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Abstract: The celebrated Korteweg–de Vries and Kadomtsev–Petviashvili (KP) equations are proto-
typical examples of integrable evolution equations in one and two spatial dimensions, respectively.
The question of constructing integrable evolution equations in three-spatial dimensions has been one
of the most important open problems in the history of integrability. Here, we study an integrable
extension of the KP equation in three-spatial dimensions, which can be derived using a specific reduc-
tion of the integrable generalization of the KP equation in four-spatial and two-temporal dimensions
derived in (Phys. Rev. Lett. 96, (2006) 190201). For this new integrable extension of the KP equation,
we construct smooth multi-solitons, high-order breathers, and high-order rational solutions, by using
Hirota’s bilinear method.
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MSC: 35C08; 35Q51; 37K10; 37K35

1. Introduction

There exists a distinctive class of nonlinear evolution equations in one and two spatial
dimensions, called integrable [1,2]. Such prototypical equations in one spatial dimension are
the celebrated Korteweg–de Vries (KdV) [3,4] and the nonlinear Schrodinger (NLS) [5,6]
equations. Every integrable nonlinear evolution equation in one spatial dimension has
several integrable versions in two spatial dimensions. Two such physically significant
generalizations of the KdV are the Kadomtsev–Petviashvili I (KPI) and II (KPII) equations.
Similarly, two analogous generalizations of the NLS are the Davey–Stewartson I (DS I)
and II (DSII) equations. It is important to emphasize that integrable nonlinear evolution
equations arise in a variety of physical applications. For example, in the context of fluid
mechanics, the KP equations arise in the weakly nonlinear, weakly dispersive, weakly
two-dimensional limit of inviscid, irrotational, water waves, and in the case of KPI when
the surface tension is dominant [7]. Other significant applications of the KP and DS
equations are discussed, for example, in weakly dispersive media [2,8–10] in optics and
hydrodynamics [2,10–13].

One of the most important open questions in the field of integrability has been the
question of the existence of integrable evolution equations in three spatial dimensions.
Substantial progress regarding this question was presented in [14], where 4 + 2 gener-
alizations of the KP and of the DS equations were presented, namely equations in four
spatial and two temporal dimensions. The solution of the Cauchy problem of the 4 + 2
generalization of the KP is presented in [15]. The solution of the Cauchy problem of the
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4 + 2 generalization of the DS equation is sketched in [14] and presented in detail in [16].
Incidentally, another approach toward integrability in multidimensions is presented in [17],
where it is shown that there exist integrable nonlinear evolution equations in any number
of dimensions; however, these equations have the major disadvantage that they involve a
nonlocal commutator.

The question of reducing integrable equations from 4 + 2 to equations in three spatial
dimensions, although discussed in many papers, including [14,15], as well as [18,19],
remained open. In particular, regarding 3 + 1 reductions of the KP equation, it should be
noted that, although the real reduction discussed in [14] involves two equations, many
authors have erroneously analyzed only one of these two equations, ignoring the other one.
Here, we discuss a constructive approach for obtaining integrable equations in three spatial
dimensions, and by implementing this approach to KP, we derive the results presented
below. Our paper is a companion of [20], where a highly novel nonlinear transform pair in
three spatial dimensions, capable of solving the Cauchy problem of these equations, is also
derived. Specifically, regarding Equation (1) below, we note that the analysis of its Cauchy
problem performed in [20] reveals that the time dependence of the associated spectral
function (the nonlinear Fourier transform of the solution) is of the form exp(iTt − Rt),
where T and R are real functions of the real spectral parameters k1, k2, and k3 (in the linear
limit, these three variables in the Fourier space correspond to the three real variables x, y, z
in the physical space). Because of the occurrence of the term Rt, it is not clear that this initial
value problem is well posed. However, in the recent breakthrough presented in [20], it is
explicitly shown that the Cauchy problem of Equation (1) is indeed well posed. Remarkably,
the novel nonlinear Fourier transform introduced in [20], which is capable of solving (1),
gives rise to a completely new transform for solving the linear limit of Equation (1), namely,
the equation obtained from Equation (1) after eliminating the nonlinear term uux.

