
����������
�������

Citation: Elsobky, B.; Ashry, G. An

Active-Set Fischer–Burmeister

Trust-Region Algorithm to Solve a

Nonlinear Bilevel Optimization

Problem. Fractal Fract. 2022, 6, 412.

https://doi.org/10.3390/

fractalfract6080412

Academic Editor: Yongguang Yu

Received: 18 May 2022

Accepted: 18 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

An Active-Set Fischer–Burmeister Trust-Region Algorithm to
Solve a Nonlinear Bilevel Optimization Problem
Bothina Elsobky * and Gehan Ashry

Department of Mathematics, Faculty of Science, Alexandria University, Alexandria 5424041, Egypt;
gehan.ashry@alexu.edu.eg
* Correspondence: bothina_elsobky@alexu.edu.eg

Abstract: In this paper, the Fischer–Burmeister active-set trust-region (FBACTR) algorithm is intro-
duced to solve the nonlinear bilevel programming problems. In FBACTR algorithm, a Karush–Kuhn–
Tucker (KKT) condition is used with the Fischer–Burmeister function to transform a nonlinear bilevel
programming (NBLP) problem into an equivalent smooth single objective nonlinear programming
problem. To ensure global convergence for the FBACTR algorithm, an active-set strategy is used
with a trust-region globalization strategy. The theory of global convergence for the FBACTR algo-
rithm is presented. To clarify the effectiveness of the proposed FBACTR algorithm, applications of
mathematical programs with equilibrium constraints are tested.

Keywords: a bilevel optimization problem; Fischer–Burmeister function; a Karush–Kuhn–Tucker
conditions; active-set strategy; trust-region strategy; global convergence

MSC: 65Dxx; 65Kxx; 65Zxx

1. Introduction

The mathematical formulation for NBLP problem which we will consider it is

minv fu(v, w)
s.t. gu(v, w) ≤ 0,

minw fl(v, w),
s.t. gl(v, w) ≤ 0,

(1)

where v ∈ <n1 and w ∈ <n2 . In our approach, the functions fu : <n1+n2 → <, fl :
<n1+n2 → <, gu : <n1+n2 → <m1 , and gl : <n1+n2 → <m2 must have a twice continuously
differentiable function at least.

The NBLP problem (1) is utilized so extensively in transaction network, resource
allocation, finance budget, price control, etc., see [1–4]. The NBLP problem (1) has two
levels of optimization problems, upper and lower levels. A decision maker with the upper
level objective function fu(v, w) takes the lead, and so he chooses the decision vector v.
According to this, the decision maker with lower level objective function fl(v, w), chooses
the decision vector w to optimize her objective, parameterized in v.

To obtain the solution of problem (1), number of different approaches have been
offered, see (1), see [5–9]. In our method, we utilize one of these approaches to transforme
NBLP problem (1) to a single level one by replacing the lower level optimization problem
with its KKT conditions, see [10,11].

Fractal Fract. 2022, 6, 412. https://doi.org/10.3390/fractalfract6080412 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6080412
https://doi.org/10.3390/fractalfract6080412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract6080412
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6080412?type=check_update&version=2

Fractal Fract. 2022, 6, 412 2 of 29

Utilizing KKT optimality conditions for the lower level problem, the NBLP problem
(1) is reduced to the following single-objective optimization problem:

minv,w fu(v, w)
s.t. gu(v, w) ≤ 0,

∇w fl(v, w) +∇wgl(v, w)λ = 0,
gl(v, w) ≤ 0,
λjglj

(v, w) = 0, j = 1, . . . , m2,
λj ≥ 0, j = 1, . . . , m2,

(2)

where λ ∈ <m2 a multiplier vector which is associated with inequality constraint gl(v, w).
Problem (2) is non-differentiable and non-convex. Furthermore, the regularity assump-

tion prerequisites to successfully handle smooth optimization problems are never satisfied.
Following the smoothing method which is proposed by [2], we can introduce the FBACTR
algorithm to solve the problem (2). Before introducing FBACTR algorithm, we need the
following definition.

Definition 1. A Fischer–Burmeister function is the function Ψ(e, d) : <2 → < and it is defined by
Ψ(e, d) = e + d−

√
e2 + d2. A perturbed Fischer–Burmeister function is the function ψ(e, d, ε̂) :

<3 → < and it is defined by ψ(e, d, ε̂) = e + d−
√

e2 + d2 + ε̂.

The Fischer–Burmeister function has the property that Ψ(e, d) = 0 if and only if e ≥ 0,
d ≥ 0, and ed = 0. It is non-differentiable at e = d = 0. Its perturbed variant satisfies
ψ(e, d, ε̂) = 0 if and only if e > 0, d > 0, and ed = ε̂

2 for ε̂ > 0. This function is smooth with
respect to e,d, for ε̂ > 0, and for more details see [12–15].

The next perturbed Fischer–Burmeister function is used to satisfy the asymptotic
stability conditions, and allow the FBACTR algorithm to solve problem (2).

ψ(e, d, ε̂) =
√

e2 + d2 + ε̂− e− d. (3)

Using the perturbed Fischer–Burmeister function (3), problem (2) can be approxi-
mated by:

minv,w fu(v, w)
s.t. gu(v, w) ≤ 0,

∇w fl(v, w) +∇wgl(v, w)λ = 0,√
g2

lj
+ λ2

j + ε̂− λj + glj
= 0, j = 1, . . . , m2.

(4)

The following notations are introduced to simplify our discussion. These notations
are n = n1 + n2 + m2, x = (v, w, λ)T ∈ <n and c(x) = (∇w fl(v, w) + ∇wgl(v, w)λ,√

g2
lj
+ λ2

j + ε̂− λj + glj
)T , j = 1, . . . , m2. Hence problem (4) can be reduced as follows:

minimize fu(x)
subject to gu(x) ≤ 0,

c(x) = 0,
(5)

where fu : <n → <, gu : <n → <m1 , and c : <n → <n2+m2 .
A set of indices of binding or violated inequality constraints at x is defined by I(x) =

{i : gui (x) ≥ 0}. A regular point is the point x∗ at which the vectors of the set {∇ci(x∗), i =
1, 2, . . . , n2 + m2}

⋃ {∇gui (x∗), i ∈ I(x∗)} are linearly independent.

Fractal Fract. 2022, 6, 412 3 of 29

A regular point x∗ is KKT point of problem (5) if there exist Lagrange multiplier
vectors µ∗ ∈ <n2+m2 and λ∗ ∈ <m1 such that the following KKT conditions hold:

∇ fu(x∗) +∇c(x∗)µ∗ +∇gu(x∗)λ∗ = 0, (6)

c(x∗) = 0, (7)

gu(x∗) ≤ 0, (8)

(λ∗)igui (x∗) = 0, i = 1, . . . , m1, (9)

(λ∗)i ≥ 0, i = 1, . . . , m1. (10)

To solve the nonlinear single-objective constrained optimization problem (5), various
approaches have been proposed; for more details, see [16–22].

An active-set strategy is utilized to reduce problem (5) to equality constrained op-
timization problem. The idea beyond the active-set method is to identify at every it-
eration, the active inequality constraints and treat them as equalities and this allows to
utilize the improved methods which are used to solve the equality constrained problems,
see [21,23,24]. Most of the methods that are used to solve the equality constrained problems,
may not converge if the starting point is far away from the stationary point, so it is called a
local method.

To ensure a convergence to the solution from any starting point, a trust-region strategy
which is strongly global convergence can be induced. It is very important strategy to solve
a smooth optimization. It is more robust when it deals with rounding errors. It does not
require the objective function of the model be convex. For more details see [11,21–32].

To treat the difficult of having infeasible trust-region subproblem in FBACTR algo-
rithm, a reduced Hessian technique which is suggested by [33,34] and used by [22,24,35]
is utilized.

Under five assumptions, a theory of global convergence for FBACTR algorithm is
proved. Moreover, numerical experiments display that FBACTR algorithm performers
effectively and efficiently in pursuance.

We shall use the following notation and terminology. We use ‖.‖ to denote the
Euclidean norm ‖.‖2. Subscript k refers to iteration indices. For example, fuk ≡ fu(xk),
guk ≡ gu(xk), ck ≡ c(xk), Yk ≡ Y(xk), Pk ≡ P(xk),∇x`k ≡ ∇x`(xk, µk) , and so on to denote
the function value at a particular point.

The rest of the paper is organized as follows. Section 2 is devoted to the description
of an active-set trust-region algorithm to solve problem (5) and summarized to FBACTR
algorithm to solve NBLP problem (1) is introduced. In Section 3 the analysis of the theory
of global convergence of the FBACTR algorithm is presented. Section 4 contains an imple-
mentation of the FBACTR algorithm and the results of test problems. Finally, some further
remarks are given in Section 5.

2. Active-Set with Trust-Region Technique

A detailed description for active-set with the trust-region strategy to solve problem (5)
and summarized to FBACTR algorithm to solve problem (1) are introduced in this section.

Based on the active-set method which is suggested by [36] and used with [21–24], we
define a 0–1 diagonal matrix P(x) ∈ <m1×m1 , whose diagonal entries are:

pi(x) =
{

1 if gui (x) ≥ 0,
0 if gui (x) < 0.

(11)

Using the previous definition of the matrix P(x), a smooth and simple function is
utilized to replace problem (5) with the following simple problem

minimize fu(x) + r
2‖P(x)gu(x)‖2

subject to c(x) = 0,
(12)

Fractal Fract. 2022, 6, 412 4 of 29

where r > 0 is a parameter, see [21–23]. The Lagrangian function associated with problem (12)
is given by:

L(x, µ; r) = `(x, µ) +
r
2
‖P(x)gu(x)‖2, (13)

where
`(x, µ) = fu(x) + µTc(x), (14)

and µ ∈ <n2+m2 represents a Lagrange multiplier vector which is associated with the
constraint c(x). A KKT point (x∗, µ∗) for problem (12) is the point at which the following
conditions are satisfied

∇`(x∗, µ∗) + r∇gu(x∗)P(x∗)gu(x∗) = 0, (15)

h(x∗) = 0, (16)

where ∇`(x∗, µ∗) = ∇ fu(x∗) +∇c(x∗)µ∗.
If the KKT point (x∗, µ∗) satisfies conditions (6)–(10), we notice that it is also satisfies

conditions (15) and (16), but the converse is not necessarily true. So, we design FBACTR
algorithm in a way that, if (x∗, µ∗) satisfies conditions (15) and (16), then it is also satisfies
KKT conditions (6)–(10).

Various approaches which were proposed to solve the equality constrained are local
methods. By local method, we mean a method such that if the starting point is sufficiently
close to a solution, then under some reasonable assumptions the method is guaranteed by
theory to converge to the solution. There is no guarantee that the local method converges
starting from the remote. Globalizing a local method means modifying the method in
such a way that is guaranteed to converge from any starting point without sacrificing its
fast local rate of convergence. To ensure convergence from the remote, the trust-region
technique is utilized.

