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Abstract: In this paper, circuit implementation and anti-synchronization are studied in coupled
nonidentical fractional-order chaotic systems where a fractance module is introduced to approximate
the fractional derivative. Based on the open-plus-closed-loop control, a nonlinear coupling strategy
is designed to realize the anti-synchronization in the fractional-order Rucklidge chaotic systems
and proved by the stability theory of fractional-order differential equations. In addition, using the
frequency-domain approximation and circuit theory in the Laplace domain, the corresponding elec-
tronic circuit experiments are performed for both uncoupled and coupled fractional-order Rucklidge
systems. Finally, our circuit implementation including the fractance module may provide an effective
method for generating chaotic encrypted signals, which could be applied to secure communication
and data encryption.

Keywords: anti-synchronization; open-plus-closed-loop control; fractional-order Rucklidge system;
circuit implementation

1. Introduction

Presently, synchronization of fractional-order dynamical systems has been widely
investigated due to its importance in a variety of fields including voice encryption [1],
image encryption [2], and secure communication [3]. There are many types of synchro-
nization in fractional-order chaotic systems, such as complete synchronization [4], anti-
synchronization [5], generalized synchronization [6], and so on. In these architectures of
various synchronization phenomena, the master-slave or drive-response topology comes
from the seminal work of Pecora-Carroll. Coupling two nonlinear systems with higher-
dimension has rich complex dynamics. Such a coupling is similar to the transmitter-receiver
system of data communication. For example, two synchronized fractional-order chaotic
oscillators are adapted to design a transmitter-receiver topology implemented on the FP-
GAs [7]. In this case, the masking of images are effectively performed by the fractional-order
chaotic attractors.

Circuit realization and chaos control of fractional-order systems have attracted consid-
erable attention. For example, chaos control and circuit simulation of a novel 3D finance
chaotic system is established using the adaptive control method [8]. Design of fractional-
order hyper-chaotic systems with maximum number of positive Lyapunov exponent and
their anti-synchronization are also depicted by adaptive control [9]. Among the current
control methods, the open-plus-closed-loop (OPCL) control is a general and systematic
approach for integer-order chaotic dynamical systems [10–14], which facilitates the targeted
synchronization of coupled chaotic systems. In the synchronization regimes, it is possible
to amplify or attenuate a chaotic attractor with respect to other chaotic attractors [11]. For
the practical applications, a general formulation of the OPCL coupling for synchronization
is presented in chaotic oscillators for unidirectional and bidirectional modes [12–14]. This
opens a new topic how to extend the OPCL technology to fractional-order counterparts.
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The OPCL coupling is a physically realizable scheme that can provide the modified
projective synchronization of different fractional-order chaotic systems under the parame-
ter mismatch [15]. Inverse synchronization of coupled fractional-order systems has been
shown numerically by the OPCL method [16]. Furthermore, the OPCL coupling scheme is
also applied to a limit cycle system, a chaotic system, and a hyper-chaotic system [17]. In
the current OPCL coupling schemes for the fractional-order chaotic oscillators, there are
many advantages of the OPCL control. It provides synchronization in all systems without
restrictions on the symmetry class of a dynamical system. It also achieves the stable ampli-
fication or attenuation in coupled identical or nonidentical chaotic systems. Furthermore,
it presents a physical feasible method to obtain various types of synchronization [18–20].
However, few results involve both the circuit implementation and anti-synchronization of
fractional-order chaotic systems.

It is known that there are many circuit modules, such as resistor-inductor circuit (RL),
oscillation of logic circuit (LC), resistor-capacitance circuit (RC), and relay logic circuit
(RLC). Recently, the analytical solutions of the RL, LC, RC, and RLC electrical circuits
described by the Caputo or left generalized fractional derivative have been demonstrated
and proved theoretically [21]. Based on Laplace transform and inverse Laplace transform,
these solutions are expressed by the generalized Mittag–Leffler function. Based on the
real RC unit, coupled integer-order and fractional-order Sprott systems are achieved by a
transition from complete synchronization to anti-synchronization (or vice versa) via the
unidirectional OPCL coupling [5]. Its experimental mix circuits are redesigned by two
types of fractance, i.e., the chain-type and tree-type. Inspired by the above discussions, a
different circuit module is reconstructed for the fractance, whose topology is composed of
one RC parallel circuit and two RC series circuit in the form of parallel. Then, this parallel
configuration with an operational amplifier is chosen to accomplish the fractional-order
derivative in the circuit implementation.