The following equation for the complex-valued function u(x, y, z, t), where x, y, z, t, are
real, independent variables, provides an integrable generalization of the KP equation in
three-spatial dimensions,

uxt + αuxxxx + β(uux)x +
γ

4
uyy −

γ

4
uzz + i

γ

2
uyz = 0, u ∈ C, x, y, z, t ∈ R, (1)

where α, β, γ are arbitrary complex constant parameters.
As is well known, the most important property of integrable equations is that they

admit a Lax pair formulation. The derivation of Equation (1), as well as its Lax pair, is
presented in Section 2. Two-dimensional integrable equations, like KP and DS equations,
possess a variety of particular solutions, which can be obtained using different techniques,
including the inverse scattering method, the d-bar method, the Darboux transformation,
the Hirota bilinear method and the KP hierarchy reduction method [21–30]. In this connec-
tion, smooth multi-soliton and high-order breather solutions, as well as high-order rational
solutions of Equation (1), are constructed in Sections 3 and 4, respectively, via Hirota’s
bilinear method. These results are discussed further in Section 5.

2. Integrable Extensions of the KP in Three Dimensions and Their Lax Pairs

Starting with the KP equation and complexifying x, y, t, namely, introducing the
complex variables

x = x1 + i x2, y = y1 + i y2, t = t1 + i t2, x1, x2, y1, y2, t1, t2 ∈ R, (2)

it is shown in [14] that the equation

qt̄ =
1
4

qx̄x̄x̄ −
3
2

qqx̄ +
3
4

∂−1
x̄ qȳȳ, q ∈ C, (3)
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is an integrable generalization of the KP equation in the 4-spatial dimensions x1, x2, y1, y2
and the two temporal dimensions t1, t2. In Equation (3), ∂−1 means integral, bar denotes
complex conjugation, and Equation (2) implies the following identities:

∂t̄ =
1
2 (∂t1 + i∂t2), ∂x̄ = 1

2 (∂x1 + i∂x2), ∂ȳ = 1
2 (∂y1 + i∂y2), (∂

−1
x̄ f )(x1, x2) =

1
π

∫∫
R2

f (x′1,x′2)
x−x′ dx′1dx′2, (4)

where we have assumed that f vanishes as |x1|, |x2| → ∞. Assuming q is real and sup-
pressing the t2 dependence, the (4 + 2)-dimensional KP (3) yields two (4 + 1)-dimensional
equations; see Equation (10) or equivalent Equation (11) in [14]. These equations have
provoked extensive studies [18,19]. In addition, similar considerations are valid for the
(4 + 2)-dimensional Davey–Stewartson equation [16].

Replacing in Equation (3) q and y by Qq and y → y
γ̄1

, where Q and γ1 are complex
constants, we find ∂ȳ → γ1∂ȳ and

qt̄ =
1
4

qx̄x̄x̄ −
3
2

Qqqx̄ +
3
4

γ2
1∂−1

x̄ qȳȳ. (5)

In order to obtain three-dimensional reductions of this equation, which is the first
purpose of this paper, we let ξ = ax1 + bx2, where a and b are all real constants. Hence,
∂x̄ = A∂ξ , where A = 1

2 (a + i b). Replacing in Equation (5) ∂x̄ by A∂ξ , we find a (3 + 2)-
dimensional generalization of the KP

qt̄ =
A3

4
∂3

ξq− 3A
2

Qqqξ +
3γ2

1
4A

∂−1
ξ ∂2

ȳq. (6)

Letting τ = ãt1 + b̃t2, where ã, b̃ are real constants, and seeing ∂t̄ = Ã∂τ , where
Ã = 1

2 (ã + i b̃), Equation (6) reduces to a three-dimensional KP equation for the complex-
valued function q,

qτ + αqξξξ + βqqξ + γ∂−1
ξ ∂2

yq = 0, (7)

where

α = − A3

4Ã
, β =

3AQ
2Ã

, γ = −
3γ2

1
4AÃ

= γ̃γ2
1. (8)

Renaming in Equation (7) q, τ, ξ, y1, y2 by u, t, x, y, z, Equation (7) becomes Equation (1).

Remark 1. If we set Ã = − A3

4 , Q = −A2, γ1 = δA2 (or equivalently γ̃ = 3
A4 ) in Equation (7), then

qτ + qξξξ + 6qqξ + 3δ2∂−1
ξ ∂2

yq = 0, (9)

which indeed looks like a three-dimensional extension of the usual KP equation. In order to obtain a
smooth solution, which will be shown in Section 3, δ2 is a complex-valued constant.