2.1. A Trust-Region Technique

To solve problem (12) and to convergence from remote with any starting point,
the trust-region strategy is used. A naive trust-region quadratic subproblem associated
with problem (12) is:

minimize qk(s) = `k +∇x`T
k s + 1

2 sT Hks + r
2‖Pk(guk +∇guk)

Ts)‖2

subject to ck +∇cT
k s = 0,

‖s‖ ≤ δk,
(17)

where 0 < δk represents the trust-region radius and Hk is the Hessian matrix of the
Lagrangian function (14) or an approximation to it.

Subproblem (17) may be infeasible because there may be no intersecting points be-
tween hyperplane of the linearized constraints c(x) +∇c(x)Ts = 0 and the constraint
‖s‖ ≤ δk. Even if they intersect, there is no guarantee that this will keep true if δk is reduced,
see [37]. To overcome this problem, a reduced Hessian technique which was suggested
by [33,34] and used by [22,23,35] is used. In this technique, to obtain the trial step sk, it is
decomposed into two orthogonal components: the tangential component st

k to improve
optimality and the normal component sn

k to improve feasibility. To evaluate each of sn
k and

st
k, two unconstrained trust-region subproblems are solved.

• To obtain the normal component sn

To evaluate the normal component sn
k , the following trust-region subproblem must

be solved:
minimize 1

2‖ck +∇cT
k sn‖2

subject to ‖sn‖ ≤ ζδk,
(18)

for some ζ ∈ (0, 1).

Fractal Fract. 2022, 6, 412 5 of 29

Any method can be used to solve subproblem (18), as long as a fraction of the normal
predicted decrease obtained by the Cauchy step sncp

k is less than or equal to the normal
predicted decrease obtained by sn

k . That is, the following condition must be held:

‖ck‖2 − ‖ck +∇cT
k sn

k ‖
2 ≥ ϑ1{‖ck‖2 − ‖ck +∇cT

k sncp
k ‖

2}, (19)

for some ϑ1 ∈ (0, 1]. The normal Cauchy step sncp
k is given by:

sncp
k = −τ

ncp
k ∇ckck, (20)

where the parameter τ
ncp
k is given by:

τ
ncp
k =

‖∇ckck‖2

‖(∇ck)T∇ckck‖2 if ‖∇ckck‖3

‖∇cT
k∇ckck)‖2 ≤ δk

and ‖∇cT
k∇ckck)‖ > 0,

δk
‖∇ckck‖

otherwise.

(21)

A dogleg method is used to solve subproblem (18). It is very cheap if the Hessian
is indefinite. The dogleg algorithm approximates the solution curve to subproblem (18)
by piecewise linear function connecting the Newton point to the Cauchy point. For more
details, see [35].

Once sn
k is estimated, we will compute st

k = Yk s̄t
k. A matrix Yk is the matrix whose

columns form a basis for the null space of (∇ck)
T .

• To obtain the tangential component st
k.

To evaluate the tangential component st
k, the following subproblem is solved by using

the dogleg method

minimize (YT
k ∇qk(sn

k))
T s̄t + 1

2 s̄tT
YT

k BkYk s̄t

subject to ‖Yk s̄t‖ ≤ ∆k,
(22)

where ∇qk(sn
k) = ∇x`k + Bksn

k + rk∇guk Pkguk , Bk = Hk + rk∇guk Pk∇gT
uk

,

and ∆k =
√

δ2
k − ‖s

n
k ‖2.

Since the dogleg method is used to solve the above subproblem, then a fraction of
the tangential predicted decrease obtained by a tangential Cauchy step s̄tcp

k is less than or
equal to the tangential predicted decrease which is obtained by tangential step s̄t

k. That is,
the following conditions hold

qk(sn
k)− qk(sn

k + Yk s̄t
k) ≥ ϑ2[qk(sn

k)− qk(sn
k + Yk s̄tcp

k)], (23)

for some ϑ2 ∈ (0, 1]. The tangential Cauchy step stcp
k is defined as follows

s̄tcp
k = −τ

tcp
k YT

k ∇qk(sn
k), (24)

where the parameter τ
tcp
k is given by

τ
tcp
k =

‖YT
k ∇qk(sn

k)‖
2

(YT
k ∇qk(sn

k))
T B̄kYT

k ∇qk(sn
k)

if ‖YT
k ∇qk(sn

k)‖
3

(YT
k ∇qk(sn

k))
T B̄kYT

k ∇qk(sn
k)
≤ ∆k

and (YT
k ∇qk(sn

k))
T B̄kYT

k ∇qk(sn
k) > 0,

∆k
‖YT

k ∇qk(sn
k)‖

otherwise,

(25)

Fractal Fract. 2022, 6, 412 6 of 29

such that B̄k = YT
k BkYk.

To be decided whether the step sk = sn
k + st

k will be accepted or not, a merit function is
needed to tie the objective function with the constraints in such a way that progress in the
merit function means progress in solving the problem. The following augmented Lagrange
function is used in FBACTR algorithm as a merit function,

Φ(x, µ; r; σ) = `(x, µ) +
r
2
‖P(x)gu(x)‖2 + σ‖c(x)‖2, (26)

where σ > 0 is a penalty parameter.
To test whether the point (xk + sk, µk+1) will be taken in the next iterate, an actual

reduction and a predicted reduction are defined.
The actual reduction Aredk in the merit function in moving from (xk, µk) to (xk +

sk, µk+1) is defined as follows:

Aredk = Φ(xk, µk; rk; σk)−Φ(xk + dk, µk+1; rk; σk).

Aredk can also be written as follows:

Aredk = `(xk, µk)− `(xk+1, µk)− ∆µT
k ck+1 +

rk
2
[‖Pkgu(xk)‖2 − ‖Pk+1guk+1‖2] + σk[‖ck‖2 − ‖ck+1‖2], (27)

where ∆µk = (µk+1 − µk).
The predicted reduction in the merit function is defined to be:

Predk = −(∇x`(xk, µk))
Tsk −

1
2

sT
k Hksk − ∆µT

k (ck +∇cT
k sk) +

rk
2
[‖Pkguk‖

2 − ‖Pk(guk +∇gT
uk

sk)‖2]

+σk[‖ck‖2 − ‖ck +∇cT
k sk‖2]. (28)

Predk can be written as:

Predk = qk(0)− qk(sk)− ∆µT
k (ck +∇cT

k sk) + σk[‖ck‖2 − ‖ck +∇cT
k sk‖2]. (29)

• To update the penalty parameter σk

To update the penalty parameter σk to ensure that Predk ≥ 0, the following schemeis
used (see Algorithm 1):

Algorithm 1 To update the penalty parameter σk

If
Predk ≤

σk
2
[‖ck‖2 − ‖ck +∇cT

k µksk‖2], (30)

then, set

σk =
2[qk(sk)− qk(0) + ∆µT

k (ck +∇cT
k sk)]

‖ck‖2 − ‖ck +∇cT
k sk‖2

+ β0, (31)

where β0 > 0 is a small fixed constant. Else, set

σk+1 = max(σk, r2
k). (32)

End if.

For more details, see [22].

• To test the step sk and update δk

The framework to test the step sk and update δk is clarified in the Algorithm 2.

Fractal Fract. 2022, 6, 412 7 of 29

Algorithm 2 (To test the step sk and update δk)
Choose 0 < α1 < α2 < 1, 0 < τ1 < 1 < τ2, and δmin ≤ δ0 ≤ δmax.
While Aredk

Predk
∈ (0, α1) or Predk ≤ 0.

Set δk = τ1‖sk‖.
Evaluate a new trial step sk.
End while.
If Aredk

Predk
∈ [α1, α2).

Set xk+1 = xk + sk and δk+1 = max(δk, δmin).
End if. If Aredk

Predk
∈ [α2, 1].

Set xk+1 = xk + sk and δk+1 = min{δmax, max{δmin, τ2δk}} .
End if.

• To update the positive parameter rk

To update the positive parameter rk, we use the following scheme (see Algorithm 3)

Algorithm 3 To update the positive parameter rk
If

1
2
[qk(s

n
k)− qk(sk)] ≤ ‖∇gu(xk)P(xk)gu(xk)‖min{‖∇gu(xk)P(xk)gu(xk)‖, δk}, (33)

Set rk+1 = rk.
Else, set rk+1 = 2rk.
End if.

For more details see, [25].
Finally, the algorithm stopped if the termination criteria ‖YT

k ∇x`k‖+ ‖∇guk Pkguk‖+
‖ck‖ ≤ ε1 or ‖sk‖ ≤ ε2, for some ε1, ε2 > 0 is satisfied.

• A trust-region algorithm

The framework of the trust-region algorithm to solve subproblem (17) are summarized
as follows (see Algorithm 4).

Algorithm 4 Trust-region algorithm
Step 0. (Initialization)

Starting with x0. Evaluate µ0 and P0. Set r0 = 1, σ0 = 1, and β0 = 0.1.
Choose ε1, ε2, τ1, τ2, α1, and α2 such that 0 < ε1, 0 < ε2, 0 < τ1 < 1 < τ2,
and 0 < α1 < α2 < 1.
Choose δmin, δmax, and δ0 such that δmin ≤ δ0 ≤ δmax. Set k = 0.

Step 1. If ‖YT
k ∇x`k‖+ ‖∇guk Pkguk‖+ ‖ck‖ ≤ ε1, then stop.

Step 2. (How to compute sk)

(a) Evaluate the normal component sn
k by solving subproblem (18).

(b) Evaluate the tangential component s̄t
k by solving subproblem (22).

(c) Set sk = sn
k + Yk s̄t

k.

Step 3. If ‖sk‖ ≤ ε2, then stop.
Step 4. Set xk+1 = xk + sk.
Step 5. Compute Pk+1 given by (11).
Step 6. Evaluate µk+1 by solving the following subproblem

minimize ‖∇ fuk+1 +∇ck+1µ + rk∇guk+1 Pk+1guk+1‖2. (34)

Step 7. To update the penalty parameter σk, using Algorithm 1.
Step 8. To test the step sk and update the radius δk, using Algorithm 2.
Step 9. To update the positive parameter rk, using Algorithm 3.
Step 10. Set k = k + 1 and go to Step 1.

Fractal Fract. 2022, 6, 412 8 of 29

The main steps for solving the NBLP problem (1) are clarified in the following algorithm.

2.2. Fischer–Burmeister Active-Set Trust-Region Algorithm

The framework to solve NBLP problem (1) is summarized in the Algorithm 5 .

Algorithm 5 FBACTR algorithm
Step 1 . Use KKT optimality conditions for the lower level of problem (1) and convert it to
a single objective constrained optimization problem (2).
Step 2. Using Fischer–Burmeister function (3) with ε = 0.001 to obtain the smooth prob-
lem (4).
Step 3. Summarize problem (4) to the form of nonlinear optimization problem (5).
Step 4. Use the active set strategy to reduce problem (5) to problem (12).
Step 5. Use trust-region Algorithm 4 to solve problem (12) and obtained approximate
solution for problem (5) which is approximate solution for problem (1).