The rest of this paper is as follows. Section 2 presents the fractional-order Rucklidge
system with commensurate order 0.95 and its electronic circuit. The fractional-order differ-
ential operator in our electronic implementations is composed of three parallel circuits. In
Section 3, anti-synchronization of coupled nonidentical fractional-order Rucklidge systems
based on open-loop design is proved correctness theoretically. A physical realization of this
drive-response circuit system is presented by National Instruments (NI) Multisim Software.
Section 4 includes the conclusions.

2. Fractional-Order Rucklidge Systems and Its Circuit Realization

Fractional calculus possesses definitions that come from the definitions of ordinary
derivatives. Some of the existing definitions for fractional derivatives are described in
Ref. [22]. The αth-order Caputo fractional derivative of function f (t) with respect to t and
the terminal value 0 is given by

dα f (t)
dtα

=

{ 1
Γ(m−α)

dm

dtm

∫ t
0 (t− τ)m−α−1 f (τ)dτ, m− 1 < α < m,

dm

dtm f (t), α = m,
(1)

where m = dαe, i.e., m is the first integer which is no less than α, and Γ(·) is the Gamma
function, Γ(z) =

∫ ∞
0 tz−1e−tdt. The Laplace transform of the Caputo fractional derivative

is given as follows: L{ dα f (t)
dtα } = sαL{ f (t)} −∑m−1

k=0 sα−1−k f k(0).
For the zero initial conditions, the fractional integral operator of order “α” can be

represented by the transfer function H(s) = 1/sα in the frequency domain. It is known
that the standard definition of fractional differ-integral does not allow direct engineering
applications and circuit implementation of the fractional operators. An efficient scheme to
circumvent this problem is to approximate fractional operators by using standard integer-
order operators.

Based on the idea of parallel integer-order operators, a different circuit unit is recon-
structed in this paper to accomplish the approximations of transfer function H(s) (fractance
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1/sα), whose circuit’s topology is composed of one RC parallel circuit and two RC series
circuit in parallel form. This configuration of circuit unit is unlike the recent tree-type or
chain-type topology of fractance (1/sα) [5]. Under the requirements of an approximation
technique for the fractance, our focus is on the commensurate-order fractional-order sys-
tems. In addition, the two-scroll fractional-order Rucklidge system with commensurate
order is considered in this paper.

Moreover, the stability theorem for the canonical fractional differential equations with
a commensurate order should be given first.

Lemma 1 ([23,24]). The following autonomous system:

dαx
dtα

= Ax, x(0) = x0, (2)

with 0 < α < 1, x ∈ Rn and A ∈ Rn×n, is asymptotically stable if and only if |arg(λ)| > απ
2

is satisfied for all eigenvalues (λ) of matrix A. Furthermore, this system is stable if and only if
|arg(λ)| ≥ απ

2 is satisfied for all the eigenvalues (λ) of matrix A with those critical eigenvalues
satisfying |arg(λ)| = απ

2 having geometric multiplicity of one. The geometric multiplicity of an
eigenvalue λ of the matrix A is the dimension of the subspace of vectors v satisfying Av = λv. The
stable and unstable regions for 0 < α < 1 are shown in Figure 1.

ap/2

- /ap 2
Re

Im

unstable

Stable

unstableStable

Stable

Stable

Figure 1. Stable region of linear fractional-order system (2).

