× [0, 1] φ = Q and the fractional order α is a given parameter. Assume
0 < α ≤ 1, and the fractional partial derivative in (20) is defined in the Caputo sense as the
following,

∂α

∂tα
u(t, x) =

1
Γ(1− α)

∫ t

−∞

1
(t− τ)α

∂u(τ, x)
∂τ

dτ, (21)

The exact solution is u(t, x) = et(1− x)2x2 and the inhomogeneous term is f (t, x) =
(1−x)2x2

Γ(1−α)

∫ t
−∞

eτ

(t−τ)α dτ − 2Qet[1 + 6(−1 + x)x].

Experiments are performed with noiseless data of Example 2. Table 2 shows the
estimation values of Q and the relative error L2 for u(t, x) and f (t, x), where (α, Q) is
fixed to be (0.25, 1), (0.5, 1), (0.75, 1), (0.25, 2), (0.5,2) and (0.75,2), in turn. The experi-
mental results show that the results of parameter estimation based on Gaussian processes
have relatively high accuracy when fractional partial differential equations are considered.
Furthermore, the posterior distribution of Gaussian processes can return a satisfactory
numerical approximation to u(t, x) and f (t, x).

Table 2. Fractional partial differential equation: estimated values of Q and the relative error L2 for
u(t, x) and f (t, x) where Nu = 15, N f = 12, (α, Q) is fixed to be (0.25, 1), (0.5, 1), (0.75, 1), (0.25, 2),
(0.5, 2) and (0.75, 2), in turn.

(α, Q) (0.25, 1) (0.5, 1) (0.75, 1) (0.25, 2) (0.5, 2) (0.75, 2)

Q̂ 1.000262 1.000115 0.999436 2.000810 1.999836 1.995571
L2 for u 1.147 × 10−2 1.075 × 10−2 8.409 × 10−3 8.935 × 10−3 8.555 × 10−3 7.244 × 10−3

L2 for f 1.562 × 10−1 1.552 × 10−1 1.488 × 10−1 1.462 × 10−1 1.474 × 10−1 1.524 × 10−1

4.3. Simulation for a Partial Integro-Differential Equation

Example 3.

Lφ

(t,x)u(t, x) :=
∂

∂t
u(t, x)− α∆u(t, x)− β

∫ t

0
∆u(τ, x)dτ = f , (22)

where (t, x) ∈ [0, 1] × [0, 1], φ = (α, β), and ∆u(t, x) = ∂2u
∂t2 + ∂2u

∂x2 . The exact solution is
u(t, x) = (1 + t3)(2− x2), and the inhomogeneous term is f (t, x) = 1

2 t[12t + β(4− 12t + t3) +
6(−1 + β)tx2] + 2α[1 + t3 + 3t(−2 + x2)].

Experiments are performed with the noiseless data of Example 3. Table 3 shows the
estimation values of (α, β) and the relative error L2 for u(t, x) and f (t, x), where (α, β) is
fixed to be (1, 1), (1, 2), (2, 1) and (2, 2), in turn. The experimental results show that the results
of parameter the estimation based on Gaussian processes have relatively high accuracy
when partial integro-differential equations are considered. Furthermore, the posterior
distribution of Gaussian processes can return a satisfying numerical approximation to
u(t, x) and f (t, x).
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Table 3. Partial integro-differential equation: estimated values of (α, β) and the relative error L2 for
u(t, x) and f (t, x), where Nu = 20, N f = 20, (α, β) is fixed to be (1, 1), (1, 2), (2, 1) and (2, 2), in turn.

(α, β) (1, 1) (1, 2) (2, 1) (2, 2)

α̂ 1.000103 0.999282 2.000769 2.000163
β̂ 0.999468 2.001618 0.996979 1.998910

L2 for u 3.077 × 10−5 6.223 × 10−5 4.726 × 10−5 3.202 × 10−5

L2 for f 6.331 × 10−3 4.784 × 10−3 5.294 × 10−3 3.857 × 10−3

Moreover, we investigate the impact of the amount of training data and the noise
level on the accuracy of the estimation, where (α, β) is taken as (1, 1). Table 4 shows the
estimation values of (α, β) and the relative error L2 for u(t, x) and f (t, x), where Nu and
N f are fixed to be 10, 20, 30, 40 and 50, in turn. The results show that the larger amount of
training data, the higher the prediction accuracy in general. Table 5 shows the estimation
values and the relative error L2 where Nu = N f = 20, and the levels of addictive noise
from the training data are taken at different values.

According to Table 5, we can conclude that the method can estimate parameters
with relatively gratifying accuracy when noise-free data can not be obtained, although
the estimation accuracy is sensitive to the noise of u(t, x), which is likely due to the high
complexity of the PDEs considered in this paper. Furthermore, we have to admit that this
high sensitivity to the noise of the latent solution u greatly limits the scope of application of
Gaussian processes. In summary, this problem deserves further research.

Table 4. Numerical results for Example 3. Impact of the amount of training data: estimated values of
(α, β) and the relative error L2 for u(t, x) and f (t, x), where (α, β) is fixed to be (1,1) and noise-free
data is used.