The next section is dedicated to the global convergence analysis for the active-set with
the trust-region algorithm.

3. Global Convergence Analysis

Let {(xk, µk)} be the sequence of points generated by FBACTR Algorithm 5. Let
Ω ⊆ <n be a convex set which is contained all iterates xk ∈ <n and xk + sk ∈ <n.

Standard assumptions which are needed on the set Ω to demonstrate global conver-
gence theory for FBACTR Algorithm 5 are stated in the following section.

3.1. A Standard Assumptions

The next standard assumptions are required to demonstrate the global convergence
theory for the FBACTR Algorithm 5.

[SA1.] Functions fu : <n → <, gu : <n → <m
1 , fl : <n → <n2 , and gl : <n → <m2 are twice

continuously differentiable functions for all x ∈ Ω.
[SA2.] The sequence of the Lagrange multiplier vectors {µk} is bounded.
[SA3.] All of c(x), ∇c(x), ∇2ci(x) for i = 1, 2, . . . , n2 + m2, gu(x), ∇gu(x), ∇2gui (x) for
i = 1, 2, . . . , m1, and (∇c(x)T∇c(x))−1 are uniformly bounded on Ω.
[SA4.] The matrix ∇c(x) has full column rank.
[SA5.] The sequence of Hessian matrices {Hk} is bounded.

Some fundamental lemmas which are needed in the proof of the main theorem intro-
duced in the following section.

3.2. Main Lemmas

Some basic lemmas which are required to demonstrate the main theorems are pre-
sented in this section.

Lemma 1. Under standard assumption SA1–SA5 and at any iteration k, there exists a positive
constant K1 such that:

‖sn
k ‖ ≤ K1‖ck‖. (35)

Proof. Since the normal component sn
k is normal to the tangent space, then we have:

‖sn
k ‖ = ‖∇ck(∇cT

k∇ck)
−1∇cT

k sk‖
= ‖∇ck(∇cT

k∇ck)
−1[ck +∇cT

k sk − ck]‖
≤ ‖∇ck(∇cT

k∇ck)
−1‖[‖ck +∇cT

k sk‖+ ‖ck‖]
≤ ‖∇ck(∇cT

k∇ck)
−1‖‖ck‖,

Fractal Fract. 2022, 6, 412 9 of 29

where ‖ck +∇cT
k sk‖ ≤ ‖ck‖. Using standard assumptions SA1–SA5, we have the desired

result.

Lemma 2. Under standard assumptions SA1 and SA3, the functions P(x)gu(x) are Lipschitz
continuous in Ω.

Proof. See Lemma (4.1) in [36].

From Lemma 2, we conclude that gu(x)T P(x)gu(x) is differentiable and∇gu(x)P(x)gu(x)
is Lipschitz continuous in Ω.

Lemma 3. At any iteration k, let A(xk) ∈ <(m1)×(m1) be a diagonal matrix whose diagonal
entries are:

(ak)i =

1 if (guk)i < 0 and (guk+1)i ≥ 0,
−1 if (guk)i ≥ 0 and (guk+1)i < 0,
0 otherwise,

(36)

where i = 1, 2, . . . , m1. Then
Pk+1 = Pk + Ak. (37)

Proof. See Lemma (6.2) in [21].

Lemma 4. Under standard assumptions SA1 and SA3, there exists a positive constant K2 such that

‖Akguk‖ ≤ K2‖sk‖. (38)

Proof. See Lemma (6.3) in [21].

Lemma 5. Under standard assumptions SA1–SA5, there exists a positive constant K3 such that:

| Aredk − Predk |≤ K3σk‖sk‖2. (39)

Proof. From (37) and (27) we have:

Aredk = `(xk, µk)− `(xk+1, µk)− ∆µT
k ck+1 +

rk
2
[gT

uk
Pkguk − gT

uk+1
(Pk + Ak)guk+1] + σk[‖ck‖2 − ‖ck+1‖2]. (40)

From (40), (28), and using Cauchy–Schwarz inequality, we have:

| Aredk − Predk | ≤ | `(xk, µk) +∇x`(xk, µk)
Tsk − `(xk+1, µk) | + | ∆µT

k [ck +∇cT
k sk − ck+1] |

+
rk
2
| ‖Pk(guk +∇gT

uk
sk)‖2 − gT

uk+1
(Pk + Ak)guk+1 | +σk | ‖ck +∇cT

k sk‖2 − ‖ck+1‖2 | .

Hence,

|Aredk − Predk| ≤
1
2
| sT

k (Hk −∇2`(xk + ξ1sk, µk))sk | +
1
2
| sT

k [∇
2c(xk + ξ2sk)∆µk]sk |

+
rk
2
| sT

k [∇guk Pk∇gT
uk
−∇gu(xk + ξ4sk)Pk∇gu(xk + ξ4sk)

T]sk |

+
rk
2
| sT

k∇
2gu(xk + ξ4sk)Pkgu(xk + ξ4sk)sk | +

rk
2
‖Ak[guk +∇gu(xk + ξ5sk)

Tsk]‖2

+σk | sT
k [∇ck∇cT

k −∇c(xk + ξ6sk)∇c(xk + ξ6sk)
T]sk |

+σk | sT
k∇

2c(xk + ξ6sk)c(xk + ξ6sk)sk |,

for some ξ1, ξ2, ξ3, ξ4, ξ5, and ξ6 ∈ (0, 1). Using standard assumptions SA1–SA5, σk ≥ rk,
σk ≥ 1, and inequality (38), we have:

| Aredk − Predk |≤ κ1‖sk‖2 + κ2σk‖sk‖2‖ck‖+ κ3σk‖sk‖3, (41)

Fractal Fract. 2022, 6, 412 10 of 29

where κ1 > 0, κ2 > 0, and κ3 > 0 are constants and independent of the iteration k. From
inequality (41), σk ≥ 1, ‖sk‖, and ‖ck‖ are uniformly bounded, we obtain the desired
result.

Lemma 6. Under standard assumptions SA1–SA5, there exists a positive constant K4 such that:

‖ck‖2 − ‖ck +∇cT
k sn

k ‖
2 ≥ K4‖ck‖min{δk, ‖ck‖}. (42)

Proof. We consider two cases:
Firstly, from (20), if sncp

k = − δk
‖∇ckck‖

(∇ckck) and δk‖∇cT
k∇ckck‖2 ≤ ‖∇ckck‖3,

then we have:

‖ck‖2 − ‖ck +∇cT
k sncp

k ‖
2 = −2(∇ckck)

Tsncp
k − sncpT

k ∇ck∇cT
k sncp

k

= 2δk‖∇ckck‖ −
δ2

k‖∇cT
k∇ckck‖2

‖∇ckck‖2

≥ 2δk‖∇ckck‖ − δk‖∇ckck‖
≥ δk‖∇ckck‖. (43)

Secondly, from (20), if sncp
k = − ‖∇ckck‖2

‖∇cT
k∇ckck‖2 (∇ckck) and δk‖∇cT

k∇ckck‖2 ≥ ‖∇ckck‖3,

then we have:

‖ck‖2 − ‖ck +∇cT
k sncp

k ‖
2 = −2(∇ckck)

Tsncp
k − sncpT

k ∇ck∇cT
k sncp

k

=
2‖∇ckck‖4

‖∇cT
k∇ckck‖2

− ‖∇ckck‖4

‖∇cT
k∇ckck‖2

=
‖∇ckck‖4

‖∇cT
k∇ckck‖2

≥ ‖∇ckck‖2

‖∇cT
k∇ckck‖2

. (44)

Using standard assumption SA3, we have ‖∇ckck‖ ≥
‖ck‖

‖(∇cT
k∇ck)−1∇ck‖

. From inequali-

ties (19), (43), (44), and using standard assumption SA2, we obtain the desired result.
From Algorithm 1 and Lemma 6, we have, for all k:

Predk ≥
σk
2

K4‖ck‖min{δk, ‖ck‖}. (45)

Lemma 7. Under standard assumptions SA1–SA5, there exists a constant K5 > 0, such that:

qk(sn
k)− qk(sn

k + Yk s̄t
k) ≥

1
2

K5‖YT
k ∇qk(sn

k)‖min{∆k,
‖YT

k ∇qk(sn
k)‖

‖B̄k‖
}, (46)

where B̄k = YT
k BkYk.

Proof. We consider two cases:

Fractal Fract. 2022, 6, 412 11 of 29

Firstly, from (24), if s̄tcp
k = − ∆k

‖YT
k ∇qk(sn

k)‖
YT

k ∇qk(sn
k) and ∆k(YT

k ∇qk(sn
k))

T B̄kYT
k ∇qk(sn

k) ≤

‖YT
k ∇qk(sn

k)‖
3, then we have:

qk(sn
k)− qk(sn

k + Yk s̄tcp
k) = −(YT

k ∇qk(sn
k))

T s̄tcp
k −

1
2

s̄tcpT

k B̄k s̄tcp
k

= ∆k‖YT
k ∇qk(sn

k)‖

−
∆2

k
2‖YT

k ∇qk(sn
k)‖2

[(YT
k ∇qk(sn

k))
T B̄kYT

k ∇qk(sn
k)] (47)

≥ ∆k‖YT
k ∇qk(sn

k)‖ −
1
2

∆k‖YT
k ∇qk(sn

k)‖

≥ 1
2

∆k‖YT
k ∇qk(sn

k)‖.

Secondly, from (24), if s̄tcp
k = − ‖YT

k ∇qk(sn
k)‖

2

YT
k ∇qk(sn

k))
T B̄kYT

k ∇qk(sn
k)

YT
k ∇qk(sn

k) and ∆k(YT
k ∇qk(sn

k))
T B̄k

YT
k ∇qk(sn

k) ≥ ‖Y
T
k ∇qk(sn

k)‖
3, then we have:

qk(sn
k)− qk(sn

k + Yk s̄tcp
k) = −(YT

k ∇qk(sn
k))

T s̄tcp
k −

1
2

s̄tcpT

k B̄k s̄tcp
k

=
‖YT

k ∇qk(sn
k)‖

4

(YT
k ∇qk(sn

k))
T B̄kYT

k ∇qk(sn
k)

−
‖YT

k ∇qk(sn
k)‖

4

2(YT
k ∇qk(sn

k))
T B̄kYT

k ∇qk(sn
k)

(48)

=
‖YT

k ∇qk(sn
k)‖

4

2(YT
k ∇qk(sn

k))
T B̄kYT

k ∇qk(sn
k)

≥
‖YT

k ∇qk(sn
k)‖

2

2‖B̄k‖
.

From inequalities (23), (47), (48), and using standard assumptions SA1–SA5, we obtain
the desired result.