2.1. Fractional-Order Rucklidge Systems

The fractional-order Rucklidge system was introduced in R3 of the following form [25],
which is given by 

dα1 x
dtα1 = −κx + λy− yz
dα2 y
dtα2 = x
dα3 z
dtα3 = −z + y2,

(3)

where the commensurate fractional order is subject to 0 < α1 = α2 = α3 = α < 1, and κ and
λ are constant system parameters. For a typical set of parameter values: (κ,λ) = (2,6.7), the
fixed points and their corresponding eigenvalues are S0 = (0, 0, 0) : λ1 = 1.7749, λ2 = −1,
λ3 = −3.7749; S1,2 = (0,±2.5884, 6.7) : λ1 = −3.5154, λ2,3 = 0.2577± 1.9353i. Hence, S1,2
are saddle points of index 2. According to Refs. [23,24], the necessary condition for the
fractional-order Rucklidge system with the commensurate order to remain chaotic is

α >
2
π

arctan(
1.9353
0.2577

) ≈ 0.9157.

2.2. Circuit Realization of Commensurate Fractional-Order Rucklidge Systems

In this section, an electronic circuit achieving a fractional-order Rucklidge system
with order 2.85 is designed, where two RC series circuits and one RC parallel circuit
are connected in parallel as shown in Figure 2. According to the circuitry theory in the
Laplace domain, the corresponding circuit unit between A and B in Figure 2 can realize
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the approximations of fractance 1/sα with α = 0.95 [26]. Here, the transfer function
approximation method and its Laplace domain expression H(s) are given, respectively,
as follows:

1
s0.95≈

1.281s2 + 18.6004s + 2.0833
s3 + 18.4738s2 + 2.6574s + 0.003

, (4)

H(s) = Ra// 1
sC1

//(Rb + 1
sC2

)//(Rc + 1
sC3

)

=
1

C0
· C0

C1
(s + 1

RbC2
)(s + 1

RcC3
)

s3 +
(RaC1 + RbC2 + RaC2)RcC3 + (C1 + C3)Ra RbC2

Ra Rb RcC1C2C3
s2 +

RaC1 + RbC2 + RcC3 + Ra(C2 + C3)
Ra Rb RcC1C2C3

s + 1
Ra Rb RcC1C2C3

,
(5)

where C0 is a unit parameter. Let C0 = 1 µF and F(s) = H(s) · C0 = 1
s0.95 . By comparing

the constant coefficients in numerator and denominator of Equation (4) with unknown
parameters in numerator and denominator of Equation (5), it obtains the following parame-
ter values of resistances and capacitances: Ra = 694.6 MΩ, Rb = 32.82 MΩ, Rc = 0.326 MΩ,
C1 = 0.779 µF, C2 = 0.2699 µF, C3 = 0.2133 µF.

-

+

R
a

R
b

R
c

C
1

C
2

C
3

BLM741CN

A

Figure 2. The circuit unit to realize 1
s0.95 .

On the other hand, a circuit is redesigned to realize the 2.85-order Rucklidge system
as shown in Figure 3, where AD633 is the multiplier with an output coefficient of 0.1 and
LM741CN is the operational amplifier. In this electronic circuit, the three state variables
x, y and z are obtained from the terminal outputs of U3, U5 and U7, respectively.

R1

R2

R3

R4

R5

R6
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Rb Rc

R10
Ra

Rb Rc

C1 C2 C3

R7

C1 C2 C3

R8

R9

Ad633

R14
Ra

Rb Rc

C1 C2 C3

R12

R13

R15

R16

R11

AD633

x

y

z

LM741CN LM741CN

LM741CN

LM741CN LM741CN

LM741CN

U2U1

U8U7
U6

U5
U4

U3

LM741CN

LM741CN

Figure 3. 2.85-order Rucklidge circuit system.
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From the circuit design shown in Figure 3, we obtain the 2.85-order Rucklidge system
equation in the Laplace domain as follows:

X(s)
F(s) = R5

C0R6
(− R3X(s)

R1R4
+ Y(s)

R7
− kR3Y(s)Z(s)

R2R4
)

Y(s)
F(s) = R9

C0R10

X(s)
R8

Z(s)
F(s) = R13

C0R14
(− R16Z(s)

R11R15
+ kY(s)Y(s)

R12
).

