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Abstract: In this paper, the Fischer—Burmeister active-set trust-region (FBACTR) algorithm is intro-
duced to solve the nonlinear bilevel programming problems. In FBACTR algorithm, a Karush-Kuhn-
Tucker (KKT) condition is used with the Fischer-Burmeister function to transform a nonlinear bilevel
programming (NBLP) problem into an equivalent smooth single objective nonlinear programming
problem. To ensure global convergence for the FBACTR algorithm, an active-set strategy is used
with a trust-region globalization strategy. The theory of global convergence for the FBACTR algo-
rithm is presented. To clarify the effectiveness of the proposed FBACTR algorithm, applications of
mathematical programs with equilibrium constraints are tested.
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1. Introduction

The mathematical formulation for NBLP problem which we will consider it is

min, fu(v,
(

s.t. ‘ Su § (1)

where v € R™ and w € R™. In our approach, the functions f,, : R — R, f; :
U2 5 R, gy RMT2 — R™M and g : RMT"2 — R™2 must have a twice continuously
differentiable function at least.

The NBLP problem (1) is utilized so extensively in transaction network, resource
allocation, finance budget, price control, etc., see [1-4]. The NBLP problem (1) has two
levels of optimization problems, upper and lower levels. A decision maker with the upper
level objective function f, (v, w) takes the lead, and so he chooses the decision vector v.
According to this, the decision maker with lower level objective function f;(v, w), chooses
the decision vector w to optimize her objective, parameterized in v.

To obtain the solution of problem (1), number of different approaches have been
offered, see (1), see [5-9]. In our method, we utilize one of these approaches to transforme
NBLP problem (1) to a single level one by replacing the lower level optimization problem
with its KKT conditions, see [10,11].
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Utilizing KKT optimality conditions for the lower level problem, the NBLP problem
(1) is reduced to the following single-objective optimization problem:

ming,  fu(v,w)

s.t. gu(v, w) S 0/
Vuwfi(v,w) + Vg (v,w)A =0,
8i(v,w) <0,
)\jgl],(v,w) =0, j=1,...,my,
)\j > 0, j: 1,...,1’}12,

2

where A € R"2 a multiplier vector which is associated with inequality constraint g;(v, w).

Problem (2) is non-differentiable and non-convex. Furthermore, the regularity assump-
tion prerequisites to successfully handle smooth optimization problems are never satisfied.
Following the smoothing method which is proposed by [2], we can introduce the FBACTR
algorithm to solve the problem (2). Before introducing FBACTR algorithm, we need the
following definition.

Definition 1. A Fischer—Burmeister function is the function ¥ (e, d) : R — R and it is defined by
¥(e,d) = e+d — \e? +d?. A perturbed Fischer—Burmeister function is the function (e, d, €) :
R3 — R and it is defined by P(e,d, &) = e+d — Ve2 +d? + &

The Fischer-Burmeister function has the property that ¥(e,d) = 0 if and only if e > 0,
d > 0, and ed = 0. It is non-differentiable at e = d = 0. Its perturbed variant satisfies
Y(e,d, &) =0ifand onlyife > 0,d > 0,and ed = % for & > 0. This function is smooth with
respect to e,d, for € > 0, and for more details see [12-15].

The next perturbed Fischer-Burmeister function is used to satisfy the asymptotic
stability conditions, and allow the FBACTR algorithm to solve problem (2).

P(e,d, &) =Ver+d>+é—e—d. 3)

Using the perturbed Fischer-Burmeister function (3), problem (2) can be approxi-
mated by:
ming g fu (U/ w)
s.t. qu(v,w) <0,
Vuwfi(v,w) + Vg (v,w)A =0, (4)

,/glzj+)\]2-+é—/\j+glj =0, j=1,...,m.

The following notations are introduced to simplify our discussion. These notations
aren = ny+ny+my, x = (v,w,A)T € R" and c(x) = (Vufi(v,w) + Vugi(v,w)A,

/ gl2j + /\]2 +E—Aj+ glj.)T, j=1,...,my. Hence problem (4) can be reduced as follows:

minimize f(x)
subjectto g, (x) <0, (5)
c(x) =0,

where f, : R" = R, g : R" — R™, and ¢ : R" — R2T"2,

A set of indices of binding or violated inequality constraints at x is defined by I(x) =
{i: gu,(x) > 0}. Aregular point is the point x, at which the vectors of the set { Vc;(x4),i =
1,2,...,mp+mp} U {Vgu(xs),i € I(xy)} are linearly independent.
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A regular point x, is KKT point of problem (5) if there exist Lagrange multiplier
vectors p, € ™72 and A, € R™ such that the following KKT conditions hold:

Vfu(xe) + Ve(x)ps + Vgu(x)Ae = 0, (6)
c(xs) = 0, ?)

Su(xs) <0, (8)

(A)igu,(x5) = 0, i=1,...,my, 9)

(A)i > 0, i=1,...,my. (10)

To solve the nonlinear single-objective constrained optimization problem (5), various
approaches have been proposed; for more details, see [16-22].

An active-set strategy is utilized to reduce problem (5) to equality constrained op-
timization problem. The idea beyond the active-set method is to identify at every it-
eration, the active inequality constraints and treat them as equalities and this allows to
utilize the improved methods which are used to solve the equality constrained problems,
see [21,23,24]. Most of the methods that are used to solve the equality constrained problems,
may not converge if the starting point is far away from the stationary point, so it is called a
local method.

To ensure a convergence to the solution from any starting point, a trust-region strategy
which is strongly global convergence can be induced. It is very important strategy to solve
a smooth optimization. It is more robust when it deals with rounding errors. It does not
require the objective function of the model be convex. For more details see [11,21-32].

To treat the difficult of having infeasible trust-region subproblem in FBACTR algo-
rithm, a reduced Hessian technique which is suggested by [33,34] and used by [22,24,35]
is utilized.

Under five assumptions, a theory of global convergence for FBACTR algorithm is
proved. Moreover, numerical experiments display that FBACTR algorithm performers
effectively and efficiently in pursuance.

We shall use the following notation and terminology. We use |.|| to denote the
Euclidean norm ||.||,. Subscript k refers to iteration indices. For example, f,, = fu(xx),
Sup = Qu(Xk), ek = c(x), Y = Y(xx), Pe = P(xg), Vel = Vil (X, ptx) , and so on to denote
the function value at a particular point.

The rest of the paper is organized as follows. Section 2 is devoted to the description
of an active-set trust-region algorithm to solve problem (5) and summarized to FBACTR
algorithm to solve NBLP problem (1) is introduced. In Section 3 the analysis of the theory
of global convergence of the FBACTR algorithm is presented. Section 4 contains an imple-
mentation of the FBACTR algorithm and the results of test problems. Finally, some further
remarks are given in Section 5.

2. Active-Set with Trust-Region Technique

A detailed description for active-set with the trust-region strategy to solve problem (5)
and summarized to FBACTR algorithm to solve problem (1) are introduced in this section.

Based on the active-set method which is suggested by [36] and used with [21-24], we
define a 0-1 diagonal matrix P(x) € #"*"™, whose diagonal entries are:

1 ifgy(x) >0,
M@_{Oiqﬂﬂ<0 (1

Using the previous definition of the matrix P(x), a smooth and simple function is
utilized to replace problem (5) with the following simple problem
minimize f,(x) + §/|P(x)gu(x)]

subject to c(x) =0, (12)
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where r > 0 is a parameter, see [21-23]. The Lagrangian function associated with problem (12)
is given by:
r
L(x, 1) = £(x, 1) + 5| P(x)gu ()%, (13)

where
00 u) = fulx) + ule(x), (14)

and p € R"™T™ represents a Lagrange multiplier vector which is associated with the
constraint c(x). A KKT point (x., y«) for problem (12) is the point at which the following
conditions are satisfied

V(x4 ps) +1Vu(x)P(x:)gu(x:) = 0, (15)
h(x,) = 0, (16)

where V{(xy, pts) = V fu(x) + Ve(x) ps.

If the KKT point (x, y) satisfies conditions (6)—(10), we notice that it is also satisfies
conditions (15) and (16), but the converse is not necessarily true. So, we design FBACTR
algorithm in a way that, if (x., ji+) satisfies conditions (15) and (16), then it is also satisfies
KKT conditions (6)—(10).

Various approaches which were proposed to solve the equality constrained are local
methods. By local method, we mean a method such that if the starting point is sufficiently
close to a solution, then under some reasonable assumptions the method is guaranteed by
theory to converge to the solution. There is no guarantee that the local method converges
starting from the remote. Globalizing a local method means modifying the method in
such a way that is guaranteed to converge from any starting point without sacrificing its
fast local rate of convergence. To ensure convergence from the remote, the trust-region
technique is utilized.

2.1. A Trust-Region Technique

To solve problem (12) and to convergence from remote with any starting point,
the trust-region strategy is used. A naive trust-region quadratic subproblem associated
with problem (12) is:

minimize q¢(s) = f + Valfs + 15T Hs + 51 Pe(g, + Vg1,)5)
subject to cr + Vc[s =0, (17)
sl < Ok,

where 0 < & represents the trust-region radius and Hy is the Hessian matrix of the
Lagrangian function (14) or an approximation to it.

Subproblem (17) may be infeasible because there may be no intersecting points be-
tween hyperplane of the linearized constraints c(x) + Vc(x)Ts = 0 and the constraint
Isll < k. Even if they intersect, there is no guarantee that this will keep true if J is reduced,
see [37]. To overcome this problem, a reduced Hessian technique which was suggested
by [33,34] and used by [22,23,35] is used. In this technique, to obtain the trial step s, it is
decomposed into two orthogonal components: the tangential component s, to improve
optimality and the normal component s to improve feasibility. To evaluate each of s} and
st, two unconstrained trust-region subproblems are solved.