Nu = N f 10 20 30 40 50

α̂ 0.887239 1.000103 0.999763 1.000057 0.999051
β̂ 1.343989 0.999468 1.001156 0.999610 1.005044

L2 for u 1.979 × 10−2 3.077 × 10−5 6.761 × 10−6 2.510 × 10−6 2.752 × 10−5

L2 for f 1.759 × 10−2 6.331 × 10−3 6.737 × 10−4 4.779 × 10−4 9.552 × 10−5

Table 5. Numerical results for Example 3. Impact of the levels of addictive noise: estimated values of
(α, β) and the relative error L2 for u(t, x) and f (t, x) where Nu = N f = 20, (α, β) is fixed to be (1,1).

(σ2
u, σ2

f ) (0, 0) (0, 0.52) (0, 1.02) (0.0052, 0) (0.0052, 0.52) (0.0052, 1.02)

α̂ 1.000103 0.983124 0.977075 0.974645 0.941651 0.926553
β̂ 0.999468 1.125553 1.243469 1.450893 1.511768 1.582164

L2 for u
3.077 ×

10−5
1.467 ×

10−3
1.684 ×

10−3
4.594 ×

10−3
4.274 ×

10−3
5.241 ×

10−3

L2 for f
6.331 ×

10−3
1.134 ×

10−1
1.483 ×

10−1
3.814 ×

10−3
1.800 ×

10−1
2.734 ×

10−1

4.4. Simulation for a System of Partial Differential Equations

Example 4.  L
φ,1
(t,x,y)u + Lφ,2

(t,x,y)v = ut + auxx + bvxy = f1,

Lφ,3
(t,x,y)u + Lφ,4

(t,x,y)v = utt + cuyy + vt + dvxy = f2,
(23)

where (t, x, y) ∈ [0, 1]3, φ = (a, b, c, d). u(t, x, y) = etx(x − 1)y(y − 1), v(t, x, y) =
et sin(2πx) cos(2πy), f1(t, x, y) = et[(x2 − x + 2a)(y2 − y)− 4bπ2 cos(2πx) sin(2πy)] and
f2(t, x, y) = et[(x2− x)(y2− y+ 2c)+ cos(2πy) sin(2πx)− 4dπ2 cos(2πx) sin(2πy)] satisfy
Equation (23).
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Experiments are performed with noiseless data of Example 4. Denote that the amount
of training data of u(t, x, y) is Nu, the amount of training data v(t, x, y) is Nv, the amount
of training data f1(t, x, y) is N f1 , and the amount of training data f2(t, x, y) is N f2 . Take
Nu = Nv = 100 and N f1 = N f2 = 80 in the experiments.

Table 6 shows the estimation values of (a, b, c, d) and the corresponding prediction
errors for u, v, f1 and f2, where (a, b, c, d) is fixed to be (1, 1, 1, 1), (1, 1, 2, 2), (2, 2, 1, 1) and
(2, 2, 2, 2), in turn. The experimental results show that the results of parameter estimation
based on Gaussian processes have high accuracy, and the posterior distribution of Gaussian
processes can return a satisfying numerical approximation to u, v, f1 and f2, when the
system of linear PDEs is considered.

Table 6. A system of partial differential equations: estimated values of (a, b, c, d) and the relative
error L2 for u, v, f1 and f2, where Nu1 = Nu2 = 100, N f1

= N f2 = 80, and (a, b, c, d) is fixed to be
(1, 1, 1, 1), (1, 1, 2, 2), (2, 2, 1, 1) and (2, 2, 2, 2), in turn.

(a, b, c, d) (1, 1, 1, 1) (1, 1, 2, 2) (2, 2, 1, 1) (2, 2, 2, 2)

â 1.000803 1.000828 2.001061 2.000685
b̂ 1.000120 1.000112 2.000256 2.000255
ĉ 0.999639 2.000954 0.998905 2.000404
d̂ 0.999927 1.999879 0.999935 1.999898

L2 for u 1.363 × 10−2 1.409 × 10−2 1.215 × 10−2 1.230 × 10−2

L2 for v 4.805 × 10−3 4.601 × 10−3 4.754 × 10−3 4.395 × 10−3

L2 for f1 1.383 × 10−2 1.368 × 10−2 1.354 × 10−2 1.335 × 10−2

L2 for f2 1.396 × 10−2 1.374 × 10−2 1.366 × 10−2 1.339 × 10−2

5. Conclusions

In this paper, we explored the possibility of using Gaussian processes in solving
inverse problems of complex linear partial differential equations, which include high-
order partial differential equations, partial integro-differential equations, fractional partial
differential equations and a system of partial differential equations. The main points of the
Gaussian processes method were to encode the distribution information of the data into
kernels (covariance functions) of Gaussian process priors, transform unknown parameters
of the linear operators into the hyper-parameters of the kernels, train the parameters and
hyper-parameters through minimizing the negative log marginal likelihood and infer the
solution of the considered equations.

Numerical experiments showed that the data-driven method based on Gaussian
processes had high prediction accuracy when estimating the unknown parameters of the
PDEs considered, which proved that Gaussian processes have impressive performance
in dealing with linear problems. Furthermore, the posterior distribution of Gaussian
processes can return a satisfactory numerical approximation to the latent solution and
the inhomogeneous term of the PDEs. However, the estimation accuracy of unknown
parameters was sensitive to the noise of the latent solution, which still deserves further
research. In the future work, we may focus on how to exploit the Gaussian process to solve
the inverse problem of nonlinear PDEs and on how to solve the problem of multi-parameter
estimation for fractional partial differential equations.
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