(6)

The resistance parameters can be obtained by comparing the corresponding coefficients
of the Laplace transform domain system of the following time-domain system (7) and the
above frequency domain system (6). Then, it yields R1 = 500 Ω, R2 = R3 = R4 = R5 = R9 =
R12 = R13 = R15 = R16 = 100 Ω, R6 = R8 = R10 = R11 = R14 = 1 kΩ, R7 = 149.25 Ω. Please
note that the values of these resistance and capacitance parameters are not unique.

Based on the inverse Laplace transform method and F(s) = 1
s0.95 , the time-domain

system is given by 
d0.95x
dt′0.95 = −2x + 6.7y− yz
d0.95y
dt′0.95 = x
d0.95z
dt′0.95 = −z + y2.

(7)

Here the new time variable t′ (t′ = 102t) for the fast circuit experiment results from
the chosen values of resistances R1 − R16. Using the Multisim to simulate system (7), its
two-scroll chaotic trajectories are obtained. To show a clear diagram, the real circuit data
displayed on the Multisim high-frequency oscilloscope are saved and drawn in Figure 4 on
the Matlab.
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Figure 4. Chaotic oscillator of 2.85-order Rucklidge system by Multisim.

3. Anti-Synchronization of Coupled Nonidentical Fractional-Order Rucklidge Systems
3.1. Open-Loop and Closed-Loop Design

In this section, stable anti-synchronization of two coupled nonidentical fractional-
order chaotic systems is achieved by designing an open-loop and closed-loop method. A
fraction-order drive system is defined by

dαXd
dtα = f (Xd(t)) +4 f (Xd), (8)



Fractal Fract. 2022, 6, 428 6 of 12

where Xd ∈ Rn and4 f (Xd) contains the mismatch terms.
The model of the fractional-order chaotic oscillator with parameters is assumed to

be known. It drives another fractional-order chaotic oscillator dαXr
dtα = f (Xr), Xr ∈ Rn to

achieve a desired goal dynamics −Xd, i.e., the anti-synchronization. Here, the subscripts d
and r stand for the drive (or master) and the response (or slave) systems, respectively. By
the coupling, the response system reads as

dαXr
dtα = f (Xr(t)) + U(t), (9)

where the coupling function U(t) = U1(t) + U2(t) is defined as the sum of Huble’s open-
loop interaction (U1(t)) and a linear closed-loop interaction (U2(t)) [11], i.e.,

U1(t) = dα [−Xd ]
dtα − f (−Xd)

= [− f (Xd)−4 f (Xd)− f (−Xd)]
(10)

and

U2(t) = (K− D f (−Xd))[Xr(t) + Xd(t)], (11)

where D = ∂/∂(−Xd) is the Jacobian matrix, and K = (kij) is an n× n constant control
matrix which is not necessarily a Hurwitz matrix [8,15].

To prove the local stability of anti-synchronization, the Taylor series expansion around
the goal trajectory −Xd(t) is

f (Xr) = f (−Xd) + D f (−Xd)(Xr − (−Xd)) + · · · . (12)

According to the above Equations (8)–(12), the anti-synchronization error e(t) is
rewritten as

dαe(t)
dtα = dαXr(t)

dtα + dαXd(t)
dtα

= f (Xr) + U(t) + f (Xd) +4 f (Xd)
= f (Xr) + U1(t) + U2(t) + f (Xd) +4 f (Xd)
= f (Xr) + [− f (Xd)−4 f (Xd)− f (−Xd)]

+(K− D f (−Xd))e(t) + f (Xd) +4 f (Xd)
≈ Ke(t).

(13)

The fractional-order error system is locally asymptotically stable if all the eigenvalues
(λ) of the matrix K satisfy the following condition: |arg(λ)| > απ

2 , which means that the
anti-synchronization happens.

3.2. OPCL Nonlinear Control for Fractional-Order Rucklidge System

In this subsection, an example of coupled fractional-order Rucklidge chaotic systems
with mismatch parameters is studied. The mismatch 2.85-order Rucklidge system is taken
as a driver: 

dα1 xd
dtα1 = −(κ +4κ)xd + (λ +4λ)yd − ydzd

dα2 yd
dtα2 = xd

dα3 zd
dtα3 = −zd + y2

d.