¢  To obtain the normal component s”

To evaluate the normal component s, the following trust-region subproblem must
be solved:
minimize 1||c; + Vcl's"||?

subject to IIs™|| < {6k, (18)

for some ¢ € (0,1).
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Any method can be used to solve subproblem (18), as long as a fraction of the normal
predicted decrease obtained by the Cauchy step SZCP is less than or equal to the normal
predicted decrease obtained by s;. That is, the following condition must be held:

leell® — llex + Vegsg 1 = o1 {llexll = llex + Vegs 1123, (19)
for some ¢; € (0,1]. The normal Cauchy step s, " is given by:

nc nc
S P = —T PN crcr, (20)

where the parameter T: ¥ is given by:

[ Vererll? o I Vere]®
SR 4| — if kel <
1(Vee)T Verer 2 Ve Vere) 2 = K
Vle _
T = and || Vel Verer) || > 0, (1)
% otherwise.
[Vexer|l

A dogleg method is used to solve subproblem (18). It is very cheap if the Hessian
is indefinite. The dogleg algorithm approximates the solution curve to subproblem (18)
by piecewise linear function connecting the Newton point to the Cauchy point. For more
details, see [35].

Once s} is estimated, we will compute s,t( = Yk§,t(. A matrix Y} is the matrix whose
columns form a basis for the null space of (Vcy)T.
*  To obtain the tangential component s} .

To evaluate the tangential component st, the following subproblem is solved by using
the dogleg method

minimize (Y] Vg(s})) 78 + 1&t YT B Y5t

22
subject to | Vi3t < Ag, 22)

where qu(s,’j) = fok + Bksz + rngukPkguk, By = H; + rngukPnggk,
and Ay = /62 — ||sF]]2.

Since the dogleg method is used to solve the above subproblem, then a fraction of
the tangential predicted decrease obtained by a tangential Cauchy step s‘,tfp is less than or

equal to the tangential predicted decrease which is obtained by tangential step 5;. That is,
the following conditions hold

a(5) — qe(sy + Yish) > Oa[qu(sy) — ai(sp + Y5 ")), (23)
for some ¥, € (0, 1]. The tangential Cauchy step s,tfp is defined as follows

57 = 1P Va(sh), (24)

where the parameter T]:Cp is given by

I g (5712 i RAYACHI <A
O VaesE)TB Y] Vai(sy) OV B Y] Vae(sp) = ©F
T;CP = and (Y Vqi(s!) B Y[ Var(st) > 0, (25)
Ak otherwise,

Yy Var(spll



Fractal Fract. 2022, 6, 412

6 of 29

Aredy = 0(xg, ) — £(Xps1, 1) — Dpifcprn + zk[HPkgu(xk)

Pred, =

such that By = Y[ By Y.

To be decided whether the step s, = s} + s} will be accepted or not, a merit function is
needed to tie the objective function with the constraints in such a way that progress in the
merit function means progress in solving the problem. The following augmented Lagrange
function is used in FBACTR algorithm as a merit function,

D(x,p;1;0) = L(x, ) + %IIP(X)gu(X)||2 +alle(x)]?, (26)

where ¢ > 0 is a penalty parameter.

To test whether the point (xj + sk, ptx41) will be taken in the next iterate, an actual
reduction and a predicted reduction are defined.

The actual reduction Aredy in the merit function in moving from (x, px) to (x; +
Sk, Pk+1) is defined as follows:

Aredy = ®(xy, p; 15 0%) — P(xXk + di, Py 157k 0% )-
Aredj can also be written as follows:
T,
> 1P = 1 Pea et 7] + orlllee 1 = llexra ], (27)

where Ape = (pii1 — pi)-
The predicted reduction in the merit function is defined to be:

1 T
— (Vb (xe, i) s — ES{HkSk — Apg (cx + Vegsy) + Ek[l\l’kgukll2 ~ |1 Pe(gu + Vgusi)lI)
+ollleil® = llex + Vegsill]- (28)
Pred), can be written as:
Predy = qi(0) — qi(sk) — Apg (ci + Vegse) + oilllerl® = llex + Vegsel?]. (29)

e  To update the penalty parameter o

To update the penalty parameter oj to ensure that Pred; > 0, the following schemeis
used (see Algorithm 1):

Algorithm 1 To update the penalty parameter oy

If
o)
Predi < 5 [[leil? = lle + Vel s, (30)
then, set
2[qk(sk) — qx(0) + A T Ck+VCTSk
o = [x( qZ() #k(T Ve )}Jrﬁol 1)
lexll? = llex + Ve sil
where By > 0 is a small fixed constant. Else, set
041 = max(oy, r%) (32)

End if.

For more details, see [22].
e  To test the step s; and update i
The framework to test the step s; and update J is clarified in the Algorithm 2.
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Algorithm 2 (To test the step s; and update ;)

Choose 0 < g < ap <1,0< 11 <1< 1),and 9y, < 6o < Smax-
While ‘;:gg]’: € (0,a1) or Pred; <O0.
Set o, = 7 [|sk |-
Evaluate a new trial step sy.
End while.
Ared
If pregt € a1, 22).
Set xp 11 = X + s and g1 = max(dy, i )-
End if. If 414t € [ag,1].
Set xy 1 = X + s and 61 = min{yax, max{d,n, o }} -
End if.

¢  To update the positive parameter 7

To update the positive parameter ¢, we use the following scheme (see Algorithm 3)

Algorithm 3 To update the positive parameter ry

If
1 .
5 9(s) = (1)) < 1Vgu () P (i) gu (i) || min{ [V gu () P (i) g (i) 1 Ok (33)
Set 141 = Tk-
Else, set 141 = 21y
End if.

For more details see, [25].
Finally, the algorithm stopped if the termination criteria ||Y,] V.lx || + ||V gu, Pe&u, || +
llckll < €1 or ||sk|| < e, for some €7, €5 > 0 is satisfied.

* A trust-region algorithm

The framework of the trust-region algorithm to solve subproblem (17) are summarized
as follows (see Algorithm 4).

Algorithm 4 Trust-region algorithm

Step 0. (Initialization)
Starting with xg. Evaluate yg and Py. Setrg =1, 0p = 1, and B9 = 0.1.
Choose €1, €, T, To, &1, and ap such that 0 < ¢, 0 < &, 0 < 7@ < 1 < 1B,
and 0 < wq < ap < 1.
Choose 8,i1, Omax, and g such that 6,,;, < 6o < Smax. Setk = 0.

Step 1. If [|Y] Vx| + Vg, Peguel| + llc| < e1, then stop.

Step 2. (How to compute sy)
(a) Evaluate the normal component s}} by solving subproblem (18).
(b) Evaluate the tangential component 5 by solving subproblem (22).
(c) Set sy = s}t + Yk§}t<.

Step 3. If ||si|| < €2, then stop.

Step 4. Set xj41 = x + Sk-

Step 5. Compute Py 1 given by (11).

Step 6. Evaluate yiy 1 by solving the following subproblem

minimize ||V fu,., + Veria i+ 76V Sueoy Pes 18, |- (34)

Step 7. To update the penalty parameter oy, using Algorithm 1.

Step 8. To test the step sy and update the radius 6y, using Algorithm 2.
Step 9. To update the positive parameter ry, using Algorithm 3.

Step 10. Set k = k + 1 and go to Step 1.
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The main steps for solving the NBLP problem (1) are clarified in the following algorithm.

2.2. Fischer—Burmeister Active-Set Trust-Region Algorithm
The framework to solve NBLP problem (1) is summarized in the Algorithm 5.

Algorithm 5 FBACTR algorithm

Step 1. Use KKT optimality conditions for the lower level of problem (1) and convert it to
a single objective constrained optimization problem (2).

Step 2. Using Fischer—Burmeister function (3) with € = 0.001 to obtain the smooth prob-
lem (4).

Step 3. Summarize problem (4) to the form of nonlinear optimization problem (5).

Step 4. Use the active set strategy to reduce problem (5) to problem (12).

Step 5. Use trust-region Algorithm 4 to solve problem (12) and obtained approximate
solution for problem (5) which is approximate solution for problem (1).

The next section is dedicated to the global convergence analysis for the active-set with
the trust-region algorithm.

3. Global Convergence Analysis
Let {(xk, jix) } be the sequence of points generated by FBACTR Algorithm 5. Let
Q) C R" be a convex set which is contained all iterates x;, € R" and x;, + s, € R".
Standard assumptions which are needed on the set () to demonstrate global conver-
gence theory for FBACTR Algorithm 5 are stated in the following section.

3.1. A Standard Assumptions

The next standard assumptions are required to demonstrate the global convergence
theory for the FBACTR Algorithm 5.
[SA1.] Functions f, : ®" — R, g, : R" — R, f; : N" — N2, and g : N" — R are twice
continuously differentiable functions for all x € Q).
[SA;.] The sequence of the Lagrange multiplier vectors {4} is bounded.
[SA3.] All of c(x), Ve(x), V2¢i(x) fori = 1,2,..., 13 +ma, gu(x), Vgu(x), V?gu,(x) for
i=1,2,...,my,and (Vc(x)TVc(x)) ! are un1formly bounded on Q).
[SA4.] The matrix Vc(x) has full column rank.
[SA5.] The sequence of Hessian matrices { Hy } is bounded.

Some fundamental lemmas which are needed in the proof of the main theorem intro-
duced in the following section.

3.2. Main Lemmas

Some basic lemmas which are required to demonstrate the main theorems are pre-
sented in this section.

Lemma 1. Under standard assumption SA1—-SAs and at any iteration k, there exists a positive
constant Ky such that:

skl < Kallex]- (35)

Proof. Since the normal component s} is normal to the tangent space, then we have:

sl = [Ver(Vef Ver) ™ Ve sl
= [IVer(Vef Vo) e + Vg s — e |
< IV (Ve V) " Illler + Vegsill + lleell]
< IV (Ve Ver) e,
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where ||c + Vcl'sg|| < ||k Using standard assumptions SA;1-SAs, we have the desired
result. [

Lemma 2. Under standard assumptions SAy and SAs, the functions P(x)g,(x) are Lipschitz
continuous in ().