The second purpose of the paper is to show the integrability of the three-dimensional
KP Equation (1) by providing its Lax pair and different kinds of solutions. The Lax pair of
Equation (3) [14] is given by

Dyµ = Mµ, M = D2
x − q, (10)

Dtµ = Nµ, N = D3
x −

3
2

qDx − N0, N0 =
3
4
(qx̄ + (∂−1

x̄ qȳ)), (11)

where µ is an appropriate eigenfunction, and the operators Dx, Dy, Dt are defined by

Dx = ∂x̄ + k, Dy = ∂ȳ + k2, Dt = ∂t̄ + k3.
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The Lax pairs (10) and (11) can be declassified in the form

∂ȳµ = M̃µ, M̃ = ∂2
x̄ + 2k∂x̄ − q, (12)

∂t̄µ = Ñµ, Ñ = ∂3
x̄ + 3k∂2

x̄ + (3k2 − 3
2

q)∂x̄ + (−3
2

qk− N0). (13)

Using in these equations the scaling transformations q→ Qq and y→ y
γ̄1

, we find the
following Lax pair for Equation (5):

∂ȳµ = [
1

γ1
(∂2

x̄ + 2k∂x̄ −Qq)] · µ, (14)

∂t̄µ = [∂3
x̄ + 3k∂2

x̄ + (3k2 − 3
2

Qq)∂x̄ + (−3
2

qQk)− 3Q
4
(qx̄ + γ1(∂

−1
x̄ qȳ))] · µ. (15)

The crucial reduction ∂x̄ = A∂ξ , ∂t̄ = Ã∂τ imply the following Lax pair for (7):

µȳ = [
1

γ1
(A2∂2

ξ + 2kA∂ξ −Qq)] · µ = M1 · µ, (16)

µt̄ =
1
Ã
[A3∂3

ξ + 3kA2∂2
ξ + (3k2 − 3

2
Qq)A∂ξ + (−3

2
qQk)− 3Q

4
(Aqξ +

γ1

A
(∂−1

ξ qȳ))] · µ = N1 · µ, (17)

where A, Ã, Q are expressed by virtue of α, β, γ via equations

A = i(
3α

γ̃
)

1
4 , Ã =

i
4α

(
3α

γ̃
)

3
4 , Q =

β√
12αγ̃

. (18)

3. Soliton and Breather of the Three-Dimensional KP Equation

In this section, we derive soliton and breather solutions of the three-dimensional KP
equation (1) by using the Hirota bilinear method and certain perturbation technique [31].
Equation (1) can be transformed into the bilinear form(

DxDt + αD4
x +

γ

4
D2

y −
γ

4
D2

z +
γ

2
i DyDz

)
f · f = 0, (19)

through the variable transformation

u = 12
α

β
(ln f )xx, (20)

where f is a complex function, and D is the Hirota’s bilinear differential operator [31]
defined by

Dm
x Dn

t f (x, t) · g(x, t) = (
∂

∂x
− ∂

∂x′
)m(

∂

∂t
− ∂

∂t′
)n f (x, t)g(x

′
, t
′
)

∣∣∣∣∣
x′=x,t′=t

.

Based on this bilinear form, the three-dimensional KP Equation (1) admits the follow-
ing N-soliton solutions:

u = 12
α

β
(ln f )xx, f = ∑

µ=0,1
exp

(
(N)

∑
j<k

µjµk Ajk +
N

∑
j=1

µjηj

)
, (21)

with

ηj = k j

(
x + pjy + qjz−

[
1
4
(pj + i qj)

2 + αk2
j

]
t
)
+ η0

j ,

eAjk =

(
pj − pk + i qj − i qk

)2
γ− 12α

(
k j − kk

)2(
pj − pk + i qj − i qk

)2
γ− 12α

(
k j + kk

)2 ,
(22)
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where the above parameters must satisfy the condition

γIq2
j − 2γR pjqj − 4αIk2

j − γI p2
j = 0, (23)

which assures that these solutions are smooth. Here, k j, pj, qj, η0
j are arbitrary real param-

eters, and the subscript j denotes an integer. The subscripts R and I denote the real and
imaginary parts of the corresponding parameters, respectively.