The next lemma shows that FBACTR algorithm cannot be looped infinitely without
finding an acceptable step.

Lemma 8. Under standard assumptions SA1–SA5, if there exists ε > 0 such that ‖ck‖ ≥ ε, then
Ared

kj
Pred

kj
≥ α1 for some finite j.

Proof. Using (39), (45), and from ‖ck‖ ≥ ε, we have:∣∣∣∣Aredk
Predk

− 1
∣∣∣∣ = | Aredk − Predk |

Predk
≤

2K3δ2
k

K4ε min{ε, δk}
.

δkj becomes small as skj gets rejected and eventually we will have:∣∣∣∣Aredkj

Predkj
− 1
∣∣∣∣ ≤ 2K3δkj

K4ε
.

Then, the acceptance rule will be met for finite j. This completes the proof.

Lemma 9. Under standard assumptions SA1–SA5 and if jth trial step of iteration k satisfies

‖skj‖ ≤ min{ (1− α1)K4

4K3
, 1}‖ck‖, (49)

Fractal Fract. 2022, 6, 412 12 of 29

then it must be accepted.

Proof. This lemma is proved by contradiction. In case of assuming that inequality (49)
holds, the trial step skj is rejected, by using inequalities (39), (45), and (49), then:

(1− α1) <
| Aredkj − Predkj |

Predkj
<

2K3‖skj‖2

K4‖ck‖‖skj‖
≤ (1− α1)

2
.

This contradiction and therefore the lemma is proved.

Lemma 10. Under standard assumptions SA1–SA5, there exists δkj satisfies:

δkj ≥ min{ δmin
β1

,
τ1(1− α1)K4

4K3
, τ1}‖ck‖, (50)

for all trial steps j of any iteration k where β1 is a positive constant independent of k or j.

Proof. At any trial iterate kj of any iteration k, we consider two cases:
Firstly, if j = 1, then the step is accepted. That is δ1

k ≥ δmin and take β1 = supx∈Ω ‖ck‖,
we have

δk ≥ δmin ≥
δmin
β1
‖ck‖. (51)

Secondly, if j > 1, then there is at least one trial step which is rejected . From Lemma 9,
we have

‖ski‖ > min{ (1− α1)K4

4K3
, 1}‖ck‖,

for all trial steps i = 1, 2, . . . j− 1 which are rejected . Since ski is a trial step which is rejected,
then from the previous inequality and Algorithm 2, we have:

δkj = τ1‖skj−1‖ > τ1 min{ (1− α1)K4

4K3
, 1}‖ck‖.

From inequality (51) and the above inequality, we obtain the desired result.
The next lemma obviously shows that as long as ‖ck‖ is bounded away from zero,

the radius of the trust-region is bounded away from zero.

Lemma 11. Under standard assumptions SA1–SA5, if there exists ε > 0 such that ‖ck‖ ≥ ε.
Then there exists K6 > 0 such that:

δkj ≥ K6.

Proof. Let

K6 = ε min{ δmin
β1

,
τ1(1− α1)K4

4K3
, τ1}, (52)

and using (50), the proof follows directly.

In the next section, the iteration sequence convergence is studied when rk → ∞.

3.3. Convergence When the Positive Parameter rk → ∞

This section is devoted to the convergence of the iteration sequence when the positive
parameter rk goes to infinity.

Notice that, we do not require [∇gui (x), i ∈ I(x)] has full column rank in standard
assumption SA4, so, we may have other kinds of stationary points, which are defined in
the following definitions.

Fractal Fract. 2022, 6, 412 13 of 29

Definition 2. A feasible Fritz John (FFJ) point is a point x∗ that satisfies the following FFJ
conditions:

η∗∇ fu(x∗) +∇c(x∗)µ∗ +∇gu(x∗)λ∗ = 0,

c(x∗) = 0,

P(x∗)g(x∗) = 0,

(λ∗)igui (x∗) = 0, i = 1, . . . , m1,

η∗, (λ∗)i ≥ 0, i = 1, . . . , m1.

where η∗, µ∗, and λ∗ are not all zeros. For more details see [18].

If η∗ 6= 0, then the point (x∗, 1, µ∗
η∗

, λ∗
η∗
) is called a KKT point and FFJ conditions are

called KKT conditions.

Definition 3. An infeasible Fritz John (IFJ) point is a point x∗ that satisfies the following
IFJ conditions:

η∗∇ fu(x∗) +∇c(x∗)µ∗ +∇gu(x∗)λ∗ = 0,

c(x∗) = 0,

∇gu(x∗)P(x∗)gu(x∗) = 0 but ‖P(x∗)gu(x∗)‖ > 0,

(λ∗)igui (x∗) ≥ 0, i = 1, . . . , m1,

η∗, (λ∗)i ≥ 0, i = 1, . . . , m1,

where η∗, µ∗, and λ∗ are not all zeros. For more details see [18].

If η∗ 6= 0, then the point (x∗, 1, µ∗
η∗

, λ∗
η∗
) is called an infeasible KKT point and IFJ

conditions are called infeasible KKT conditions.

Lemma 12. Under standard assumptions SA1–SA5, a subsequence {ki} of the sequence of the
iteration satisfies IFJ conditions if the following conditions satisfied :

(i) limki→∞ c(xki
) = 0.

(ii) limki→∞ ‖Pki
gu(xki

)‖ > 0.

(iii) limki→∞

{
mins∈<n−m1+1‖Pki

(guki
+∇gT

uki
Yki

s̄t)‖2
}
= limki→∞ ‖Pki

guki
‖2.

Proof. For simplification and without loss of generality, let {ki} represents the whole
sequence {k}. Assume that s̃k is the solution of the subproblem minimizes̄t‖Pk(guk +
∇gT

uk
Yk s̄t)‖2, then it satisfies the following equation:

YT
k ∇guk Pkguk + YT

k ∇guk Pk∇gT
uk

Yk s̃k = 0. (53)

It also satisfies the right hand side of Condition (iii). That is,

lim
k→∞
{2s̃k

TYT
k ∇guk Pkguk + s̃k

TYT
k ∇guk Pk∇gT

uk
Yk s̃k} = 0. (54)

We will consider two cases:
Firstly, if limk→∞ s̃k = 0, then from Equation (53) we have limk→∞ YT

k ∇guk Pkguk = 0.
Secondly, if limk→∞ s̃k 6= 0, then by multiplying Equation (53) from the left by

2s̃T
k and subtract it from Equation (54), we have limk→∞ ‖Pk∇gT

uk
Yk s̃k‖2 = 0. Hence

limk→∞ YT
k ∇guk Pkguk = 0. That is, in two cases, we have

lim
k→∞

YT
k ∇guk Pkguk = 0. (55)

Fractal Fract. 2022, 6, 412 14 of 29

Since limk→∞ ‖Pkguk‖ > 0, then limk→∞(Pkguk)i ≥ 0, for i = 1, . . . , m1 and
limk→∞(Pkguk)i > 0, for some i. Let (λk)i = (Pkguk)i, i = 1, . . . , m1, then limk→∞ YT

k ∇guk λk
= 0. Hence, there exists a sequence of {µk} such that limk→∞ YT

k {∇ckµk +∇guk λk} = 0.
That is, IFJ conditions hold in the limit with η∗ = 0, see Definition 3.

Lemma 13. Under standard assumptions, SA1–SA5, a subsequence {ki} of the sequence of the
iteration satisfies FFJ conditions if the following conditions are satisfied:

(i) limki→∞ c(xki
) = 0.

(ii) For all ki, ‖Pki
guki
‖ > 0 and limki→∞ Pki

guki
= 0.

(iii) limki→∞

{
mins∈<n−m1+1

‖Pki
(guki

+∇gT
uki

Yki
s̄t)‖2

‖Pki
guki
‖2

}
= 1.

Proof. For simplification and without loss of generality, let {ki} represents the whole
sequence {k}. Notice that the following equation,

lim
k→∞

{
min

ν∈<n−m1+1

{
‖Uk + Pk∇gT

k Ykν‖2
}}

= 1, (56)

is equivalent to Condition (iii), where Uk is a unit vector in the direction of Pkguk and
ν = s̄t

‖Pk guk ‖
. Let ν̃k be a solution of the following problem:

min
ν∈<n−m1+1

{
‖Uk + Pk∇gT

k Ykν‖2
}

. (57)

Hence,
YT

k ∇guk Pk∇gT
uk

Yk ν̃k + YT
k ∇guk PkUk = 0. (58)

Now two cases are considered:
Firstly, if limk→∞ Yk ν̃k = 0 and using (58), then limk→∞ YT

k ∇guk PkUk = 0.
Secondly, if limk→∞ Yk ν̃k 6= 0, then from (56) and the fact that ν̃k is a solution of

problem (57) we have:

lim
k→∞
{ν̄k

TYT
k ∇guk Pk∇gT

uk
Yk ν̃k + 2UT

k Pk∇gT
uk

Yk ν̃k} = 0.

Multiplying Equation (58) from the left by 2ν̃T
k and subtracting it from the above limit,

we have the following equation: limk→∞ ν̃T
k YT

k ∇guk Pk∇gT
uk

Yk ν̃k = 0. That is
limk→∞

{
Yk∇guk PkUk

}
= 0. Hence in both cases, we have limk→∞

{
Yk∇guk PkUk

}
= 0.

The remnant of the proof follows using cases similar to those in Lemma 12.

Lemma 14. Under standard assumptions SA1–SA5, if k represents the index of iteration at which
σk is increased, then we have:

rk‖ck‖2 ≤ K7, (59)

where K7 is a positive constant.

Proof. Since σk is increased, then from Algorithm 1 we have:

σk
2
[‖ck‖2 − ‖ck +∇cT

k sk‖2] = [qk(sk)− qk(0) + ∆µT
k (ck +∇cT

k sk)] +
β0

2
[‖ck‖2 − ‖ck +∇cT

k sk‖2].

From (42), (50), and using the above equality, we have:

σk
2

K4‖ck‖2 min { δmin
β1

,
τ1(1− α1)K4

4K3
, τ1, 1} ≤ ∇x`

T
k sk +

1
2

sT
k Hksk + ∆µT

k (ck +∇cT
k sk)

+
rk
2
[‖Pk(guk +∇gT

uk
sk)‖2 − ‖Pkguk‖

2] +
β0

2
[‖ck‖2 − ‖ck +∇cT

k sk‖2].

Fractal Fract. 2022, 6, 412 15 of 29

However, σk ≥ r2
k , then:

r2
k
2

K4‖ck‖2 min{ δmin
β1

,
τ1(1− α1)K4

4K3
, τ1, 1} ≤ ∇x`(xk, µk)

Tsk +
1
2

sT
k Hksk + ∆µT

k (ck +∇cT
k sk)

+
rk
2
[‖Pk(guk +∇gT

uk
sk)‖2 +

β0

2
‖ck‖2.