Proof. See Lemma (4.1) in [36]. O

From Lemma 2, we conclude that ¢, (x) T P(x)gy (x) is differentiable and Vg, (x) P(x)gu (x)
is Lipschitz continuous in ().

Lemma 3. At any iteration k, let A(xy) € RU™)*(M) be g diagonal matrix whose diagonal

entries are:
1 if (gu)i <O0and (gu,,)i >0,
(a)i=9q —1 i (&u)i = 0and (gu,,)i <0, (36)
0 otherwise,

wherei =1,2,...,mq. Then
Pit1 = P+ Ag (37)

Proof. See Lemma (6.2) in [21]. O
Lemma 4. Under standard assumptions SAq and S Az, there exists a positive constant Ky such that
[ Akui |l < Kallsill- (38)
Proof. See Lemma (6.3) in [21]. O
Lemma 5. Under standard assumptions SA1—S As, there exists a positive constant Ks such that:
| Aredy. — Predy. |< Kox s> (39)
Proof. From (37) and (27) we have:
Aredi = €(xi, ) — (Xicyr, 1) — Bpig Cer + %k[gfkpkguk = Gy P+ AQ)Gu ]+ orllleell = llexal®]. 40)
From (40), (28), and using Cauchy-Schwarz inequality, we have:
| Aredy — Predy | < | £(xx, px) + Vil (3, i) "5k — (1, i) | + | Apg [ ek + Vegse —cxpa ] |
+%k 1 Pe(8ue + VSO = Gty oy (P + A) sy | +0k | llek + Ve sl = el | -

Hence,

1 1
|Aredy — Pred| < 5 | sp (Hg — V20(xp + 15k, pik) )5k | +5 | sT[V2c(xg + Eask) A s |

T
+§k | 5t [Vu PV g, — Vgu (X + Easi) PV gu (xi + Gasi) s |

r r
+5k | 5§ V2gu (X + E45k) Pegu (xi + Easie)si | +§k|\Ak[8uk + Vgu (xi + &) Tse] |2
+0oy | s,{[Vcchg — Ve(xg + &esp) Velxy + gésk)T]sk |

+0r | 5§ VZe(xg + Cosi)e(xx + Eosk)sk |,

for some {1, &2, &3, €4, C5, and &g € (0,1). Using standard assumptions SA1-SAs, 0y > 1y,
0 2> 1, and inequality (38), we have:

| Aredy — Predy | < x|l + ro0illsi|* el + xaolsell®, (41)
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where k1 > 0, kp > 0, and x3 > 0 are constants and independent of the iteration k. From
inequality (41), o > 1, ||s¢||, and ||ck|| are uniformly bounded, we obtain the desired
result. O

Lemma 6. Under standard assumptions SA1—S As, there exists a positive constant Ky such that:
lexll* = llex + Vg s l|* > Kal|eg|| min{d, [|eg[|}- (42)
Proof. We consider two cases:

Firstly, from (20), if 5,7 = —%(Vckck) and 6|Vl Ve < || Verer?,
then we have:

T
||ck||2 — |lex + Vc{sZCpuz —Z(Vckck)TsZCp — SZCP Vcch,stCp

5,%|\Vc,{VckckH2

= 25]( VCka -
IVack] == Ser
> 20¢||Vekerl| — okl Vererl|
> Ol Vererll. (43)
nep Vel

Secondly, from (20), if s, W(Vckck) and & || Vel Veger||> > || Veer |,

then we have:

T
legll? = llex + Vegsg ™12 ~2(Vere) sy —sp VaVegse”

o 2Veet [ Vere*
IVIVacdP Ve Ve 2
_ IVeed®
IVef Verer||?
2
> ||VTC]<C]<H . (44)
Ve Vg2
Using standard assumption SA3, we have || Vegek| > % From inequali-
[(Vep Ver) Vel
ties (19), (43), (44), and using standard assumption SA;, we obtain the desired result.
From Algorithm 1 and Lemma 6, we have, for all k:
Of .
Predy 2 —-Ky|cg|| min{y, [lex [ }- (45)

O

Lemma 7. Under standard assumptions SA1—SAs, there exists a constant Ks > 0, such that:

1YE Vai(sp) |

1 .
9i(st) = ak(sF +Yisi) > K[|y Vae(sy) || min{Ay, A b

(46)
where By = Y[ ByYj.

Proof. We consider two cases:
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Firstly, from (24), if sth
1YV k(s |I?, then we have:

T T
WY qu(sk)andAk(Y VQk(Sk)) BkY VQk(Sk)

_ 1 epT =
a(st) —anlsf +0i8T) =~ Var(s) s - 557 Bis”
= MY Var(sp) |
Af

*W“Yg Vals ) B V(] @)
k

> MY Var(si)l - Ak||Y Vai(sp)
> Vsl
T ny||12
Secondly, from (24, if 5" = — - AW VEEOI___yTgg, (1) and Ap(YT Vay(s))T By

Y Vai(si)TBeY) Vai(sy)
YIVai(sh) = |V Vai(s?)|®, then we have:
B(st) — el + VislT) = O Vagels)TS — 57 Bl

1Y Var ) l*
Y Vae(si))TB Y Var(sp)
YV

2(YIVar(sp) TBY) Vai(sy)

1Y Var(sp)lI*
20 Vai(si)) TBY) Var(sp)
L I VaEpI?
- 2| Byl

(48)

O

From inequalities (23), (47), (48), and using standard assumptions SA;-SAs, we obtain
the desired result.

The next lemma shows that FBACTR algorithm cannot be looped infinitely without
finding an acceptable step.

Lemma 8. Under standard assumptions SA1-S As, if there exists € > 0 such that ||ck|| > €, then
Ared ;
P::d > w1 for some finite j.

Proof. Using (39), (45), and from ||ck|| > ¢, we have:

Aredy | _ | Aredy — Predy | < 2K362
Pred, N Predy ~ Ksemin{e, 5}

J,; becomes small as s;; gets rejected and eventually we will have:

Aredkj 1| < 2K3(Sk]'
Pred,; — Kge

Then, the acceptance rule will be met for finite j. This completes the proof. [

Lemma 9. Under standard assumptions SA1-SAs and if jth trial step of iteration k satisfies

. (I—m)Ky
Isg | < ming S5, 1y )
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then it must be accepted.

Proof. This lemma is proved by contradiction. In case of assuming that inequality (49)
holds, the trial step s,; is rejected, by using inequalities (39), (45), and (49), then:

| Aredy; — Predy | _ 2Ksllsgl? _ (1)

(1 —061) < < =
Pred,; Kylle syl 2

This contradiction and therefore the lemma is proved.
O

Lemma 10. Under standard assumptions S A1-S As, there exists J,; satisfies:

Oi 1-— K
6 > min{ iz, WA 1y, (50)

for all trial steps j of any iteration k where By is a positive constant independent of k or j.

Proof. Atany trial iterate k/ of any iteration k, we consider two cases:
Firstly, if j = 1, then the step is accepted. That is 5} > 8,,;, and take B1 = sup,, l|ck/l,
we have

5o
Ok 2 Omin > - ||Ck|| (51)
p1
Secondly, if j > 1, then there is at least one trial step which is rejected . From Lemma 9,
we have a 1K
—X1)R4

—,1

4 K3 ’ } ||Ck || ’
for all trial stepsi = 1,2, ...j — 1 which are rejected . Since s,; is a trial step which is rejected,
then from the previous inequality and Algorithm 2, we have:

||Ski || > rnm{

1-— o1 K4
A=2)Ks 4y

b = Tl > T ming St

From inequality (51) and the above inequality, we obtain the desired result.
The next lemma obviously shows that as long as ||c|| is bounded away from zero,
the radius of the trust-region is bounded away from zero. [

Lemma 11. Under standard assumptions SA1—SAs, if there exists € > 0 such that ||ck|| > e.
Then there exists K¢ > 0 such that:

Proof. Let 5 i K
Ke — . min 11 — &1 )4 5
6 emm{ ﬁl ’ 4K3 /Tl}/ ( )

and using (50), the proof follows directly. O

In the next section, the iteration sequence convergence is studied when ry — co.

3.3. Convergence When the Positive Parameter 1y — oo

This section is devoted to the convergence of the iteration sequence when the positive
parameter ry goes to infinity.

Notice that, we do not require [V gy, (x), i € I(x)] has full column rank in standard
assumption SA4, so, we may have other kinds of stationary points, which are defined in
the following definitions.
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Definition 2. A feasible Fritz John (FF]) point is a point x, that satisfies the following FF]
conditions:

1V fu(xe) + Ve(xo)pus + Vgu(x)Ae = 0,
c(xy) = 0,
P(r)g(x.) = 0,

M)igu(x) = 0 i=1,..m,

e (As)i >0, i=1,...,m

where 1, W+, and A, are not all zeros. For more details see [18].

If 57, # 0, then the point (x,,1, %, %) is called a KKT point and FFJ conditions are
called KKT conditions.

Definition 3. An infeasible Fritz John (IF]) point is a point x, that satisfies the following
IF] conditions:

1V fu(x4) + Ve (x) i 4+ Vg (xe) As 0,
c(xs) = 0,
Vgu(x:) P(xx) Qu(xx) 0 but ||P(xs)gu(x:)|| >0,
(A)igu,(x«) > 0, i=1,...,m,
he (M) > 0, i=1,...,my,

where 11«, W+, and A, are not all zeros. For more details see [18].

If 7. # 0, then the point (x,,1, %‘, %) is called an infeasible KKT point and IF]
conditions are called infeasible KKT conditions.