Taking in Equation (21) N = 1, we obtain the one-soliton solution of the three-
dimensional KP equation:

u =
3βk2

α cosh2( ξ̂
2 )

=
3βk2

α
sech2(

ξ̂

2
). (24)

The modulus of this solution is given by

|u| = 6|β|k2

|α|(cosh A + cos B)
, (25)

with
ξ̂ = A + i B, α = αR + i αI , γ = γR + i γI ,

A = k
[

x + p1y + q1z− k1

4

(
4αRk2

1 + γR p2
1 − γRq2

1 − 2γI p1q1

)
t
]

,

B =
k1

4

[
γIq2

1 − γI p2
1 − 2γR p1q1 − 4αIk2

1

]
t.

It can be seen from the above expression that the one-soliton is nonsingular, provided
that cos(B) ≥ 0, which means −π

2 < B = k1
4
[
γIq2

1 − γI p2
1 − 2γR p1q1 − 4αIk2

1
]
t < π

2 .
For simplicity, we set

[
γIq2

1 − γI p2
1 − 2γR p1q1 − 4αIk2

1
]
= 0, as noted in Equation (23),

to guarantee the smoothness of the one-soliton solution (24).

Taking in (21) N = 2, α = 1 + i and γ = 1− i, imposing the constraints

−q2
1 − 2p1q1 − 4k2

1 + p2
1 = 0, −q2

2 − 2p2q2 − 4k2
2 + p2

2 = 0,

and choosing k1 = 1, k2 = 1, p1 = 3
2 , p2 = −3, q1 =

√
2− 3
2

, q2 = 3 +
√

14, η0
1 = η0

2 = 0, we
obtain a smooth two-soliton solution of the three-dimensional KP equation:

u =12
α

β
(ln f )xx, f = 1 + eη1 + eη2 + A12eη1+η2 ,

η1 = x +
3
2

y +

(
2
√

2− 3
2

)
z +

1− 3
√

2
4

t,

η2 = x− 3y +
(

3 +
√

14
)

z +
(

7 + 3
√

14
)

t,

A12 =

(
55 + 18

√
14− 9

√
2− 2

√
7
)
+ i
(

26 + 2
√

7
)

(
103 + 18

√
14− 9

√
2− 2

√
7
)
+ i
(

14 + 2
√

7
) .

It is straightforward, using Equation (21), to derive multi-soliton solutions of the
three-dimensional KP equation. Such solutions are depicted in Figure 1. The effect of
changing the variables z and t is simply to move the profile of the soliton in the (x, y)-plane,
without any deformations.
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Figure 1. Plots of |u| of soliton solutions for the three-dimensional KP Equation (1) generated by
Equation (21) with parameters α = 1 + i, β = 1, η0

j (j = 1, 2, 3, ) = 0 and variables t = 0, z = 0.

(a): One-soliton solution with parameters N = 1, γ = 1 + 20
3 i, k1 = 1, p1 = 1

2 , q1 = 1; (b): Two-

soliton solution with parameters N = 2, γ = 1− i, k1 = 1, k2 = 1, p1 = 3
2 , p2 = −3, q1 =

√
2− 3
2

,

q2 = 3 +
√

14; (c): Three-soliton solution with parameters N = 3, γ = 1− i, k1 = k2 = k3 = 1,

p1 = 1
2 , p2 = −3, p3 = −2, q1 =

√
2− 3
2

, q2 = 3 +
√

14, q3 = 4; (d): Four-soliton solution with

parameters N = 4, γ = 1 − i, k1 = k2 = k3 = k4 = 1, p1 = 1
2 , p2 = −3, p3 = −2, p4 = −2,

q1 =

√
2− 3
2

, q2 = 3 +
√

14, q3 = 4, q4 = 0.