Hence,

rk
2

K4‖ck‖2 min{ δmin
β1

,
τ1(1− α1)K4

4K3
, τ1, 1} ≤ 1

rk
[∇x`

T
k sk +

1
2

sT
k Hksk + ∆µT

k (ck +∇cT
k sk)

+
β0

2
‖ck‖2] +

1
2
‖Pk(guk +∇gT

uk
sk)‖2

≤ 1
rk
[|∇x`

T
k sk|+

1
2
|sT

k Hksk|+ |∆µT
k (ck +∇cT

k sk)|

+
β0

2
‖ck‖2] +

1
2
‖Pk(guk +∇gT

uk
sk)‖2.

From Cauchy–Schwarz inequality, standard assumptions SA3–SA5, and the fact that
‖sk‖ ≤ δmax, the proof is completed.

Lemma 15. Under standard assumptions SA1–SA5, if rk → ∞ and there is an infinite subsequence
{ki} of the sequence of the iteration at which σk is increased, then:

lim
ki→∞

‖cki
‖ = 0. (60)

Proof. From lemma (59) and using rk is unbounded, the proof is completed.

Theorem 1. Under standard assumptions SA1–SA5, if rk → ∞ as k→ ∞, then

lim
k→∞
‖ck‖ = 0. (61)

Proof. See Theorem 4.18 [22].

Lemma 16. Under standard assumptions SA1–SA5, if there exists a subsequence {k j} of indices
indexing iterates that satisfy ‖Pkguk‖ ≥ ε > 0 for all k ∈ {k j} and rk → ∞ as k → ∞. Then a
subsequence of the iteration sequence indexed {k j} satisfies IFJ conditions in the limit.

Proof. For simplification and without loss of generality, the total sequence {k} denotes to
{k j}. This lemma is proved by contradiction, therefor we suppose there is no subsequence
of the sequence {k} satisfies IFJ conditions in the limit. Using Lemma 12, we have for
all k, |‖Pkguk‖2 − ‖Pk(guk + ∇gT

uk
Yk s̄t

k)‖
2| ≥ ε1 for some ε1 > 0. From (55), we have

‖Yk∇guk Pkguk‖ ≥ ε2, for some ε2 > 0, hence:

‖YT
k ∇guk Pkguk + YT

k ∇guk Pk∇gT
uk

sn
k ‖ ≥ ‖YT

k ∇guk Pkguk‖ − ‖Y
T
k ∇guk Pk∇gT

uk
‖‖sn

k ‖
≥ ε2 − K1‖YT

k ∇guk Pk∇gT
uk
‖‖ck‖.

Since {‖ck‖} converges to zero and ‖YT
k ∇guk Pk∇gT

uk
‖ is bounded, then we can write:

‖YT
k ∇guk Pkguk + YT

k ∇guk Pk∇gT
uk

sn
k ‖ ≥

ε2
2 . Therefore,

‖YT
k ∇qk(sn

k)‖ ≥ rk‖YT
k ∇guk Pkguk + YT

k ∇guk Pk∇gT
uk

sn
k ‖ − ‖Y

T
k ∇x`k + YT

k Hksn
k ‖

≥ rk
ε2

2
− ‖YT

k ∇x`k + YT
k Hksn

k ‖

≥ rk[
ε2

2
− 1

rk
‖YT

k ∇x`k + YT
k Hksn

k ‖].

Fractal Fract. 2022, 6, 412 16 of 29

From (46), we have:

qk(sn
k)− qk(sk) ≥

K5

2
rk[

ε2

2
− 1

rk
‖YT

k [∇x`k + Hksn
k]‖]min{∆k,

ε2
2 −

1
rk
‖YT

k [∇x`k + Hksn
k]‖

‖YT
k ∇guk Pk∇gT

uk
Yk‖+ 1

rk
‖YT

k HkYk‖
}.

For a k sufficiently large, we have:

qk(sn
k)− qk(sk) ≥

K5ε2

4
rk min{∆k,

ε2

2‖YT
k ∇guk Pk∇gT

uk
Yk‖
}.

From Algorithm 3, {rk} is boundless only if there exist an infinite subsequence of
indices {ki}, at which:

1
2
[qk(sn

k)− qk(sk)] < ‖∇guk Pkguk‖min{‖∇guk Pkguk‖, δk}. (62)

Since rk → ∞, therefore an infinite number of acceptable iterates at which (62) holds
and from the way of updating rk, we have rk → ∞ as k → ∞. This gives a contradiction
unless rkδk is bounded and hence δk → 0. Therefore ‖sk‖ → 0. We will consider two cases:

Firstly, if ‖Pkguk‖2 − ‖Pk(guk +∇gT
uk

Yk s̄t
k)‖

2 > ε1, then we have

rk{‖Pkguk‖
2 − ‖Pk(guk +∇gT

uk
Yk s̄t

k)‖
2} > rkε1 → ∞. (63)

Using (63) and standard assumptions SA3 − SA5, we have [qk(sn
k) − qk(sk)] → ∞.

That is, the left hand side of inequality (62) goes to infinity while the right hand side tends
to zero and this is a contradiction in this case.
Secondly, if ‖Pkguk‖2 − ‖Pk(guk +∇gT

uk
Yk s̄t

k)‖
2 < −ε1, then

rk{‖Pkguk‖
2 − ‖Pk(guk +∇gT

uk
Yk s̄t

k)‖
2|} < −rkε1 → −∞,

where rk → ∞ as k → ∞ and similar to the first case, [qk(sn
k)− qk(sk)] → −∞. This is a

contradiction with [qk(sn
k)− qk(sk)] > 0. The lemma is proved.

Lemma 17. Under standard assumptions SA1–SA5, if rk → ∞ as k → ∞, and there ex-
ists a subsequence indexed {k j} of iterates that satisfy ‖Pkguk‖ > 0 for all k ∈ {k j} and
limkj→∞ ‖Pkj

gukj
‖ = 0, then a subsequence of the sequence of iterates indexed {k j} satisfies

FFJ conditions in the limit.

Proof. Without loss of generality, let {k j} be the whole iteration sequence {k} to simplify.
This lemma is proved by contradiction and so suppose that there is no subsequence that
satisfies FFJ conditions in the limit. From condition (iii) of Lemma 13, for all k sufficiently
large, there exists a constant ε3 > 0 such that:

| ‖Pkguk‖2 − ‖Pk(guk +∇gT
uk

Yk s̄t
k)‖

2 |
‖Pkguk‖2 ≥ ε3. (64)

The following two cases are considered:

Firstly, if lim in fk→∞
s̄t

k
‖Pk guk ‖

= 0, then there is a contradiction with inequality (64).

Secondly, if lim supk→∞
s̄t

k
‖Pk guk ‖

= ∞, then from subproblem (22) we have:

YT
k ∇qk(sn

k) = −YT
k (Bk + υk I)Yk s̄t

k, (65)

where υk ≥ 0 represents the Lagrange multiplier vector, which is associated with the
constraint ‖Yk s̄t‖ ≤ ∆k. From (65) and (46), we have:

Fractal Fract. 2022, 6, 412 17 of 29

qk(sn
k)− qk(sk) ≥

K5

2
‖YT

k ∇qk(sn
k)‖min{∆k,

‖YT
k [

1
rk

Hk + (υk
rk

I +∇guk Pk∇gT
uk
)]Yk s̄t

k‖
‖YT

k (
1
rk

Hk +∇guk Pk∇gT
uk
)Yk‖

}. (66)

Since rk → ∞ as k→ ∞, then there exists an infinite number of acceptable steps such
that inequality (62) holds. However, inequality (62) can be written as follows:

1
2
[qk(sn

k)− qk(sk)] < β2
2‖Pkguk‖

2, (67)

where β2 = supx∈Ω‖Yk∇guk‖.
From (66) and (67), we have:

K5

2
‖YT

k ∇qk(sn
k)‖min{ ∆k

‖Pkguk‖
,
‖YT

k [
1
rk

Hk + (υk
rk

I +∇guk Pk∇gT
uk
)]Yk s̄t

k‖
‖YT

k (
1
rk

Hk +∇guk Pk∇gT
uk
)Yk‖‖Pkguk‖

} < 2β2
2‖Pkguk‖.

However, in previous inequality, the right hand side tends to zero as k→ ∞ and also

limki→∞
s̄t

ki
‖Pki

gki
‖ = ∞ along the subsequence {ki}. Therefore,

‖YT
ki
∇qki

(sn
ki
)‖
‖YT

ki
[1

rki
Hki

+ (
υki
rki

I +∇gki
Pki
∇gT

ki
)]Yki

s̄t
ki
‖

‖YT
ki
(1

rki
Hki

+∇gki
Pki
∇gT

ki
)Yki
‖‖Pki

gki
‖

,

is bounded. That is, either
s̄t

ki
‖Pki

gki
‖ lies in the null space of YT

ki
(

υki
rki

I +∇gki
Pki
∇gT

ki
)YT

ki
or

‖Yki
∇qki

(sn
ki
)‖ → 0.

The first possibility occurs only when
υki
rki
→ 0 as ki → ∞ and

s̄t
ki

‖Pki
gki
‖ lie in the null

space of the matrix YT
ki
∇gki

Pki
∇gT

ki
Yki

which is contradicted with assumption (64). This
means that, FFJ conditions are satisfied in the limit. As ki → ∞, the second possibility
is, ‖Yki

∇qki
(sn

ki
)‖ → 0 and from (65), we have ‖s̄t

ki
‖ → 0 which is contradicted with

assumption (64). That is FFJ conditions are satisfied in the limit.
In the next section, the convergence of the sequence of the iteration sequence is studied

when rk bounded.

3.4. Global Convergence When rk Is Bounded

Our analysis in this section is continued supposing that rk is bounded. Therefore, let k̄
be an integer at which rk = r̄ < ∞ for all k ≥ k̄. That is,

1
2
[qk(sn

k)− qk(sk)] ≥ ‖∇guk Pkguk‖min{‖∇guk Pkguk‖, δk}. (68)

From assumptions SA3 and SA5, and using (68), then for all k, there is a constant
β3 > 0 such that:

‖Bk‖ ≤ β3, ‖YT
k Bk‖ ≤ β3, and ‖YT

k BkYk‖ ≤ β3, (69)

where Bk = Hk + r̄∇guk Pk∇gT
uk

.