(14)

Let f (Xd) = (−κxd + λyd − ydzd, xd,−zd + y2
d)

T and 4 f (Xd) = (−4κxd +4λyd, 0, 0)T ,
then the Jacobian matrix of f is

D f =

 −κ λ− zd −yd
1 0 0
0 2yd −1

. (15)
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The open-loop design U1(t) and closed-loop design U2(t) are designed in the form below:

U1(t) = (2ydzd +4κxd −4λyd, 0,−2y2
d)

T (16)

and

U2(t) = ((k1 − zd)(yr + yd) + (k2 − yd)(zr + zd), 0, (k3 + 2yd)(yr + yd))
T . (17)

The control matrix K is

K =

 −κ λ + k1 k2
1 0 0
0 k3 −1

. (18)

Finally, the response system is given by
dα1 xr
dtα1 = −κxr + λyr − yrzr +4κxd −4λyd + 2ydzd

+(k1 − zd)(yr + yd) + (k2 − yd)(zr + zd)
dα2 yr
dtα2 = xr

dα3 zr
dtα3 = −zr + y2

r − 2y2
d + (k3 + 2yd)(yr + yd).

(19)

The drive and response systems are chaotic before the coupling for the parameters:
κ = 2, 4κ = 0.02, α = 6.7, 4α = 0.067 [25]. How to choose the coefficients k1, k2
and k3 in Equation (19) becomes an important key for the OPCL control. When the
parameters k1 = −10, k2 = 1 and k3 = −12.8 are chosen, the corresponding eigenvalues
of K are λ1 = −3.0139, λ2,3 = 0.007 ± 2.3112i, which do not satisfy the condition of
Hurwitz matrix. However, these eigenvalues meet the condition shown in Lemma 1, i.e.,
arctan( 2.3112

0.007 ) > 0.95π
2 . Therefore, the local stable chaotic anti-synchronization between the

drive system (14) and response system (19) is achieved. To verify the effectiveness of the
OPCL control and approximation of fractance, the experimental validation in the following
subsection is applied.

3.3. Circuit Implementation

A physical realization of the coupled nonidentical fractional-order Rucklidge sys-
tems (14) and (19) is presented in electronic workbench Multisim. Figure 5 shows the
nonlinear coupled circuit. Here, the electronic circuit unit with resistances Ra-Rc and ca-
pacitances U1-U3 can realize the 0.95-order operator as shown in Section 2. The Op-Amp
U1-U8 (U9-U16) with resistances R1-R16 (R17-R32) represent the driver system 1 (response
system 2). Using U17-U21 and resistances R33-R49, the OPCL nonlinear coupling is de-
signed, and the continuity between the driver system 1, OPCL nonlinear coupling, and
response system 2 is maintained via the terminals (1A-1A, 1B-1B and 2A-2A, 2B-2B, 2C-2C,
2D-2D).

The practical values of the resistance and capacitances of the drive and response
systems are described in Section 2, and the values for OPCL nonlinear coupling unit are
chosen as followings: R33, R35, R38, R39, R42, R46, R47, R49 each equals 1 kΩ; R34, R43, R44, R48
each equals 100 Ω; R36 = R37 = 1 MΩ; R40 = R41 = 781.25 Ω; R45 = 500 Ω. These coefficients
are obtained from the Laplace domain of the six-dimension drive-response systems.

On the other hand, the results of circuit simulation are effective because Multisim
software is based on the actual circuit components, and its simulation results should be
basically consistent with those of the actual circuit experiment. Please note that the anti-
synchronization process displayed on the high-frequency oscilloscope of Multisim is saved
and shown in Figure 6 on the Matlab. From Figure 6, it is seen that the anti-synchronization
happens. To verify the circuit validation, the time-domain numerical method is depicted in
the next subsection.
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Figure 6. Observed state variables for the drive system (xd, yd, zd) and its response system (xr, yr, zr)
evolution with time (ms) on the electronic workbench Multisim.

3.4. Time-Domain Numerical Methods

There are many numerical algorithms for the fractional-order chaotic systems in the
Caputo sense [27,28]. The Adams-Bashforth-Moulton algorithm based on the predictor-
corrector scheme was proposed for the fractional-order chaotic systems [28]. A detailed
description of the time-domain numerical method is depicted as follows.