Lemma 12. Under standard assumptions SA1-SAs, a subsequence {k;} of the sequence of the
iteration satisfies IF] conditions if the following conditions satisfied :

(1) limy, 0 c(xg,) = 0.
(i) limy, 0 || P Qu (k) || > 0.
(lll) llmkli)oo {minse?Rn—mlJr] ||Pk1 (guki + ng;kl Yklgt) ||2} = llmkli)oo Hpkzgukl ||2

Proof. For simplification and without loss of generality, let {k;} represents the whole
sequence {k}. Assume that 5 is the solution of the subproblem minimize ||Pi(gu, +
\Y &TLk Y;5')||2, then it satisfies the following equation:

Y Vgu, Pegu, + Y{ V8u, PV gy Yisk = 0. (53)
It also satisfies the right hand side of Condition (iii). That is,
lim (25,7 Vigu, Pegu, + 5" Y{ Vgu PV 8, ik} = 0. (54)
We will consider two cases:
Firstly, if limy_,, §x = 0, then from Equation (53) we have limy_, YkT Vgu Pxgu, = 0.

Secondly, if limy ., 8x # 0, then by multiplying Equation (53) from the left by
25] and subtract it from Equation (54), we have limj_,« HPnggkYksTkHZ = 0. Hence

limy_, o YkT Vgu, Pxgu, = 0. That is, in two cases, we have

lim Y Vg, Pcgu, = 0. (55)
k—o0
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(o)
5k[||0k||2—||ck+vcizsk||2] = [qk(sk) — qc(0) + Apf (cx + Vi s)] +

Since limy_,co || PcQu, |l > 0, then limy_,oo(Pegu,)i > 0, for i = 1,...,m; and
limy 00 (Pcguy )i > 0, for some i. Let (Ag); = (Pegu,)isi = 1,...,my, then limy_,oo YT Vg, Ax
= 0. Hence, there exists a sequence of {yy} such that limy ., YkT {Verpe + Vgu, Al = 0.
That is, IFJ conditions hold in the limit with 7, = 0, see Definition 3. O

Lemma 13. Under standard assumptions, SA1—-SAs, a subsequence {k;} of the sequence of the
iteration satisfies FF| conditions if the following conditions are satisfied:
(1) limy, 0 c(xg,) = 0.
(ii) Forall k;, ||Pkig”ki | > 0and limy, o P, guy, = 0.
1Pe; (81, +V83ki Y, 517
1P, P } -

(lll) llmklﬁoo {mil’lSe&anl +1

Proof. For simplification and without loss of generality, let {k;} represents the whole
sequence {k}. Notice that the following equation,

lim{ min {|uk+Png,{ka|2}}:1, (56)

k—o0 veERN M +1

is equivalent to Condition (iii), where Uj is a unit vector in the direction of Prg,, and

v= m Let 7 be a solution of the following problem:
Uk
min _{ [+ PVgl vi[?}. (57)
yeRn—mp+1
Hence,
Y Vgu PV g, Yk + Y{ Vg, Pl = 0. (58)

Now two cases are considered:

Firstly, if limy_, o, Y7 = 0 and using (58), then limy_, 4 YkT Vgu, Pl = 0.

Secondly, if limy .o, Y7, # 0, then from (56) and the fact that 7 is a solution of
problem (57) we have:

Jim (Y V§u, PV g, Yii + 2U] PV g, Vi } = 0.

Multiplying Equation (58) from the left by 297/ and subtracting it from the above limit,
we have the following equation: limy_,., 7 YkT Vgu PV gl{k Y7, = 0. That is
limy 00 { VsV g PcUx } = 0. Hence in both cases, we have limy_,o{ Y,V gy, Py} = 0.
The remnant of the proof follows using cases similar to those in Lemma 12. O

Lemma 14. Under standard assumptions SA1-SAs, if k represents the index of iteration at which
0y is increased, then we have:
relleil* < K7, (59)

where K7 is a positive constant.

Proof. Since o} is increased, then from Algorithm 1 we have:

PO el ~ llog + VT se P

From (42), (50), and using the above equality, we have:

Tk
2

Omin T1(1 —aq1)K 1
mn 1 ) 41, 1} < Vxélfsk + fs,fHksk + Ay,{(ck + chsk)
B1 4K3 2

Bo
2

Kyfleg|? min  {

Tk
+ 5 PG + V8 SI* = 1Pegu 171 + 5[l ekl® = llex + Vg sell]-
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2
3
2

Tk
2

Ka||cg]|* min{

Kk min{

However, 0, > r%, then:

i 1—a1)K 1
mm,Tl( ) 0,1} < Vel ) Tsk + 557 His + Auf (e + Vel se)

p1 4K3 2
+ (1P, + Vb + B2 el
Hence,
5;31?' Tl(l;Ktl)K‘l,Tb 1} < %[fozfsk + %S{Hksk + Ap (cx + Vegsy)
+ B2 + 2P, + Vg0
< 19t + 5lsT il + |8 G0+ Vel )
+ Bl 4 2 1Belgu, + VL0l

From Cauchy-Schwarz inequality, standard assumptions SA3—-SAs, and the fact that
Iskll < dmax, the proof is completed. [

Lemma 15. Under standard assumptions SA1-SAs, if ry — co and there is an infinite subsequence
{k;} of the sequence of the iteration at which oy is increased, then:

lim ||t || = 0. (60)
ki_>°° !

Proof. From lemma (59) and using r¢ is unbounded, the proof is completed. [

Theorem 1. Under standard assumptions SA1—-SAs, if ry — coas k — oo, then

lim fJe || = 0. 61)
k—o0

Proof. See Theorem 4.18 [22]. [

Lemma 16. Under standard assumptions SA1-S As, if there exists a subsequence {k;} of indices
indexing iterates that satisfy || Prgu, || > & > 0 forallk € {k;} and r, — coask — co. Thena
subsequence of the iteration sequence indexed {k;} satisfies IF] conditions in the limit.

Proof. For simplification and without loss of generality, the total sequence {k} denotes to
{k;j}. This lemma is proved by contradiction, therefor we suppose there is no subsequence
of the sequence {k} satisfies IFJ] conditions in the limit. Using Lemma 12, we have for
all k, ||| Pegull* = [ Pe(8u + Vi, YiSp)I?| > €1 for some €1 > 0. From (55), we have
1YeVgu, P&u, || > €2, for some g5 > 0, hence:

HYkTVgukpkguk + YkTVgukPngtTtkslrclH 2 ||YI<TVgukPkgukH - HYkTVngPngzkH Hslrcl”
&2 — Ky |V Vi PV, |kl

Y

Since {||ck||} converges to zero and ||Y{ Vg, PcVg, | is bounded, then we can write:
1YLV g, Pegu, + Y,?VgukPngzks,’{‘H > %. Therefore,

IYEVarOIl = rell Y Vau Pegu, + Y{ Vgu PV, stll — 1Y Vel + Yy Hisl|

&
rkfz — IVl + Y Hesp|

€ 1
g = I Vb Y His]

AV

v



Fractal Fract. 2022, 6, 412

16 of 29

ax(sx) — ax(sk)

From (46), we have:

& 1 T n

Ks e 1 . F = 1Y [Vali + Hist ||

jsrk[jz — =1 [Vl + Hies{] | min{ A, — e T .
Tk 1Yy V&u, PV g Yiell + 7.1V HieYel

For a k sufficiently large, we have:

& }
21Y] Vgu, PVl Yell

Ksea .
ak(s) — qk(s) = T min{Ay,

From Algorithm 3, {r;} is boundless only if there exist an infinite subsequence of
indices {k;}, at which:

1 .
50k (s%) = ax(s0)] < 1V 8w, Py [l mind [V gu, Prgue ||, 0} (62)

Since 1y — oo, therefore an infinite number of acceptable iterates at which (62) holds
and from the way of updating r, we have r, — o0 as k — oo. This gives a contradiction
unless rJ; is bounded and hence 6, — 0. Therefore ||s¢|| — 0. We will consider two cases:

Firstly, if || Pegu, ||* — I|Pc(gu, + V&, Yi5t)|1> > €1, then we have

" {IIPegu I” = 1Pk (Quy + Vgu, Yisi) |7} > reer — oo, (63)

Using (63) and standard assumptions SA3 — SAs, we have [qx(s}) — q(sk)] — 0.
That is, the left hand side of inequality (62) goes to infinity while the right hand side tends
to zero and this is a contradiction in this case.

Secondly, if || Pegu |2 — | Pk(gu, + Vg, Yis}) | < —e1, then

"l I Peguu|1? = 11 Pi(gu + Vgu, Yis) 1P|} < —rier — —oo,

where 7, — o0 as k — oo and similar to the first case, [gx(s}}) — gk(sk)] — —oco. Thisis a
contradiction with [qx (s} ) — gk(sx)] > 0. The lemma is proved. [

Lemma 17. Under standard assumptions SA1-SAs, if 1, — o0 as k — oo, and there ex-

ists a subsequence indexed {k;} of iterates that satisfy ||Pigu,|| > O for all k € {k;} and

imy o0 || P;&uy. | = O, then a subsequence of the sequence of iterates indexed {k;} satisfies
]

FF] conditions in the limit.

Proof. Without loss of generality, let {k;} be the whole iteration sequence {k} to simplify.
This lemma is proved by contradiction and so suppose that there is no subsequence that
satisfies FF] conditions in the limit. From condition (iii) of Lemma 13, for all k sufficiently
large, there exists a constant e3 > 0 such that:

| I1PegugI* = NI P8y + Vigu, Yis) 11 |

> 3. (64)
1Peguue |12

The following two cases are considered:

ot
Firstly, if lim in fk*wﬁ;\l = 0, then there is a contradiction with inequality (64).
llk
ot
Secondly, if lim supy_eo leiﬁ = oo, then from subproblem (22) we have:
U
Y Vae(sk) = =Yy (Be + vkD) i, (65)

where v > 0 represents the Lagrange multiplier vector, which is associated with the
constraint || Y35 || < Ay. From (65) and (46), we have:
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IVT (L Hy+ (1 + Vgu AVgT)1Yist |
VT (L Hi + Vg, PV 8h) Yl

K i
9e(s§) = ak(si) = 57 1Y Vae(sp) || min{ay, (66)

Since 1y — o0 as k — oo, then there exists an infinite number of acceptable steps such
that inequality (62) holds. However, inequality (62) can be written as follows:

1
5 1k (sk) — qr(se)] < B3l Pegue |1 (67)

where 3 = supxeal| ViVl
From (66) and (67), we have:

K |y gyl minf i el + (1 Vaw BV i)
5 111k k ’
2 TPl YT (L Hi + Vi, PV gh) Vil Pegi |

} < 283 Pegu .