Lemma 18. Under standard assumptions SA1–SA5, there exists a constant K8 > 0 such that:

qk(0)− qk(sn
k)− ∆µT

k (ck +∇cT
k sk) ≥ −K8‖ck‖. (70)

Proof. Since

Fractal Fract. 2022, 6, 412 18 of 29

qk(0)− qk(sn
k) = −∇x`

T
k sn

k −
1
2

snT

k Hksn
k +

r̄
2
[‖Pkguk‖

2 − ‖Pk(guk +∇gT
uk

sn
k)‖

2]

= −(∇x`k + r̄∇guk Pkguk)
Tsn

k −
1
2

sn
k

T(Hk + r̄∇guk Pk∇gT
uk
)sn

k

= −(∇x`k + r̄∇guk Pkguk)
Tsn

k −
1
2

sn
k

T Bksn
k ,

then we have:

qk(0)− qk(sn
k) − ∆µT

k (ck +∇cT
k sk) = −(∇x`k + r̄∇guk Pkguk)

Tsn
k −

1
2

sn
k

T Bksn
k − ∆µT

k (ck +∇cT
k sk)

≥ −‖∇x`k‖‖sn
k ‖ − r̄‖∇guk Pkguk‖‖s

n
k ‖ − ‖Bk‖‖sn

k ‖
2 − ‖∆µk‖‖ck +∇cT

k sk‖
≥ −[‖∇x`k‖+ r̄‖∇guk Pkguk‖+ ‖Bk‖‖sn

k ‖]‖s
n
k ‖ − ‖∆µk‖‖∇ck‖‖sn

k ‖.

From inequality (35) and the fact that YT
k ∇c(xk) = 0, then we have:

qk(0)− qk(sn
k)− ∆µT

k (ck +∇cT
k sk) ≥ [(‖∇x`k‖+ r̄‖∇guk Pkguk‖+ ‖Bk‖‖sn

k ‖+ ‖∆µk‖‖∇ck‖)K1]‖ck‖.

From standard assumptions SA2, SA3, SA5, the fact that ‖sn
k ‖ ≤ δmax, and using (69),

then there exists K8 > 0, such that inequality (70) holds.

Lemma 19. Under standard assumptions SA1–SA5, then for all k we have:

Predk ≥ 1
2

K5‖YT
k ∇qk(sn

k)‖min{∆k,
‖YT

k ∇qk(sn
k)‖

‖s̄k‖
}+ ‖∇guk Pkguk‖min{‖∇guk Pkguk‖, δk}

−K8‖ck‖+ σk[‖ck‖2 − ‖ck +∇cT
k sk‖2]. (71)

Proof. From (29), we have:

Predk = [qk(sn
k)− qk(sk)] + [qk(0)− qk(sn

k)− ∆µT
k (ck +∇cT

k sk)] + σk[‖ck‖2 − ‖ck +∇cT
k sk‖2]

=
1
2
[qk(sn

k)− qk(sk)] +
1
2
[qk(sn

k)− qk(sk)]

+[qk(0)− qk(sn
k)− ∆µT

k (ck +∇cT
k sk)] + σk[‖ck‖2 − ‖ck +∇cT

k sk‖2].

Using inequalities (46), (68), and (70), we obtain the desired result.

Lemma 20. Under standard assumptions SA1–SA5, if ‖YT
k (∇x`k + r̄∇guk Pkguk)‖ +

‖∇guk Pkguk‖ ≥ ε > 0 and ‖ck‖ ≤ τδk where τ is a positive constant given by

τ ≤ min

{
ε

6β3K1δmax
,

√
3

2K1
,

K5ε

24K8
min{ 2ε

3δmax
, 1}, ε

4K8
min{ ε

2δmax
, 1}
}

, (72)

then there exists a constant K9 > 0 such that:

Predk ≥ K9δk + σk[‖ck‖2 − ‖ck +∇cT
k sk‖2]. (73)

Proof. Since ‖YT
k (∇x`k + r̄∇guk Pkguk)‖+ ‖∇guk Pkguk‖ ≥ ε, then we can say ‖YT

k (∇x`k +
r̄∇guk Pkguk)‖ ≥

ε
2 and ‖∇guk Pkguk‖ ≥

ε
2 . We will consider two cases:

Firstly, if ‖YT
k (∇x`k + r̄∇guk Pkguk)‖ ≥

ε
2 , then from inequalities (69), (35) and ‖ck‖ ≤

τδk, we have:

‖YT
k (∇x`k + r̄∇guk Pkguk + Bksn

k)‖ ≥ ‖YT
k (∇x`k + r̄∇guk Pkguk)‖ − ‖Y

T
k Bksn

k ‖
≥ ‖YT

k (∇x`k + r̄∇guk Pkguk)‖ − β3K1‖ck‖

≥ ε

2
− β3K1τδk.

Fractal Fract. 2022, 6, 412 19 of 29

However, τ ≤ ε
6β3K1δmax

, then

‖YT
k (∇x`k + r̄∇guk Pkguk + Aksn

k)‖ ≥
ε

3
. (74)

From inequality (35), assumption ‖ck‖ ≤ τδk, and using the value of τ in (72), we have
‖sn

k ‖ ≤ K1‖ck‖ ≤ K1τδk ≤ K1

√
3

2K1
δk =

√
3

2 δk. That is, ∆2
k = δ2

k − ‖s
n
k ‖

2 ≥ δ2
k −

3
4 δ2

k = 1
4 δ2

k .
This means that,

∆k ≥
1
2

δk. (75)

From inequalities (71), (74), (75), and assumption ‖ck‖ ≤ τδk, we have the following:

Predk ≥ 1
2

K5‖YT
k (∇x`k + r̄∇guk Pkguk + Bksn

k)‖min{‖YT
k (∇x`k + r̄∇guk Pkguk + Bksn

k)‖,
1
2

δk}

−K8‖ck‖+ σk[‖ck‖2 − ‖ck +∇cT
k sk‖2]

≥ K5ε

12
δk min{ 2ε

3δmax
, 1} − K8τδk + σk[‖ck‖2 − ‖ck +∇cT

k sk‖2].

However, τ ≤ K5ε
24K8

min{ 2ε
3δmax

, 1}, then we have

Predk ≥
K5ε

24
min{ 2ε

3δmax
, 1}δk + σk[‖ck‖2 − ‖ck +∇cT

k sk‖2].

Secondly, if ‖∇guk Pkguk‖ ≥
ε
2 and using inequality (71), then

Predk ≥ ‖∇guk Pkguk‖min{‖∇guk Pkguk‖, δk} − K8‖ck‖+ σk[‖ck‖2 − ‖ck +∇cT
k sk‖2]

≥ ε

2
min{ ε

2δmax
, 1}δk − K8τδk + σk[‖ck‖2 − ‖ck +∇cT

k sk‖2]

≥ ε

4
min{ ε

2δmax
, 1}δk + σk[‖ck‖2 − ‖ck +∇cT

k sk‖2],

where τ ≤ ε
4K8

min{ ε
2δmax

, 1}. Let K9 = min
{

K5ε
24 min{ 2ε

3δmax
, 1} , ε

4 min{ ε
2δmax

, 1}
}

, then the
result follows.

From the previous lemma, we notice that either ‖YT
k (∇x`k + r̄∇guk Pkguk)‖ ≥

ε
2 > 0 or

‖∇guk Pkguk‖ ≥
ε
2 > 0 and ‖ck‖ ≤ τδk, where τ is given by (72) at any iteration k, the value

of the penalty parameter σk is not needed to increase. That is the penalty parameter σk is
increased only when ‖ck‖ ≥ τδk.

Lemma 21. Under standard assumptions SA1–SA5, if σk is increased at kth iteration , then there
is a positive constant K10 such that:

σk min{‖ck‖, δk} ≤ K10. (76)

Proof. From Algorithm 1, we have:

σk
2
[‖ck‖2 − ‖ck +∇cT

k sk‖2] = [qk(sk)− qk(sn
k)] + [qk(sn

k)− qk(0)] + ∆µT
k (ck +∇cT

k sk)

+
β0

2
[‖ck‖2 − ‖ck +∇cT

k sk‖2]

= −1
2
[qk(sn

k)− qk(sk)]−
1
2
[qk(sn

k)− qk(sk)]

+[qk(sn
k)− qk(0) + ∆µT

k (ck +∇cT
k sk)] +

β0

2
[‖ck‖2 − ‖ck +∇cT

k sk‖2],

Fractal Fract. 2022, 6, 412 20 of 29

where σk increased at any iteration and rk = r̄. From the previous equation, (42), (46), (68),
and (70), we have

σk
2

K4‖ck‖min{δk, ‖ck‖} ≤ −K5

2
‖YT

k ∇qk(sn
k)‖min{∆k,

‖YT
k ∇qk(sn

k)‖
‖B̄k‖

}

−‖∇guk Pkguk‖min{‖∇guk Pkguk‖, δk}+ K8‖ck‖+
β0

2
‖ck‖2

≤ K8‖ck‖+
β0

2
‖ck‖2.

Using assumption SA3, we get the desired result.

Lemma 22. Under standard assumptions SA1–SA5 and at the jth trial iterate of any iteration k.
If σkj is increased, then there is a constant K11 > 0, such that

σkj‖ck‖ ≤ K11. (77)

Proof. From (50) and (76), we get the desired result.

Lemma 23. Under standard assumptions SA1–SA5, if σk → ∞, then

lim
ki→∞

‖cki
‖ = 0, (78)

where {ki} is a subsequence indexes the iterates at which σk is increased.

Proof. From Lemma 22 we obtain the desired result.

3.5. Main Results for Global Convergence

In this section, main global convergence results for FBACTR algorithm are introduced.

Theorem 2. Under standard assumptions SA1–SA5, the sequence of iterates which is generated
by FBACTR algorithm satisfies

lim
k→∞
‖ck‖ = 0. (79)

Proof. This theorem is proved by contradiction and so we suppose that lim supk→∞ ‖ck‖ ≥
ε > 0. This means that there exists an infinite subsequence of indices {k j} indexing iterates
that satisfy ‖ckj

‖ ≥ ε
2 . However, there exists an infinite sequence of acceptable steps from

Lemma 8. Without loss of generality and to simplify, we suppose that all members of {k j}
are acceptable iterates. Now, two cases are considered:

Firstly, if {σk} is unbounded, then an infinite number of iterates {ki} exists and at
which the penalty parameter σk is increased. So, for k that is sufficiently large and from
Lemma 23, let {ki} and {k j} be the two sequences which are not have common elements.
Let kρ1 and kρ2 be two consecutive iterates at which σk is increased and kρ1 < k < kρ2 ,
where k ∈ {k j}. The penalty parameter σk is the same for all iterates that lie between kρ1

and kρ2 . Since all the iterates of {k j} are acceptable, then for all k ∈ {k j},

Φk −Φk+1 = Aredk ≥ α1Predk.

Using inequality (45), we have:

Φk −Φk+1
σk

≥ α1K4

2
‖ck‖min{‖ck‖, δk}.

Fractal Fract. 2022, 6, 412 21 of 29

Summing over all acceptable iterates that lie between kρ1 and kρ2 , we have:

kρ2−1

∑
k=kρ1

Φk −Φk+1
σk

≥ α1K4ε

4
min{K̂6,

ε

2
},

where K̂6 is as K6 in (52)but ε is replaced by ε
2 . Hence,

`(xkρ1
, µkρ1

; r̄)− `(xkρ2
, µkρ2

; r̄)

σkρ1

+ [‖ckρ1
‖2 − ‖ckρ2

‖2] ≥ α1K4ε

4
min{K̂6,

ε

2
}.