In order to derive breather solutions of the three-dimensional KP equation, we use
the constraints,

N = 2n, k∗j = kn+j, p∗j = pn+j, q∗j = qn+j, η0∗
j = η0

n+j. (26)

For the particular case of Equation (26),

N = 2, k∗1 = k2, p∗1 = p2, q∗1 = q2, η0∗
1 = η0

2 ,

we obtain a first-order breather solution of Equation (1) u = 12 α
β (ln f )xx with f given below:

f = 1 + [cosh(l1) + sinh(l1)] · [cosh(B1t) + sinh(B1t)] · [cos(A2t) + i sin(A2t)] · [cos(l2) + i sin(l2)]

+ [cosh(l1) + sinh(l1)] · [cosh(B1t)− sinh(B1t)] · [cos(A2t) + i sin(A2t)] · [cos(l2)− i sin(l2)]

+ Ã12[cosh(2l1) + sinh(2l1)] · [cos(2A2t) + i sin(2A2t)],

Ã12 =

[
(p2

1I − q2
1I)γR − 12αRk2

1I − 2γI p1Iq1I
]
+ i
[
(p2

1I − q2
1I)γI − 12αIk2

1I + 2γR p1Iq1I
][

(p2
1I − q2

1I)γR + 12αRk2
1R − 2γI p1Iq1I

]
+ i
[
(p2

1I − q2
1I)γI + 12αIk2

1R + 2γR p1Iq1I
] ,

l1 =k1Rx + [k1R p1R − k1I p1I ]y + [k1Rq1R − k1Iq1I ]z + A1t,

l2 =k1I x + [k1I p1R + k1R p1I ]y + [k1Iq1R + k1Rq1I ]z + B2t,

A1 =− αRk3
1R +

1
4
[−C1γR + 12αRk2

1I + 2C2γI ]k1R +
1
2

D1k1I , C1 = p2
1R − p2

1I − q2
1R + q2

1I ,

B1 =− αIk3
1I +

1
4
[C1γI + 12αIk2

1R + 2C2γR]k1I +
1
2

D2k1R, C2 = p1Rq1R − p1Iq1I ,

A2 =− αIk3
1R +

1
4
[−C1γI + 12αIk2

1I − 2C2γR]k1R +
1
2

D2k1I , D1 = (p1R p1I − q1Rq1I)γR − (p1Rq1I − p1Iq1R)γI ,

B2 =αRk3
1I +

1
4
[−C1γR − 12αRk2

1R + 2C2γI ]k1I −
1
2

D1k1R, D2 = (p1R p1I − q1Rq1I)γI − (p1Rq1I + p1Iq1R)γR,

(27)

where the parameters satisfy

− 2αI(p1Rq1I + p1Iq1R) + 2γI(q1Rq1I − p1R p1I)− 8γRk1Rk1I = 0,

− C1 − 2αI(p1Rq1R + p1Iq1I) + 4γR(k2
1I − k2

1R) = 0.
(28)

Without loss of generality, we study the dynamics of the first-order breather in the
(x, y)-plane. The velocities of the first-order breathers along the x and y directions are
given by

Vx =
k1R[p1I A1 − p1RB2] + k1I [p1R A1 − p1I B2]

p1I
[
k2

1R + k2
1I
] , Vy = − k1I A1 − k1RB2

p1I
[
k2

1R + k2
1I
] . (29)
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The period of the first-order breather is given by T =
√

Tx + Ty, where Tx and Ty are
given by

Tx = −2π[k1R p1R − k1I p1I ]

p1I
[
k2

1R + k2
1I
] , Ty =

2πk1R

p1I
[
k2

1R + k2
1I
] . (30)

Note that changing z and t only results in moving the profile of |u| in a parallel manner
in the (x, y)-plane, and it shows that there exist four types of breathers:

• The line breather. If k1R = 0, k1R p1R − k1I p1I = 0, A1 6= 0, k1I 6= 0, k1I p1R +
k1R p1I 6= 0, B2 6= 0, the first-order breather (27) is a linear breather in the (x, y)
plane. The four pictures (a–d) (Figure 2) describe a series of periodic line waves
that suddenly appear from the constant background plane and then annihilate in the
original background.

• The oblique breather. If k1R 6= 0, k1R p1R − k1I p1I 6= 0, A1 6= 0, k1I 6= 0, k1I p1R +
k1R p1I 6= 0, B2 6= 0, the first-order breather (27) is an oblique breather in the (x, y)
plane, which has periodicity in both x and y directions; see Figure 2e.

• The x-periodic breather. If k1R = 0, k1R p1R − k1I p1I 6= 0, A1 6= 0, k1I 6= 0, k1I p1R +
k1R p1I = 0, B2 6= 0, the first-order breather (27) has periodicity only in the x-direction
in the (x, y) plane, and is localized in the y-direction; see Figure 2f.