However, in previous inequality, the right hand side tends to zero as k — oo and also
ot

limyg o0 HP:% = oo along the subsequence {k;}. Therefore,
I8 L5k Hi + (5T + Vi, P, V)] Yi S |
IV a8 | = ey T
: " Y, G Hig + Vi Py Vg, ) Yi 1 P g |
st
is bounded. That is, either % lies in the null space of YkTi (Z—I}:I + ngiPknglg)YkTi or
1Y, Ve, (s )|l = 0.
gt
The first possibility occurs only when lr% — 0as k; — oo and Hl’:i};k\l lie in the null

space of the matrix YkT,- Vg, P, V g,fi Y%, which is contradicted with assumption (64). This
means that, FF] conditions are satisfied in the limit. As k; — oo, the second possibility
is, ||k, Ve, (SZI)H — 0 and from (65), we have ||§,t(1|| — 0 which is contradicted with
assumption (64). That is FF] conditions are satisfied in the limit.

In the next section, the convergence of the sequence of the iteration sequence is studied
when 7, bounded.

3.4. Global Convergence When ry Is Bounded

Our analysis in this section is continued supposing that r; is bounded. Therefore, let k
be an integer at which ry = 7 < oo for all k > k. That s,

1 .
5 19k(sk) = ai(si)] 2 1V uy Pegaue | min{ [V g, Pegae [, I }- (68)

From assumptions SAs and SAs, and using (68), then for all k, there is a constant
B3 > 0 such that:

1Bl < Ba, [1Y{ Bell < B3, and ||V ByYill < Ba, (69)
where By = Hy + ?VgukPngLT,k. O
Lemma 18. Under standard assumptions SA1—-S As, there exists a constant Kg > 0 such that:
qx(0) — qi(sy) — Apg (cx + Vg si) > =Kl (70)

Proof. Since
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q(0) —qi(sy) = —Vail{sp— zsk "Hysf + 5 [||Pkg”kH2 1P (8 + V& 50 1%
1
= —(Valk + 7V, Pgu) " s} — 55k T(Hy + 7V gy, P Vg, sk
1
= — (Vb + rVgukPkguk) EskTBksk,

then we have:

ST Bislt — A (e + Vel sp)

qx(0) — qx(sy) A‘u,z(ck + chsk) = — (Vb + 7VgukPkguk)Tsz ~5
— 1Vl IsE | = 71V guy Pegu s 1| = NI Bill st 11> = | Apkll ek + Vg skl

— IVl + P11V 8 Peguue | + 1Bl Isg 111 [F = 11 Ape IV el 1l

AVANAY)

From inequality (35) and the fact that YkT Ve(xg) = 0, then we have:

qk(0) = qe(s§) — Apg (ce + Vegsi) = [(IValill + 71V u Pegu |+ I Bell s | + 1811 Ver Kl llex .

From standard assumptions SAz, SA3, SAs, the fact that ||s}|| < diax, and using (69),
then there exists Kg > 0, such that inequality (70) holds. [

Lemma 19. Under standard assumptions SA1—SAs, then for all k we have:

1 T s 1Y, V(s | .
Predy > SKs||Yy Vai(sg) | min{Ay, W} + |V gy Pegu | min{ ||V gu, Pe&u Il 0k }
—Ksllckll + owlllexl* = llex + Vi sl (71)

Proof. From (29), we have:

Predy = [qk(s) — qe(si)] + [q(0) — ai(sf) — Bpug (cx + Vegse)] + oxllleil|* — llex + Vegse|?]
= s — ai(s0)] + 5 ak(s]) — i)
+[7(0) — gic(sf) — Ap (ex + Viegse)] + oelllexl® = llex + Veg sl
Using inequalities (46), (68), and (70), we obtain the desired result. O

Lemma 20. Under standard assumptions SA1-SAs, if ||V (Vilx + 7V&u, Pegu )| +
IVgu, Pr&u, || > € > 0and ||ck|| < Ty where T is a positive constant given by

. £ V3 Kse . . 2¢
< Vo 1 1 72
r= mm{ 6BaKaoman 2K, 24K "M 35, 1 4I< mind 55— }} @2)

then there exists a constant K9 > 0 such that:
Predi > Kobi + or[||ckll* — llex + Vel s?). (73)

Proof. Since ||Y, (Vily + 7V gu Pe&u )|l + |V, P&, || = & then we cansay || Y (Vily +
PV &uPe8u, )|l = 5 and || Vgu, Prgu,|| > 5. We will consider two cases:

Firstly, if || Y} (Vxli + 7V gu, Pcgu, )| = §, then from inequalities (69), (35) and ||ci|| <
Tdx, we have:

I (Vb + PV G Prgue + Bisi) | > 1Y (Vi + PV 8w Pegu ) || — 1Y Brsi|
> (1Y (Vi + 7V 8w, Peguy ) || — BaKa |k
> % — B3Kq T
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< __ &g
However, T < Ty epw then

IV (Vb + PV g Pr8u + Aksp) || > (74)

W[ m

From inequality (35), assumption ||cx|| < Tdk, and using the value of T in (72), we have
Ispll < Kalleell < Katdp < Kizddy = 26y Thatis, A7 = 67 — ||s}[2 > 67 — 367 = 14},
This means that,

B> 35 (75)
From inequalities (71), (74), (75), and assumption ||c|| < 7%, we have the following:

1 ) _ 1
Pred;, > EKSHYkT(ngk + 7V gu, Prgu; + Brsi) || mm{HYkT(fok + 7V gu, Pr&uy + Besi) I, §5k}
—Kag][ck | "“Tk[HckH2 — llex + Ve sl

IV
|
=

min{ z=—, 1} — Kgtéx + o [lee]|® — llex + Vg sil|].
35ma

However, T < 241( £ min{ 57 35—, 1}, then we have

Kse 2¢e
Pred), > ﬁml { 1}f5k+¢fk[||ck|\2 — llex + Vg sel?].

Secondly, if ||V gu, Pcgu, || > 5 and using inequality (71), then

Pred;

v

IIVgukPkgukll min{||Vgu, Pegu,Il, 6} — Ksllck || + oxlllee]l* — llex + Vegsi ]

IS
—min{s——, 1} — Kg0; + o [[| ek [|* — llex + Ve si?]

2 25rnax
€

> ;me{ 1}5k+¢7k[||0k||2— llex + Vegsell],

v

where T < g min{ 5=, 1}. Let Ko = min{ I§4 min{ 2 35—, 1}, gmin{5*— 1} }, then the
result follows.

From the previous lemma, we notice that either ||Y (Vx/ + 7V gy, Pcgu, )| = § > 0or
| V&u, Pegu, |l > 5 > 0and ||ck|| < Tk, where T is given by (72) at any iteration k, the value
of the penalty parameter o} is not needed to increase. That is the penalty parameter oy is
increased only when ||cg|| > T6.

O

Lemma 21. Under standard assumptions SA1—S As, if 0y, is increased at kth iteration , then there
is a positive constant Kyg such that:

O min{||ck||,5k} S KlO' (76)
Proof. From Algorithm 1, we have:

%[Hck”Z_Hck‘i‘vcgskHZ] = [gk(se) — qe(sP)] + [a(si) — q(0)] + Apf (e + Vei'sp)
Bo
[

+22 lexl> = llex + Ve sl
= o lels) — axlse)] — 5 la(sh) — ge(s0)]

+[qk(sy) — qe(0) + Auf (cx + Vi si)] + %[Hckﬂz — llex + Vegsel?],
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where 0}, increased at any iteration and r;, = 7. From the previous equation, (42), (46), (68),
and (70), we have

Tk ; Ks . 1 Var(sp)l
> Kallegl min{dy, [lell} < —71|YkTqu(sg)||mm{Ak,W}

. 0
1V 81 P | min g, Pegi 56} + Ks el + £ 1|
0
< Kallae + 2l
Using assumption SA3z, we get the desired result. [

Lemma 22. Under standard assumptions SA1—-SAs and at the jth trial iterate of any iteration k.
If 0y is increased, then there is a constant Ky > 0, such that

oyillexll < K. (77)
Proof. From (50) and (76), we get the desired result. [

Lemma 23. Under standard assumptions SA1—-SAs, if 0y — oo, then

lim |[¢t. || =0, (78)
k1~)00 !

where {k;} is a subsequence indexes the iterates at which oy is increased.

Proof. From Lemma 22 we obtain the desired result. [

3.5. Main Results for Global Convergence

In this section, main global convergence results for FBACTR algorithm are introduced.

Theorem 2. Under standard assumptions SA1—SAs, the sequence of iterates which is generated
by FBACTR algorithm satisfies
lim |[ck|| = 0. (79)
k—o0

Proof. This theorem is proved by contradiction and so we suppose that limsup, _, ., ||ck|| >
¢ > 0. This means that there exists an infinite subsequence of indices {k;} indexing iterates
that satisfy Hck]. | > 5. However, there exists an infinite sequence of acceptable steps from
Lemma 8. Without loss of generality and to simplify, we suppose that all members of {k;}
are acceptable iterates. Now, two cases are considered:

Firstly, if {0y} is unbounded, then an infinite number of iterates {k;} exists and at
which the penalty parameter oy is increased. So, for k that is sufficiently large and from
Lemma 23, let {k;} and {k;} be the two sequences which are not have common elements.
Let k,, and k,, be two consecutive iterates at which oy is increased and ky, < k < kp,,
where k € {k;}. The penalty parameter o is the same for all iterates that lie between k,,
and kp,. Since all the iterates of {k;} are acceptable, then for all k € {k;},

q)k - ®k+l = Aredk > quredk.