Since σk → ∞, then for kρ1 sufficiently large, we have:

| `(xkρ1
, µkρ1

; r̄)− `(xkρ2
, µkρ2

; r̄) |
σkρ1

<
α1K4ε

8
min{K̂6,

ε

2
}.

Therefore,

‖ckρ1
‖2 − ‖ckρ2

‖2 ≥ α1K4ε

8
min{K̂6,

ε

2
}.

This leads to a contradiction with Lemma 23 unless ε = 0.
Secondly, If {σk} is bounded, then for all an integer k̃ and k ≥ k̃, we have σk = σ̃.

Hence, for any k̂ ∈ {k j} where k̂ ≥ k̃ and using (45), we have:

Predk̂ ≥ σ̃K4

2
‖ck̂‖min{δk̂, ‖ck̂‖} ≥

εσ̃K4

4
min{ ε

2δmax
, 1}δk̂. (80)

Then for any k̂ ∈ {k j}, we have:

Φk̂ −Φk̂+1 = Aredk̂ ≥ α1Predk̂,

such that all the iterates of {k j} are acceptable. From above inequality, inequality (80) and
using Lemma 11 we have:

Φk̂ −Φk̂+1 ≥
α1εσ̃K4

4
min{ ε

2δmax
, 1}K̂6 > 0.

However, this is a contradiction of the fact that {Φk} is bounded when {σk} is bounded.
Therefore, we have a contradiction in both cases. Hence the supposition is not correct and
this proves the theorem.

Theorem 3. Under standard assumptions SA1–SA5, the sequence of iterates generated by FBACTR
algorithm satisfies:

lim inf
k→∞

[‖YT
k ∇x`k‖+ ‖∇guk Pkguk‖] = 0. (81)

Proof. First, we prove that:

lim inf
k→∞

[‖YT
k (∇x`k + r̄∇guk Pkguk)‖+ ‖∇guk Pkguk ‖] = 0. (82)

The proof of (82) is by contradiction, so, for all k, assume that
‖ YT

k (∇x`k + r̄∇guk Pkguk) ‖ + ‖∇guk Pkguk‖ > ε. Let {ki} be an infinite subsequence at
which ‖cki

‖ > τδki
, where τ is defined in (72). However, ‖ck‖ → 0, then

lim
ki→∞

δki
= 0.

Let kj be any trial iterate belonging to {ki} and we consider two cases:

Fractal Fract. 2022, 6, 412 22 of 29

Firstly, if {σk} is unbounded, then for the rejected trial step j− 1 of iteration k ∈ {ki},
we have ‖ck‖ > τδkj = τ1τ‖skj−1‖. Since the trial step skj−1 is rejected and using inequalities
(45) and (41), then

(1− α1) ≤
|Aredkj−1 − Predkj−1 |

Predkj−1

≤
[2κ1‖skj−1‖+ 2κ2σkj−1‖skj−1‖‖ck‖+ 2κ3σkj−1‖skj−1‖2]

σkj−1 K4 min(τ1τ, 1)‖ck‖

≤ 2κ1

σkj−1 K4τ1τ min(τ1τ, 1)
+

2κ2τ1τ + 2κ3

K4τ1τ min(τ1τ, 1)
‖skj−1‖.

However, {σk} is unbounded, hence for all k ≥ k̂, k̂ is sufficiently large, we have:

σkj−1 >
4κ1

K4τ1τ min(τ1τ, 1)(1− α1)
.

Therefore, for all k ≥ k̂, we have:

‖skj−1‖ ≥
K4τ1τ min(τ1τ, 1)(1− α1)

4(κ2τ1τ + κ3)
.

From Algorithm 2, we have:

δkj = τ1‖skj−1‖ ≥
K4τ2

1 τ min(τ1τ, 1)(1− α1)

4(κ2τ1τ + κ3)
.

This gives a contradiction and this leads to δkj not being able to go to zero in this case.
Secondly, if the sequence {σk} is bounded, then there exists an integer k̄ and σ̄ such

that for all k ≥ k̄, σk = σ̄. Consider a trial step j of iteration k ≥ k̄ and ‖ck‖ > τδkj , we
consider three cases:

(i) If j = 1, then δkj ≥ δmin, see Algorithm 2. This means that, δkj is bounded in this case;
(ii) If j > 1, and ‖ckl‖ > τδkl for l = 1, . . . , j, then for all rejected trial steps l = 1, . . . , j− 1

of iteration k ≥ k̄, we have

(1− α1) ≤
|Aredkl − Predkl |

Predkl
≤ 2K6‖skl‖

K4 min(τ, 1)‖ck‖
.

Hence,

δkj = τ1‖skj−1‖ ≥
τ1K4 min(τ, 1)(1− α1)‖ck‖

2K3
≥ τ1K4 min(τ, 1)(1− α1)τ

2K3
δk1

≥ τ1K4 min(τ, 1)(1− α1)τ

2K3
δmin.

That is, δkj is also bounded in this case.
(iii) If j > 1 and ‖ckl‖ > τδkl does not hold for all l, then there exists an integer $ such that

‖ckl‖ > τδkl holds for l = $ + 1, . . . , j and ‖ckl‖ ≤ τδkl holds for all l = 1, . . . , $. As
in case (ii), we can write:

δkj ≥
τ1K4 min(τ, 1)(1− α1)

2K3
‖ck‖ ≥

τ1K4 min(τ, 1)(1− α1)τ

2K3
δk$+1 . (83)

Fractal Fract. 2022, 6, 412 23 of 29

From Algorithm 2, we have:
δk$+1 ≥ τ1‖sk$‖. (84)

From Lemma 20, if ‖ckl‖ ≤ τδkl and sk$ is rejected, then we have:

(1− α1) ≤
|Aredk$ − Predk$ |

Predk$
≤ 2K6r̄‖sk$‖

K9
.

That is,

‖sk$‖ ≥ K9(1− α1)

2K6σ̄
.

This implies that ‖sk$‖ is bounded and from (83) and (84) we have also δkj is bounded
in this case. That is in three cases, we have δkj is bounded, but this leading to a
contradiction. Hence, all the iterates satisfy ‖ck‖ ≤ τδkj for kj are sufficiently large.
From Lemma 20, then the value of the penalty parameter is not needed to increase.
Hence, {σk} is bounded. Using Lemma 20 and for kj ≥ k̄, we have:

Φkj −Φkj+1 = Aredkj ≥ α1Predkj ≥ α1K9δkj .

As k→ ∞, then:
lim
k→∞

δkj = 0. (85)

That is the trust-region radius is not bounded below and this leading to a contradiction.
Because at iteration kj > k̄, if the previous step was accepted; i.e., at j = 1, then
δk1 ≥ δmin. That is δkj is bounded in this case.

If j > 1, then there exists at least one rejected trial step. From Lemmas 5 and 20, then for
the rejected trial step skj−1 we have:

(1− α1) <
σ̄K3‖skj−1‖2

K9δkj−1
.

From Algorithm 2, we have:

δkj = τ1‖skj−1‖ >
τ1K9(1− α1)

σ̄K3
.

Hence δkj is bounded and this contradicts (85). That is, the supposition is wrong
and hence,

lim inf
k→∞

[‖YT
k (∇x`k + r̄∇guk Pkguk)‖+ ‖∇guk Pkguk‖] = 0.

That is, (81) holds and the proof is completed.
From the above two theorems, we conclude that, given any ε > 0, the algorithm

terminates because ‖YT
k ∇x`k‖+ ‖∇guk Pkguk‖+ ‖ck‖ < ε, for some finite k.

4. Numerical Results and Comparisons

In this section, we introduce an extensive variety of possible numeric NBLP problems
to illustrate the validity of the proposed Algorithm FBACTR Algorithm 5 to solve the NBLP
problem. The proposed algorithm FBACTR experimented on 16 benchmark examples
given in [4,7,38–40].

Fractal Fract. 2022, 6, 412 24 of 29

Ten independent runs with a distinct initial value starting points for every test example
are performed to observe the matchmaking of the result. Statistical results of all examples
are briefed in Table 1 which displays that the results found by the FBACTR Algorithm 5 are
approximate or equal to those by the compered algorithms in method [11] and the literature.

Table 1. Comparisons of the results of FBACTR Algorithm 5 with the method [11] and methods in
the reference.

Problem Name (v∗, w∗)
Method [11]

f ∗u
f ∗l

Method [11]

(v∗, w∗)
FBACTR

Algorithm 5

f ∗u
f ∗l

FBACTR Algorithm 5

(v∗, w∗)
Ref.

f ∗u
f ∗l

Ref.

TP1 (0.8503, 0.0227, −2.6764 (0.8465, 0.7695, 0) −2.0772 (0.8438, 0.7657, 0) −2.0769
0.03589) 0.0332 −0.5919 −0.5863

TP2 (0.609, 0.391, 0, 0.6086 (0.6111, 0.3890, 0, 0.64013 (0.609, 0.391, 0, 0.6426
0, 1.828) 1.6713 0, 1.8339) 1.6816 0, 1.828) 1.6708

TP3 (0.97, 3.14, −8.92 (0.97, 3.14 −8.92 (0.97, 3.14, −8.92
2.6, 1.8) −6.05 2.6, 1.8) −6.05 2.6, 1.8) −6.05

TP4 (0.5, 0.5, 0.5, 0.5) −1 (0.5, 0.5, 0.5, 0.5) −1 (0.5, 0.5, 0.5, 0.5) −1
0 0 0

TP5 (9.839, 10.059) 96.809 (9.9953, 9.9955) 99.907 (10.03, 9.969) 100.58
0.0019 1.8628× 10−4 0.001

TP6 (1.6879, 0.8805, 0) −1.3519 (1.8889, 8.8889× 10−1, −1.4074 NA 3.57
7.4991 6.8157× 10−6) 7.6172 2.4

TP7 (1, 0) 17 (1, 0) 17 (1, 0) 17
1 1 1

TP8 (0.75, 0.75, −2.25 (0.7513, 0.7513, −2.2480 (
√

3/2,
√

3/2, −2.1962
0.75, 0.75) 0 0.752, 0.752) 0

√
3/2,

√
3/2) 0

TP9 (11.138, 5) 2209.8 (11.25, 5) 2250 (11.25, 5) 2250
222.52 197.753 197.753

TP10 (1, 0, 6.6387× 10−6) 6.6387× 10−6 (1, 0, 1) 1 (1, 0, 1) 1
−6.6387× 10−6 −1 −1

TP11 (24.972, 29.653, 4.9101 (25, 30, 5, 10) 5 (25, 30, 5, 10) 5
5.0238, 9.7565) 0.01332 0 0

TP12 (3, 5) 9 (3, 5) 9 (3, 5) 9
0 0 0

TP13 (0, 1.7405, −15.548 (0, 2, 1.875, 0.9063) −12.68 (0, 2, 1.875, 0.9063) −12.68
1.8497, 0.9692) −1.4247 −1.016 −1.016

TP14 (10.016, 0.81967) 81.328 (10, 0.011) 8.1978× 101 (10.04, 0.1429) 82.44
−0.3359 0 0.271

TP15 (0, 0.9, 0, 0.6, 0.4) −29.2 (0, 0.9, 0, 0.6, 0.4) −29.2 (0, 0.9, 0, 0.6, 0.4) −29.2
3.2 3.2 3.2

TP16 (0, 0.9, 0, 0.6, −29.2 (0, 0.9, 0, 0.6, −29.2 (0, 0.9, 0, 0.6, −29.2
0.4, 0, 0, 0) 0.3148 0.4, 0, 0, 0) 0.3148 0.4, 0, 0, 0) 0.3148

For comparison, the corresponding results of the mean number of iterations (iter),
the mean number of function evaluations (nfunc), and the mean value of CPU time (CPUs)
in seconds obtained by Methods in [11,41,42] respectively are included and summarized in
Table 2. These results show that results of the FBACTR Algorithm 5 are approximate or
equal to those of the compared algorithms in the literature.