• The y-periodic breather. If k1R 6= 0, k1R p1R − k1I p1I = 0, A1 6= 0, k1I = 0, k1I p1R +
k1R p1I 6= 0, B2 = 0, the first-order breather (27) has periodicity only in the y-direction
in the (x, y) plane, and is localized in the x-direction; see Figure 2g. Since the coefficient
of t in l1 is not zero, the effect of t is to move the breather along the x-axis. Similarly,
since the coefficient of z in l2 is not zero, the effect of z is to move the breather along
the y-axis.

Figure 2. (a–d): Plots of |u| for the first-orderline breather (27) of the three-dimensional KP Equation

(1) with parameters N = 2, α = 1 + i, β = 1, γ = 1 + i, k1 = i, p1 = 1
3 , q1 =

1 +
√

34
3

i, η0
1 = 0,

z = 0; (e): An oblique breather with parameters N = 2, α = 1− i, β = 1, γ = 1 + 20
3 i, k1 = 1 + i,

p1 = 1 + 2i, q1 = 1 + (
√

6 + 2)i, η0
1 = 0, z = 0, t = 0; (f): An x-periodic breather with parameters

N = 2, α = 1 − i, β = 1, γ = 1 + i, k1 = i, p1 = i, q1 =
√

2 + i, η0
1 = η0

2 = 0, z = 0, t = 0;
(g): A y-periodic breather with parameters α = 1 + 2i, β = 20, γ = 1 + i, k1 = 1

4 , p1 = i
2 , q1 = i

2 ,
η0

1 = 0, z = 0, t = 0.

Taking in (26)

N = 4, k∗1 = k2, k∗3 = k4, p∗1 = p2, p∗3 = p4, q∗1 = q2, q∗3 = q4, η0∗
1 = η0

2 , η0∗
3 = η0

4 ,

a second-order breather of three-dimensional KP Equation (1) can be derived. The dynamic
of this solution is shown in Figure 3.
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Figure 3. Second-order breathers in the (x, y)-plane of the three-dimensional KP Equation (1) with
parameters N = 4, α = 1 − i, β = 1, γ = 1 + i and variables z = 0, t = 0. (a): k1 = 1 + i,

k3 = 1 + i, p1 = 1 + 2i, p3 = 1 + 3i, q1 = 1 + (2 +
√

6)i, q3 =
2 +

√
8 + 2

√
17√

8 + 2
√

17
+ (3 +√

8 + 2
√

17)i, η0
1 = 0, η0

3 = 2π; (b): k1 = i, k3 = i
2 , p1 = 2i, p3 = 2i, q1 = 4i, q3 = (2 +

√
7)i,

η0
1 = − π, η0

3 = π; (c): k1 = 1
4 , k3 = 1

4 , p1 = i
2 , p3 = i

3 , q1 =
1 +
√

3
2

i, q3 =
2 +
√

17
6

i,

η0
1 = 0, η0

3 = π.

In addition, mixed solutions composed of solitons and breathers, are also given for
N > 2. Taking in (21)

N = 3, k∗1 = k2, p∗1 = p2, q∗1 = q2, η0∗
1 = η0

2 , k3 = 1, p3 = −2, q3 = 4, η0
3 = 0,

a hybrid solution consisting of a first-order breather and one soliton is constructed, see
Figure 4a. For larger N, we obtain mixed solutions consisting of several first-order breathers
and solitons. For example, taking in (21),

N = 4, k∗1 = k2, p∗1 = p2, q∗1 = q2, η0∗
1 = η0

2 , k3 = 1, k4 = 1,

p3 =
3
2

, p4 = −3, q3 =

√
2− 3
2

, q4 = 3 +
√

14, η0
3 = η0

4 = 0,

we derive the hybrid solution consisting of one first-order breather and two solitons, see
Figure 4b.

Figure 4. Hybrid solutions of the three-dimensional KP Equation (1) consisting of a breather and
solitons with parameters α = 1 + i, β = 1, γ = 1− i, η0

j (j = 1, 2, 3, 4) = 0 and variables z = 0, t = 0.