Using inequality (45), we have:

D — Dy S a1Ky

- 7 leell mingllecl ).
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Summing over all acceptable iterates that lie between k,, and k,,, we have:

kpy —1

b - w1Kge . L €
Z k k+1 2 1M4 mln{K6,*},
K=k O 4 2
=Kpq

where Kg is as Kq in (52)but ¢ is replaced by §. Hence,

C(x, sty 5 T) = £(Xk, ik, ) .

(XKe
Z]> 184
kP]

. ~ &
Uk, 12 = llck, | min{Ks, £}

Since 0 — oo, then for k,, sufficiently large, we have:

| f(xkpl,ﬂkpl;f) - f(xkpz,ﬂkpz}f) | < x1Kye

O’kpl 8

min{Kg, %}

Therefore,
o1 K4 £

L, €
g, 12—l 1P > “155 min{K, 5.
This leads to a contradiction with Lemma 23 unless ¢ = 0. 3
Secondly, If {0y} is bounded, then for all an integer k and k > k, we have o} = 7.

Hence, for any k € {k;} where k > k and using (45), we have:

2

. e K . €
el min{d;, [lc;||} > =2 min{ 1}6;. (80)

Pred, > )
Tl = 4 26me

Then for any k € {k;}, we have:

Dy — @; = Aredp > aq Predy,
such that all the iterates of {k;} are acceptable. From above inequality, inequality (80) and
using Lemma 11 we have:

n1e0Ky . €

12 mm{Z(Smx'l}Ké > 0.

However, this is a contradiction of the fact that {®; } is bounded when { ¢} } is bounded.
Therefore, we have a contradiction in both cases. Hence the supposition is not correct and
this proves the theorem. O

Theorem 3. Under standard assumptions S A1—S As, the sequence of iterates generated by FBACTR
algorithm satisfies:
liminf [|Y; Vbl + [|V8u Pegucll ] = 0. (81)

Proof. First, we prove that:

tim inf[[| Y (V el + 7V 8w, Pegug) | + | V8w Pegia 1] = 0. (82)

The proof of (82) is by contradiction, so, for all k, assume that
| Y (Vle + PV 8w, Peguy) || + |V, Peguell > €. Let {k;} be an infinite subsequence at
which [[cy, || > 76, where T is defined in (72). However, ||ci|| — 0, then

k,‘*}OO !

Let K/ be any trial iterate belonging to {k;} and we consider two cases:
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Firstly, if {0} } is unbounded, then for the rejected trial step j — 1 of iteration k € {k;},
we have |[ci|| > Té,; = Ty T||s;-1]]. Since the trial step s;;-1 is rejected and using inequalities
(45) and (41), then

|Ared,j 1 — Pred,j 1|

1- <
( “1) - Pi’edk]'q
(21|51 || + 2K2035-1 s [l exl| + 23031 [|s15-111%]
- 01Ky min(T T, 1) || ek
2K 2KT T + 2K
< L ! S~ Jlsgiall-

o1 Kymtmin(tyT,1)  KymyTmin(my7,1)
However, {0} is unbounded, hence for all k > k kis sufficiently large, we have:

> 4K1
K4T1Tmin(T1T, 1)(1 — 061) ’

U'kjfl

Therefore, for all k > k, we have:

Kyrtmin(ty7,1)(1 — aq)

- >
sl = 4(koT T + K3)
From Algorithm 2, we have:

Kyt?rmin(mt,1)(1 — ay)
4(xoT T + K3)

o = Tllsp-1ll >

This gives a contradiction and this leads to ¢;; not being able to go to zero in this case.
Secondly, if the sequence {0} } is bounded, then there exists an integer k and & such
that for all k > k, 0y = 7. Consider a trial step j of iteration k > k and ||cx|| > 76, we

consider three cases:
(i) Ifj =1, thend;; > dmin, see Algorithm 2. This means that, §,; is bounded in this case;
(i) Ifj>1,and |cpu|| > Téu forl =1,...,j, then for all rejected trial steps | =1,...,j —1

of iteration k > k, we have

< |Aredy; — Predy | < 2K |sp ||

1-— .
(1—m) < Predy = Kemin(t, 1)][cg]]
Hence,
7 Kymin(t,1)(1 — aq)|ck]] - mKgmin(t,1)(1 —aq)T
P P > > é
Kk TlHSk/ 1” - 2K3 - 2K3 Kl
T1K4 mm(T,l)(l — Oél)T
= 2K; 5min-

That is, ,; is also bounded in this case.

(iii) Ifj > 1and ||cu|| > T, does not hold for all /, then there exists an integer ¢ such that
eyt || > 6 holds for I = o +1,...,jand ||cy|| < Ty holds foralll =1,...,0. As
in case (ii), we can write:

T1K4 l’nil’l(T, 1)(1 — 0(1)1'
2K;

> T1K4 min(T, 1)(1 - D(l)

5 > N [

ckll = Opot1. (83)
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From Algorithm 2, we have:
Opor1 = T1[|Ske]|- (84)

From Lemma 20, if ||cj|| < Ty and sge is rejected, then we have:

(1—a) < |Aredre — Predye] < 2K ||ske ||
- Predkg - Kg '

That is,
Kg(l - 0(1)
> — .
sl 2 =

This implies that ||sie|| is bounded and from (83) and (84) we have also ¢,; is bounded
in this case. That is in three cases, we have §;; is bounded, 'but this leading to a
contradiction. Hence, all the iterates satisfy ||cx|| < 7J); for K/ are sufficiently large.
From Lemma 20, then the value of the penalty parameter is not needed to increase.
Hence, {0y} is bounded. Using Lemma 20 and for K/ > k, we have:

Cij — chj-H = Aredkj > oclPredkj > IXlKg(Skj.

As k — oo, then:
lim ¢,; = 0. (85)
k—yo00

That is the trust-region radius is not bounded below and this leading to a contradiction.
Because at iteration K/ > k, if the previous step was accepted; i.e., at j = 1, then
01 > Omin- That is §;; is bounded in this case.
If j > 1, then there exists at least one rejected trial step. From Lemmas 5 and 20, then for
the rejected trial step s;;-1 we have:

0Ks |51 |

1—uap) <
(1—-ay) Kod,

From Algorithm 2, we have:

1 Ko(1—a1)
6 = Tllsgi [l > T oK
Hence 4;; is bounded and this contradicts (85). That is, the supposition is wrong
and hence,

ligi;}f [ HYkT(vxék + 7V &u Pegu ) | + IV Quy Py || ] =0.

That is, (81) holds and the proof is completed.
From the above two theorems, we conclude that, given any ¢ > 0, the algorithm
terminates because || Y] V. lx| + || Vgu, Pegu, || + k| < € for some finite k. O

4. Numerical Results and Comparisons
In this section, we introduce an extensive variety of possible numeric NBLP problems
to illustrate the validity of the proposed Algorithm FBACTR Algorithm 5 to solve the NBLP

problem. The proposed algorithm FBACTR experimented on 16 benchmark examples
given in [4,7,38-40].
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Ten independent runs with a distinct initial value starting points for every test example
are performed to observe the matchmaking of the result. Statistical results of all examples
are briefed in Table 1 which displays that the results found by the FBACTR Algorithm 5 are
approximate or equal to those by the compered algorithms in method [11] and the literature.

Table 1. Comparisons of the results of FBACTR Algorithm 5 with the method [11] and methods in

the reference.

" (v, wx) " "
Problem Name M(”*’ W) ;* FBACTR ;* (0, 204) ;*
ethod [11] ! . U Ref. 1
Method [11] Algorithm 5 FBACTR Algorithm 5 Ref.
TP1 (0.8503, 0.0227, —2.6764 (0.8465, 0.7695, 0) —2.0772 (0.8438,0.7657,0)  —2.0769
0.03589) 0.0332 —0.5919 —0.5863
TP2 (0.609, 0.391, 0, 0.6086 (0.6111, 0.3890, 0, 0.64013 (0.609, 0.391, 0, 0.6426
0,1.828) 1.6713 0,1.8339) 1.6816 0,1.828) 1.6708
TP3 (0.97,3.14, —8.92 (0.97,3.14 —8.92 (0.97,3.14, —8.92
2.6,1.8) —6.05 2.6,1.8) —6.05 2.6,1.8) —6.05
TP4 (0.5,0.5,0.5,0.5) -1 (0.5,0.5,0.5,0.5) -1 (0.5,0.5,0.5,0.5) -1
0 0 0
TP5 (9.839, 10.059) 96.809 (9.9953, 9.9955) 99.907 (10.03, 9.969) 100.58
0.0019 1.8628 x 1074 0.001
TP6 (1.6879, 0.8805, 0) —1.3519 (1.8889, 8.8889 x 101, —1.4074 NA 3.57
7.4991 6.8157 x 107°) 7.6172 24
TP7 (1,0) 17 (1,0) 17 (1,0) 17
1 1 1
TP8 (0.75, 0.75, —2.25 (0.7513, 0.7513, —2.2480 (V3/2,V3/2,  —2.1962
0.75, 0.75) 0 0.752, 0.752) 0 V3/2,4/3/2) 0
TP9 (11.138, 5) 2209.8 (11.25, 5) 2250 (11.25, 5) 2250
22252 197.753 197.753
TP10 (1,0,6.6387 x 107%)  6.6387 x 107° (1,0,1) 1 (1,0,1) 1
—6.6387 x 1076 -1 -1
TP11 (24.972, 29.653, 49101 (25, 30, 5, 10) 5 (25, 30, 5, 10) 5
5.0238, 9.7565) 0.01332 0 0
TP12 (3,5) 9 (3,5) 9 (3,5) 9
0 0 0
TP13 (0, 1.7405, —15.548 (0,2,1.875, 0.9063) —12.68 (0,2,1.875,0.9063) —12.68
1.8497, 0.9692) —1.4247 —1.016 —1.016
TP14 (10.016, 0.81967) 81.328 (10, 0.011) 8.1978 x 10! (10.04, 0.1429) 82.44
—0.3359 0 0.271
TP15 (0,0.9,0,0.6,0.4) —29.2 (0,0.9,0,0.6,0.4) —29.2 0,09,0,0.6,04)  —29.2
32 32 32
TP16 (0,0.9,0,0.6, —29.2 (0,0.9,0,0.6, —29.2 (0,0.9,0, 0.6, -29.2
0.4,0,0,0) 0.3148 0.4,0,0,0) 0.3148 0.4,0,0,0) 0.3148

For comparison, the corresponding results of the mean number of iterations (iter),
the mean number of function evaluations (nfunc), and the mean value of CPU time (CPUs)
in seconds obtained by Methods in [11,41,42] respectively are included and summarized in
Table 2. These results show that results of the FBACTR Algorithm 5 are approximate or
equal to those of the compared algorithms in the literature.