The fractional differential equation

dαy(t)
dtα = f (t, y(t)), 0 ≤ t ≤ T,

y(j)(0) = y(j)
0 , j = 0, 1, · · · , m− 1, m = dαe,

(20)

is equivalent to the Volterra integral equation, that is,

y(t) =
m−1

∑
j=0

y(j)
0

tj

j!
+

1
Γ(α)

∫ t

0
(t− s)α−1 f (s, y(s))ds. (21)

By setting h = T
N and tn = nh(n = 0, 1, · · · , N ∈ Z+), Equation (21) can be dis-

cretized as

yh(tn+1) =
m−1

∑
j=0

y(j)
0

tj

j!
+

hα

Γ(α + 2)
f (tn+1, yβ

h(tn+1)) +
hα

Γ(α + 2)

n

∑
k=0

ak,n+1 f (tk, yh(tk)), (22)

where

yβ
h(tn+1) =

m−1

∑
j=0

y(j)
0

tj

j!
+

1
Γ(α)

n

∑
k=0

bk,n+1 f (tk, yh(tk)) (23)

and

ak,n+1 =


nα+1 − (n− α)(n + 1)α, k = 0
(n− k + 2)α+1 + (n− k)α+1 − 2(n− k + 1)α+1, 1 ≤ k ≤ n
1, k = n + 1

bk,n+1 = hα

α ((n + 1− k)α − (n− k)α).

(24)
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Here, the approximation error is given by

max
k=0,1,··· ,N

|y(tk)− yh(tk)| = O(hp), (25)

where p = min{2, 1 + α}.
Then, the time-domain coupled nonidentical fractional-order Rucklidge systems with

the OPCL control are

d0.95xd(t)
dt0.95 = −(κ + ∆κ)xd(t) + (λ + ∆λ)yd(t)− xd(t)zd(t)

d0.95yd(t)
dt0.95 = xd(t)

d0.95zd(t)
dt0.95 = −zd(t) + y2

d(t)
d0.95xr(t)

dt0.95 = −κxr(t) + λyr(t)− yr(t)zr(t)− ∆κ(−xd(t))

−∆λyd(t) + 2yd(t)zd(t) + (k1 − zd(t))(yr(t) + yd(t))

+(k2 − yd(t))(zr(t) + zd(t))
d0.95yr(t)

dt0.95 = xr(t)
d0.95zr(t)

dt0.95 = −zr(t) + yr(t)2 − 2y2
d(t) + (k3 + 2yd(t))(yr(t) + yd(t)),

(26)

where the parameters are κ = 2, λ = 6.7, ∆κ = 0.02, ∆λ = 0.067, k1 = −10, k2 = 1,
k3 = −12.8.

Based on this numerical method, the anti-synchronization process is shown in Figure 7,
which is consistent with the circuit’s results shown in Figure 6.
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Figure 7. Anti-synchronization of coupled nonidentical 2.85-order Rucklidge systems.

4. Conclusions

In the present study, the anti-synchronization and circuit implementation of mis-
matched fractional-order chaotic systems based on open-loop and closed-loop nonlinear
control is investigated. For the commensurate fractional Rucklidge chaotic system, an
electronic circuit is implemented by NI Multisim software, which includes the modular
circuit implementation of the fractance. The reconstructed fractance module circuit is
composed of three circuits in parallel, one RC series circuit, another RC series circuit, and a
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third RC parallel circuit. The parameter values of the resistive and capacitive devices in the
fractance module circuit are obtained from the asymptotic approximation of the transfer
function. The designed circuit implementation and numerical simulations both prove that
the anti-synchronization happens in the Rucklidge system with the OPCL control.

In future work, a transmitter-receiver on the basis of the drive-response system is
reconstructed, which could be used for chaotic encryption. For example, the chaotic signal
of the fractional drive system signal is used to encrypt the transmitted image signal (e.g.,
multiplication or addition), and the receiver uses the anti-synchronization method to
recover the original signal.
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