(a): N = 3, k1 = k∗2 = −i, p1 = p∗2 = i, q1 = q∗2 =
√

2− i, k3 = 1, p3 = −2, q3 = 4; (b): N = 4,

k1 = k∗2 = i, p1 = p∗2 = −i, q1 = q∗2 =
√

2 + i, k3 = 1, k4 = 1, p3 =
3
2

, p4 = −3, q3 =

√
2− 3
2

,

q4 = 3 +
√

14.

4. Rational Solution of the Three-Dimensional KP Equation

In order to derive rational solutions of the three-dimensional KP Equation (1), we take
in Equation (21)

N = 2n, η0
j = i π (1 ≤ j ≤ N), (31)
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and compute a suitable limit as k j → 0. In this way, the function f , defined in (21), becomes
a polynomial function. This construction yields an n-th rational solution, u = 12 α

β (ln f )xx,
of Equation (1), in which f is written as follows:

f = f [n] =
N

∏
k=1

θk +
1
2

(N)

∑
k,j

αkj

N

∏
l 6=k,j

θl + · · ·+
1

M!2M

(N)

∑
i,j,...,m,n

M︷ ︸︸ ︷
αkjαkl · · · αmn

N

∏
p 6=k,j,...m,n

θp + · · · , (32)

with
θj = x + pjy + qjz−

γ

4
(

pj + i qj
)2t, αjk =

24α
1
2
[
(pj − pk)2 − (qj − qk)2

]
+ i (pj − pk)(qj − qk)

. (33)

To illustrate this formula of rational solutions, we provide concrete examples by taking
in Equation (32)

N = 2, p1 = p∗2 = pR + i pI , q1 = q∗2 = qR + i qI , α = αR + i αI , γ = γR + i γI , (34)

where we impose the constraints

pR =
γ2

R + γ2
I − γR

√
γ2

R + γ2
I

γI

√
γ2

R + γ2
I

qR, pI =

√
γ2

R + γ2
I − γR

γI
qI , (35)

In this way, we obtain a first-order rational solution of the three-dimensional KP
Equation (1):

u = 12
α

β
(ln f )xx, f = L 2

1 +L 2
2 + α12, α12 =

6γ2
I (αR + i αI)(√

γ2
R + γ2

I − γR

)(
γ2

R + γ2
I
)

q2
I

,

L1 = x +
γ2

R + γ2
I − γR

√
γ2

R + γ2
I

γI

√
γ2

R + γ2
I

qRy + qRz +

(
q2

R − q2
I
)(

γ2
R + γ2

I − γR

√
γ2

R + γ2
I

)√
γ2

R + γ2
I

2γ2
I

t,

L2 =
γ2

R + γ2
I − γR

√
γ2

R + γ2
I

γI

√
γ2

R + γ2
I

qIy + qIz +

(
γ2

R + γ2
I − γR

√
γ2

R + γ2
I

)√
γ2

R + γ2
I

γ2
I

qRqI t.

(36)

If
αR

(√
γ2

R + γ2
I − γR

)
> 0 or αI 6= 0, (37)

this first-order rational solution is nonsingular. Without loss of generality, taking in (36)
αR = 1, αI = 1, γR = 1, γI = 1, qR = 1, qI = 1, that is, α = 1 + i, γ = 1 + i, q = 1 + i,
we obtain the following analytical expression of first-order rational solution of the three-
dimensional KP Equation (1):

u = 8
(√

2− 1
)
(1 + i)

1−
√

2
3

[
x + (

√
2− 1)y + z

]2
+ 68+52

√
2

3

(
1
2 y +

√
2+1
2 z + t

)2
+ 1 + i

√
2−1
3

[
x + (

√
2− 1)y + z

]2
+ 68+52

√
2

3

(
1
2 y +

√
2+1
2 z + t

)2
+ 1 + i

. (38)

The first-order rational solution given in (38) is a lump in the (x, y)-plane, which reaches
the maximum of 8(2−

√
2) at

(
x = (2

√
2− 2) t, y = −(

√
2 + 1) z− 2t

)
; see Figure 5.
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Figure 5. Plots of |u| of the first-order lump solution (38) of the three-dimensional KP equation with
parameters α = 1 + i, β = 1, γ = 1 + i, q1 = q∗2 = 1 + i, p1 = p∗2 = (

√
2− 1) + (

√
2− 1) i; (a) a

three-dimensional plot at t = 0, z = 0; (b) the temporal evolution in the (x, y)-plane of the contour
of a first-order lump at z = 0, where the blue line is x + (

√
2− 1) y + z = 0; (c) the evolution in the

(x, y)-plane of the contour of a first-order lump at t = 0, where the red line is x = 0.