It is evident from the results that our approach is able to handle NBLP problems even
if the upper and the lower levels are convex or not and the computed results converge
to the optimal solution which is similar or approximate to the optimal reported in the
literature. Finally, it is obvious from the comparison between the solutions obtained using
the FBACTR Algorithm 5 with those in the literature, that the FBACTR Algorithm 5 is
capable of finding the optimal solution to some problems by a small number of iterations,
a small number of function evaluations, and less time.

We offered the numerical results of FBACTR Algorithm 5 using MATLAB (R2013a)
(8.2.0.701)64-bit(win64) and a starting point xq € int(F). The following parameter setting
is used: 6,uiy = 1074, 69 = max(||sq” ||, Omin), Omax = 10%00, a1 = 1073, ap = 0.8, 4 = 0.5,
=26 = 10710, and g, = 1012,
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Table 2. Comparisons of the results of FBACTR Algorithm 5 with method [11], method [41] and
method [42] with respect to the number of iterations, the number of function evaluations, and time/s.

nfunc CPUs

Problem Iter nfunc CPUs Iter FBACTR CPUs CPUs
Name Method [11] ~ Method [11]  Method [11] Algorithm :fg‘;ﬂfn :fgﬁg;l; Method [41]  Method [42]
TP1 11 12 143 10 13 162 1734 -
P2 10 14 1987 9 12 187 2375 -
TP3 6 8 29 7 8 252 3315 11.854
TP4 10 14 168 12 13 192 1576 -
TP5 6 9 1635 6 7 1523 1825 5.888
TP6 6 11 11 8 10 3.95 4689 25332
TP7 12 13 19 11 12 1652 1.769 -
TPS 10 11 1.002 11 12 0953 1124 -
TP9 10 13 195 8 10 187 : -
TP10 5 7 2.987 5 6 331 - -
P11 9 12 3742 10 13 3.632 - 37.308
TP12 8 9 123 7 9 133 : -
TP13 5 7 2.1 5 8 1.998 - 14.42
TP14 6 8 212 5 6 197 - 4218
P15 5 6 20512 6 7 20.125 - 45.39
P16 5 7 40319 4 5 35.21 - 107.55

5. Conclusions

In this paper, the FBACTR Algorithm 5 is presented to solve the NBLP problem (1).
A KKT condition is used with the Fischer-Burmeister function and an active-set strategy to
convert the NBLP problem to an equivalent smooth equality constrained optimization prob-
lem. To ensure global convergence for the FBACTR algorithm, a trust-region globalization
strategy is used.

A global convergence theory for the FBACTR algorithm is introduced and applica-
tions to mathematical programs with equilibrium constraints are provided to clarify the
effectiveness of the proposed approach. Numerical results reflect the good behavior of the
FBACTR algorithm and the computed results converge to the optimal solutions. It is clear
from the comparison between the solutions obtained using the FBACTR algorithm with
algorithms [11,41,42] that the FBACTR can find the optimal solution to some problems with
a small number of iterations, small number of function evaluations, and in less time.

Test Problem 1 [41]:

min, fy :w%+w%+vz—4v
s.t. 0<v <2,
min, f; = w% + O.Sw% + wiwy+
(1 — 3?))?/{11 + (1 + U)ZUz,
s.t. 2w +wy —2v < 1,
w1 Z 0, wy Z 0.

Test Problem 2 [41]:

ming fu = ZU% + w% — wiws — 4wy — 7v1 + 40;

S.t. v +0p <1,
v12>0, 1,>0

ming,  f; = w? + 0.5w2 + 0.5w3 + wywy+
(1—3vy)w;y + (14 v2)wo,

s.t. 2w 4wy — w3 +v1 —20, +2 <0,
w120; wZZO ZU3ZO.
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Test Problem 3 [41]:

min, fu=0.1(vF +03) — 3wy — 4wy + 0.5(w? + w3)

s.t.
ming f; = O.S(w% + 5w§) — 2wwy — V1W] — VW9,
st —0333w; +w, —2 <0,

wy — 0.3383w, —2 <0,
w1 Z 0/ w» Z 0/

Test Problem 4 [41]:

min, fu =03 — 201 + 03 — 20; + W} 4 w3
s.t. v1 >0, vp>0
ming  f; = (w1 — v1)? + (w2 — 02)?,
s.t. 0.5 <w; <15
0.5 S wy S 1.5,

Test Problem 5 [41]:
min, fu=0>+ (w—10)2
s.t. —v+w <0,
0<v<15

ming  f; = (v+ 2w — 30)?,
s.t. v+ w < 20,
0<w <20,

Test Problem 6 [41]:

min, fu=(v1 —1)% +2w? — 20y
s.t. v >0,
ming,  f; = 2wy —4)? + 2wy — 1)? + vywy,
s.t. 4v1 + 5w + 4w, < 12,
—4v1 — 5wy + 4wy < —4,
401 — 4ZU1 + 5ZU2 <4,
—4v1 4 4wq + 5wy < 4,
w20, wy>0,

Test Problem 7 [41]:
min, fu=(v—=5)?+ 2w +1)?
s.t. v >0,
min,  f; = 2w — 1)2 — 1.50w,
s.t. —3v+w < =3,
v—0.5w <4,
v+w<7,
w > 0.
Test Problem 8 [41]:
miny, fu :U%—301 —|—v%—302+w%+w%

st v1>0, v>0,
ming, fl B (ZU1 — 01)2 + (ZU2 - 02)21
05 <w, <1.5,
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Test Problem 9 [3]:

Test Problem 10 [3]:

Test Problem 11 [42]:

ming
s.t.

ming,
s.t.

Test Problem 12 [3]:

min, fu = 160% 4 9w?
s.t. —4v4+w <0,
v >0,

min, f; = (v+w—20)4,
s.t. 4v4+w—50<0,
w > 0.

min, fu = vw; +w;
st. 0<0v <1,
ming, f[ = —w>
s.t.  vw; <10,
w% + %Y%) S 1,
wo 2 0.

fu =2v1 + 20y — 3wy — 3wy — 60

U1 + vy + w1 — 2wy < 40,

0 < v <50,

0 <oy <50,

fi = (w1 — 01 +20)% + (wy — 02 +20)?,
(%5 —2w1 > 10,

(%] —ZH)Q 2 10,

—10 < wy <20,

—-10 < wy < 20.

miny, fu=(v—=3)?+ (w—2)?

s.t.

s.t.

Test Problem 13 [42]:

ming
s.t.

—204+w—-1<0,
v—2w+2<0,
v+2w—14 <0,
0<v<8,

ming, f; = (w—5)2
w > 0.

fu= —v% - 30% — 4w, —|—w%
v? 420, < 4,
(%1 Z 0/ (%) 2 0/

ming, f; = 207 4+ w? — 5wy,

S.t.

Test Problem 14 [42]:

v%—Zvl +20%—2w1+w2 > =3,
vy + 3wy — 4wy > 4,
w20, wy=>0.

min, fu=(v—1)2+ (w—1)?

s.t.

v>0,

ming,  f; = 0.5w? + 500w — 500w

s.t.

y=>0.
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Test Problem 15 [42]:
miny fu = —8v1 — 4vy + 4wy — 40w, — 4ws
s.t. v1 >0, vp>0

ming f; = v1 + 20y + wy + wp + 2ws,
s.t. wy) +wsz—wp <1,
2v1 — wq + 2wy — 0.5w3 < 1,
20y 4+ 2w — wy — 0.5w3 < 1,
w; >0, i=1,2,3.

Test Problem 16 [42]:

miny fu = —8v1 — 4vp + 4wy — 40w, — 4ws

s.t. v1 >0, vp >0
. _ 1+v1+vp+2wi —wor+ws
ming fl —  6+2v1+twytwy—3ws

s.t. —w1+wy +ws+wy =1,
201 —wq + 2wy — 0.5ws + w5 =1,
20y + 2w — wy — 0.5w3 +wg =1,
w; >0, i=1,...,6.

Author Contributions: B.E.: Conceptualization and software G.A.: formal analysis and writing. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Acknowledgments: The author would like to thank the anonymous referees for their valuable
comments and suggestions which have helped to greatly improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

10.

11.

12.

13.

14.

Bialas, W.; Karwan, M. On two-level optimization. IEEE Trans. Autom. Control. 1982, 27, 211-214. [CrossRef]

Dempe, S. Foundation of Bilevel Programming; Kluwer Academic: London, UK, 2002.