Taking in Equation (32),

N = 2, p1 = p2 =
1
3

, q1 = q∗2 = −i, α = 1, β = −1, γ = 2, (39)

we obtain the rational solution

u = 12(ln f )xx, f =

(
x− 5

9
t +

1
3

y
)2

+ z2 − 1
9

t2 + 6− 2
3

i t z. (40)

This rational solution is nonsingular when z 6= 0. As described in Figure 6, this
solution describes the interaction of two rational parallel solitons in the (x, y)-plane. When
y = −3x, the two rational solitons fuse together and reach the minimum value 24

z2+6 at
t = 0. In general, the interaction of two solitons produces a solution with larger amplitude.
Surprisingly, in this case, the amplitude of a line soliton fused by two rational solitons is
significantly smaller than the solitons eventually after separation. As shown in Figure 6e–h,
although the two solitons are completely separated as t tends to infinity, as time evolves,
they interact, producing a downward peak, which yields a decrease of the amplitude.
Finally, the two rational solitons fuse into a W-type rational soliton at t = 0.

Figure 6. Plots of |u| of the temporal evolution of the rational solution (40) for the three-dimensional
KP equation with parameters α = 1, β = −1, γ = 2, p1 = p2 = 1

3 , q1 = q∗2 = −i, z = 1.
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Following the extensive studies of the line rogue waves for (2 + 1)-dimensional
integrable models [32–35], it is interesting to find such solutions of the three-dimensional
KP equation. The line rogue wave has infinite length and suddenly appears and disappears
in the background plane. Compared with the normal rogue waves, which are localized in
time and space, line rogue waves are localized in time, but are non-local in space, and also
only appear in high-dimensional systems. Taking in Equation (32),

N = 2, p1 = p2 =
1
3

, q1 = q∗2 = 1 + i, α = 1, β = −1, γ = 2, (41)

we obtain

u = 12(ln f )xx, f =

(
x− 1

18
t +

1
3

y + z
)2

+ (z + t)2 − 2
9

t2 + 6− 1
21

i t(17t + 18x + 6y + 36z). (42)

This rational solution is nonsingular when z = 0. This rational solution is analogous
to a typical line rogue wave solution. Its visible line profile is preserved for the short period
of time during the evolution process; see Figure 7.

Figure 7. Plots of |u| of the temporal evolution of the line rogue wave (42) for the three-dimensional
KP equation with parameters α = 1, β = −1, γ = 2, p1 = p2 = 1

3 , q1 = q∗2 = 1 + i, z = 0.

5. Discussion and Conclusions

The main achievement of this work is the explicit construction of nonsingular multi-
solitons, and high-order breather and high-order rational solutions of the three-dimensional
KP Equation (1) using a Hirota bilinear method and the perturbation expansion technique.
Moreover, different patterns of first-order breathers for the three-dimensional KP equa-
tion are discussed; see Figure 2. Furthermore, mixed solutions composed of breather and
solitons are also given; see Figure 4. Additionally, high-order rational solutions of the
three-dimensional KP equation are constructed by taking the long-wave limit of N-soliton
solution. The first-order rational solutions are nonsingular, providing that the constraints
of (35) and (37) are valid. The first-order rational solution generates a lump wave in the
(x, y)-plane; its local characteristics and evolutional process are demonstrated in Figure 5.
In addition to the lump wave, the first-order rational solution (40) describes the inter-
action of two rational parallel solitons under the constraint (39). As shown in Figure 6,
the interaction of two rational solitons surprisingly makes the amplitude of this solution
significantly smaller in comparison to the amplitude of the separated line solitons. In sum-
mary, under the constraint (41), the first-order rational solution (40) in the (x, y)-plane is a
line rogue wave; see Figure 7. The dynamics of the exact solutions possessed by this new
three-dimensional model are rich and highly non-trivial. Hopefully, such solutions may be
important in realistic applications.
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