Gumus, H.; Flouda, A. Global Optimization of Nonlinear Bilevel Programming Problems. J]. Glob. Optim. 2001, 20, 1-31.
[CrossRef]

Muu, D.; Quy, N. A Global Optimization Method for Solving Convex Quadratic Bilevel Programming Problems. J. Glob. Optim.
2003, 26, 199-219. [CrossRef]

Abo-Elnaga, Y.; El-Shorbagy, M. Multi-Sine Cosine Algorithm for Solving Nonlinear Bilevel Programming Problems. Int. ].
Comput. Intell. Syst. 2020, 13, 421-432. [CrossRef]

Abo-Elnaga, Y.; Nasr, S. Modified Evolutionary Algorithm and Chaotic Search for Bilevel Programming Problems. Symmetry
2020, 12, 727. [CrossRef]

Falk, J.; Liu, J. On bilevel programming, Part I: General nonlinear cases. Math. Program. 1995, 70, 47-72. [CrossRef]

Ma, L.; Wang, G. A Solving Algorithm for Nonlinear Bilevel Programing Problems Based on Human Evolutionary Model.
Algorithms 2020, 13, 260. [CrossRef]

Savard, G.; Gauvin, J. The steepest descent direction for the nonlinear bilevel programming problem. Oper. Res. Lett. 1994, 15,
265-272. [CrossRef]

Edmunds, T.; Bard, ]. Algorithms for nonlinear bilevel mathematical programs. IEEE Trans. Syst. Man Cybern. 1991, 21, 83-89.
[CrossRef]

El-Sobky, B.; Ashry, G. An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem. AIMS Math.
2022, 7, 5534-5562. [CrossRef]

Chen, J. The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem.
J. Glob. Optim. 2006, 36, 565-580. [CrossRef]

Chen, J. On some NCP-functions based on the generalized Fischer-Burmeister function. Asia-Pac. ]. Oper. Res. 2007, 24, 401-420.
[CrossRef]

Chen, J.; Pan, S. A family of NCP-functions and a descent method for the nonlinear complementarity problem. Comput. Optim.
Appl. 2008, 40, 389-404. [CrossRef]


http://doi.org/10.1109/TAC.1982.1102880
http://dx.doi.org/10.1023/A:1011268113791
http://dx.doi.org/10.1023/A:1023047900333
http://dx.doi.org/10.2991/ijcis.d.200411.001
http://dx.doi.org/10.3390/sym12050767
http://dx.doi.org/10.1007/BF01585928
http://dx.doi.org/10.3390/a13100260
http://dx.doi.org/10.1016/0167-6377(94)90086-8
http://dx.doi.org/10.1109/21.101139
http://dx.doi.org/10.3934/math.2022307
http://dx.doi.org/10.1007/s10898-006-9027-y
http://dx.doi.org/10.1142/S0217595907001292
http://dx.doi.org/10.1007/s10589-007-9086-0

Fractal Fract. 2022, 6, 412 29 of 29

15.

16.

17.

18.
19.

20.

21.

22.
23.

24.
25.

26.

27.

28.

29.
30.

31.

32.
33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

Facchinei, F; Jiang, H.; Qi, L. A smoothing method for mathematical programming with equilibrium constraints. Math. Program.
1999, 85, 107-134. [CrossRef]

Byrd, R.; Hribar, M.; Nocedal, J. An interior point algorithm for largescale nonlinear programming. SIAM J. Optim. 1999, 9,
877-900. [CrossRef]

Byrd, R.; Gilbert, J.; Nocedal, J. A trust region method based on interior point techniques for nonlinear programming. Math.
Program. 2000, 89, 149-185. [CrossRef]

Bazaraa, M.; Sherali, H.; Shetty, C. Nonlinear Programming Theory and Algorithms; John Wiley and Sons: Hoboken, NJ, USA, 2006.
Curtis, EE.; Schenk, O.; Wachter, A. An interior-point algorithm for large-scale nonlinear optimization with inexact step
computations. Siam ]. Sci. Comput. 2010, 32, 3447-3475. [CrossRef]

Esmaeili, H.; Kimiaei, M. An efficient implementation of a trust-region method for box constrained optimization. |. Appl. Math.
Comput. 2015, 48, 495-517. [CrossRef]

El-Sobky, B. A Multiplier active-set trust-region algorithm for solving constrained optimization problem. Appl. Math. Comput.
2012, 219, 127-157. [CrossRef]

El-Sobky, B. An active-set interior-point trust-region algorithm. Pac. J. Optim. 2018, 14, 125-159. [CrossRef]

El-Sobky, B.; Abotahoun, A. An active-set algorithm and a trust-region approach in constrained minimax problem. Comput. Appl.
Math. 2018, 37, 2605-2631. [CrossRef]

El-Sobky, B.; Abotahoun, A. A trust-region Algorithm for Solving Mini-Max Problem. . Comput. Math. 2018, 36, 881-902.
El-Sobky, B.; Abouel-Naga, Y. A penalty method with trust-region mechanism for nonlinear bilevel optimization problem.
J. Comput. Appl. Math. 2018, 340, 360-374. [CrossRef]

El-Sobky, B.; Abo-Elnaga, Y.; Mousa, A.; El-Shorbagy, A. trust-region based penalty barrier algorithm for constrained nonlinear
programming problems: An application of design of minimum cost canal sections. Mathematics 2021, 9, 1551. [CrossRef]

Kouri, D.; Heinkenschloss, M.; Ridzal, D.; van Waanders, B. A trust-region Algorithm with Adaptive Stochastic Collocation for
PDE Optimization under Uncertainty. SIAM J. Sci. Comput. 2020, 35, 1847-1879. [CrossRef]

Li, N.; Xue, D.; Sun, W.; Wang, J. A stochastic trust-region method for unconstrained optimization problems. Math. Probl. Eng.
2019, 2019, 8095054. [CrossRef]

Niu, L.; Yuan, Y. A new trust region algorithm for nonlinear constrained optimization. J. Comput. Math. 2020, 28, 72-86.

Wang, X; Yuan, Y. A trust region method based on a new affine scaling technique for simple bounded optimization. Optim.
Methods Softw. 2013, 28, 871-888. [CrossRef]

Wang, X.; Yuan, Y. An augmented Lagrangian trust region method for equality constrained optimization, Optim. Methods Softw.
2015, 30, 559-582. [CrossRef]

Zeng, M.; Ni, Q. A new trust region method for nonlinear equations involving fractional mode. Pac. J. Optim. 2019, 15, 317-329.
Byrd, R. Robust trust-region methods for nonlinearly constrained optimization. In Proceedings of the Second SIAM Conference
on Optimization, Houston, TX, USA, 18-20 May 1987 .

Omojokun, E. Trust-Region Strategies for Optimization with Nonlinear Equality and Inequality Constraints. Ph.D. Thesis,
Department of Computer Science, University of Colorado, Boulder, CO, USA, 1989.

El-Sobky, B.; Abouel-Naga, Y. Multi-objective optimal load flow problem with interior-point trust-region strategy. Electr. Power
Syst. Res. 2017, 148, 127-135. [CrossRef]

Dennis, J.; El-Alem, M.; Williamson, K. A trust-region approach to nonlinear systems of equalities and inequalities. SIAM ].
Optim. 1999, 9, 291-315. [CrossRef]

Dennis, J.; Heinkenschloss, M.; Vicente, L. trust-region interior-point SQP algorithms for a class of nonlinear programming
problems. SIAM ]. Control. Optim. 1998, 36, 1750-1794. [CrossRef]

Bard, J.F. Convex two-level optimization. Math. Program. 1988, 40, 15-27. [CrossRef]

Oduguwa, V.; Roy, R. Bi-level optimization using genetic algorithm. In Proceedings of the IEEE international Conference
Artificial Intelligence Systems, Divhomorskoe, Russia, 5-10 September 2002; pp. 123-128.

Shimizu, K.; Aiyoshi, E. A new computational method for Stackelberg and min-max problems by use of a penalty method. IEEE
Trans. Autom. Control 1981, 26, 460—-466. [CrossRef]

Li, H; Jiao, Y.; Zhang, L. Orthogonal genetic algorithm for solving quadratic bilevel programming problems. J. Syst. Eng. Electron.
2010, 21, 763-770. [CrossRef]

Wang, Y.; Jiao, Y.; Li, H. An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-
Handling scheme. IEEE Trans. Syst. Man Cybern. Part C 2005, 35, 221-232. [CrossRef]


http://dx.doi.org/10.1007/s10107990015a
http://dx.doi.org/10.1137/S1052623497325107
http://dx.doi.org/10.1007/PL00011391
http://dx.doi.org/10.1137/090747634
http://dx.doi.org/10.1007/s12190-014-0815-0
http://dx.doi.org/10.1016/j.amc.2012.06.072
http://dx.doi.org/10.1016/j.joems.2016.04.003
http://dx.doi.org/10.1007/s40314-017-0468-3
http://dx.doi.org/10.1016/j.cam.2018.03.004
http://dx.doi.org/10.3390/math9131551
http://dx.doi.org/10.1137/120892362
http://dx.doi.org/10.1155/2019/8095054
http://dx.doi.org/10.1080/10556788.2011.622378
http://dx.doi.org/10.1080/10556788.2014.940947
http://dx.doi.org/10.1016/j.epsr.2017.03.014
http://dx.doi.org/10.1137/S1052623494276208
http://dx.doi.org/10.1137/S036012995279031
http://dx.doi.org/10.1007/BF01580720
http://dx.doi.org/10.1109/TAC.1981.1102607
http://dx.doi.org/10.3969/j.issn.1004-4132.2010.05.008
http://dx.doi.org/10.1109/TSMCC.2004.841908

	Introduction
	Active-Set with Trust-Region Technique
	A Trust-Region Technique
	Fischer–Burmeister Active-Set Trust-Region Algorithm

	Global Convergence Analysis
	A Standard Assumptions
	Main Lemmas
	Convergence When the Positive Parameter rk
	Global Convergence When rk Is Bounded
	 Main Results for Global Convergence

	Numerical Results and Comparisons
	Conclusions
	References