It is evident from the results that our approach is able to handle NBLP problems even
if the upper and the lower levels are convex or not and the computed results converge
to the optimal solution which is similar or approximate to the optimal reported in the
literature. Finally, it is obvious from the comparison between the solutions obtained using
the FBACTR Algorithm 5 with those in the literature, that the FBACTR Algorithm 5 is
capable of finding the optimal solution to some problems by a small number of iterations,
a small number of function evaluations, and less time.

We offered the numerical results of FBACTR Algorithm 5 using MATLAB (R2013a)
(8.2.0.701)64-bit(win64) and a starting point x0 ∈ int(F̃). The following parameter setting
is used: δmin = 10−4, δ0 = max(‖scp

0 ‖, δmin), δmax = 104δ0, α1 = 10−3, α2 = 0.8, τ1 = 0.5,
τ2 = 2, ε1 = 10−10, and ε2 = 10−12.

Fractal Fract. 2022, 6, 412 25 of 29

Table 2. Comparisons of the results of FBACTR Algorithm 5 with method [11], method [41] and
method [42] with respect to the number of iterations, the number of function evaluations, and time/s.

Problem
Name

Iter
Method [11]

nfunc
Method [11]

CPUs
Method [11]

Iter FBACTR
Algorithm

nfunc
FBACTR

Algorithm

CPUs
FBACTR

Algorithm

CPUs
Method [41]

CPUs
Method [42]

TP1 11 12 1.43 10 13 1.62 1.734 -
TP2 10 14 1.987 9 12 1.87 2.375 -
TP3 6 8 2.9 7 8 2.52 3.315 11.854
TP4 10 14 1.68 12 13 1.92 1.576 -
TP5 6 9 1.635 6 7 1.523 1.825 5.888
TP6 6 11 4.1 8 10 3.95 4.689 25.332
TP7 12 13 1.9 11 12 1.652 1.769 -
TP8 10 11 1.002 11 12 0.953 1.124 -
TP9 10 13 1.95 8 10 1.87 - -
TP10 5 7 2.987 5 6 3.31 - -
TP11 9 12 3.742 10 13 3.632 - 37.308
TP12 8 9 1.23 7 9 1.33 - -
TP13 5 7 2.1 5 8 1.998 - 14.42
TP14 6 8 2.12 5 6 1.97 - 4.218
TP15 5 6 20.512 6 7 20.125 - 45.39
TP16 5 7 40.319 4 5 35.21 - 107.55

5. Conclusions

In this paper, the FBACTR Algorithm 5 is presented to solve the NBLP problem (1).
A KKT condition is used with the Fischer–Burmeister function and an active-set strategy to
convert the NBLP problem to an equivalent smooth equality constrained optimization prob-
lem. To ensure global convergence for the FBACTR algorithm, a trust-region globalization
strategy is used.

A global convergence theory for the FBACTR algorithm is introduced and applica-
tions to mathematical programs with equilibrium constraints are provided to clarify the
effectiveness of the proposed approach. Numerical results reflect the good behavior of the
FBACTR algorithm and the computed results converge to the optimal solutions. It is clear
from the comparison between the solutions obtained using the FBACTR algorithm with
algorithms [11,41,42] that the FBACTR can find the optimal solution to some problems with
a small number of iterations, small number of function evaluations, and in less time.

Test Problem 1 [41]:

minv fu = w2
1 + w2

2 + v2 − 4v
s.t. 0 ≤ v ≤ 2,
minw fl = w2

1 + 0.5w2
2 + w1w2+

(1− 3v)w1 + (1 + v)w2,
s.t. 2w1 + w2 − 2v ≤ 1,

w1 ≥ 0, w2 ≥ 0.

Test Problem 2 [41]:

minv fu = w2
1 + w2

3 − w1w3 − 4w2 − 7v1 + 4v2
s.t. v1 + v2 ≤ 1,

v1 ≥ 0, v2 ≥ 0
minw fl = w2

1 + 0.5w2
2 + 0.5w2

3 + w1w2+
(1− 3v1)w1 + (1 + v2)w2,

s.t. 2w1 + w2 − w3 + v1 − 2v2 + 2 ≤ 0,
w1 ≥ 0; w2 ≥ 0 w3 ≥ 0.

Fractal Fract. 2022, 6, 412 26 of 29

Test Problem 3 [41]:

minv fu = 0.1(v2
1 + v2

2)− 3w1 − 4w2 + 0.5(w2
1 + w2

2)
s.t.

minw fl = 0.5(w2
1 + 5w2

2)− 2w1w2 − v1w1 − v2w2,
s.t. −0.333w1 + w2 − 2 ≤ 0,

w1 − 0.333w2 − 2 ≤ 0,
w1 ≥ 0, w2 ≥ 0,

Test Problem 4 [41]:

minv fu = v2
1 − 2v1 + v2

2 − 2v2 + w2
1 + w2

2
s.t. v1 ≥ 0, v2 ≥ 0

minw fl = (w1 − v1)
2 + (w2 − v2)

2,
s.t. 0.5 ≤ w1 ≤ 1.5,

0.5 ≤ w2 ≤ 1.5,

Test Problem 5 [41]:

minv fu = v2 + (w− 10)2

s.t. −v + w ≤ 0,
0 ≤ v ≤ 15,

minw fl = (v + 2w− 30)2,
s.t. v + w ≤ 20,

0 ≤ w ≤ 20,

Test Problem 6 [41]:

minv fu = (v1 − 1)2 + 2w2
1 − 2v1

s.t. v1 ≥ 0,
minw fl = (2w1 − 4)2 + (2w2 − 1)2 + v1w1,
s.t. 4v1 + 5w1 + 4w2 ≤ 12,

−4v1 − 5w1 + 4w2 ≤ −4,
4v1 − 4w1 + 5w2 ≤ 4,
−4v1 + 4w1 + 5w2 ≤ 4,
w1 ≥ 0, w2 ≥ 0,

Test Problem 7 [41]:

minv fu = (v− 5)2 + (2w + 1)2

s.t. v ≥ 0,
minw fl = (2w− 1)2 − 1.5vw,
s.t. −3v + w ≤ −3,

v− 0.5w ≤ 4,
v + w ≤ 7,
w ≥ 0.

Test Problem 8 [41]:

minv fu = v2
1 − 3v1 + v2

2 − 3v2 + w2
1 + w2

2
s.t. v1 ≥ 0, v2 ≥ 0,

minw fl = (w1 − v1)
2 + (w2 − v2)

2,
s.t. 0.5 ≤ w1 ≤ 1.5,

0.5 ≤ w2 ≤ 1.5,

Fractal Fract. 2022, 6, 412 27 of 29

Test Problem 9 [3]:
minv fu = 16v2 + 9w2

s.t. −4v + w ≤ 0,
v ≥ 0,

minw fl = (v + w− 20)4,
s.t. 4v + w− 50 ≤ 0,

w ≥ 0.

Test Problem 10 [3]:
minv fu = v3

1w1 + w2
s.t. 0 ≤ v1 ≤ 1,

minw fl = −w2
s.t. v1w1 ≤ 10,

w2
1 + v1w2 ≤ 1,

w2 ≥ 0.

Test Problem 11 [42]:

minv fu = 2v1 + 2v2 − 3w1 − 3w2 − 60
s.t. v1 + v2 + w1 − 2w2 ≤ 40,

0 ≤ v1 ≤ 50,
0 ≤ v2 ≤ 50,

minw fl = (w1 − v1 + 20)2 + (w2 − v2 + 20)2,
s.t. v1 − 2w1 ≥ 10,

v2 − 2w2 ≥ 10,
−10 ≤ w1 ≤ 20,
−10 ≤ w2 ≤ 20.

Test Problem 12 [3]:

minv fu = (v− 3)2 + (w− 2)2

s.t. −2v + w− 1 ≤ 0,
v− 2w + 2 ≤ 0,
v + 2w− 14 ≤ 0,
0 ≤ v ≤ 8,

minw fl = (w− 5)2

s.t. w ≥ 0.

Test Problem 13 [42]:

minv fu = −v2
1 − 3v2

2 − 4w1 + w2
2

s.t. v2
1 + 2v2 ≤ 4,

v1 ≥ 0, v2 ≥ 0,
minw fl = 2v2

1 + w2
1 − 5w2,

s.t. v2
1 − 2v1 + 2v2

2 − 2w1 + w2 ≥ −3,
v2 + 3w1 − 4w2 ≥ 4,
w1 ≥ 0, w2 ≥ 0.

Test Problem 14 [42]:

minv fu = (v− 1)2 + (w− 1)2

s.t. v ≥ 0,
minw fl = 0.5w2 + 500w− 50vw

s.t. y ≥ 0.

Fractal Fract. 2022, 6, 412 28 of 29

Test Problem 15 [42]:

minv fu = −8v1 − 4v2 + 4w1 − 40w2 − 4w3
s.t. v1 ≥ 0, v2 ≥ 0

minw fl = v1 + 2v2 + w1 + w2 + 2w3,
s.t. w2 + w3 − w1 ≤ 1,

2v1 − w1 + 2w2 − 0.5w3 ≤ 1,
2v2 + 2w1 − w2 − 0.5w3 ≤ 1,
wi ≥ 0, i = 1, 2, 3.

Test Problem 16 [42]:

minv fu = −8v1 − 4v2 + 4w1 − 40w2 − 4w3
s.t. v1 ≥ 0, v2 ≥ 0

minw fl =
1+v1+v2+2w1−w2+w3

6+2v1+w1+w2−3w3
,

s.t. −w1 + w2 + w3 + w4 = 1,
2v1 − w1 + 2w2 − 0.5w3 + w5 = 1,
2v2 + 2w1 − w2 − 0.5w3 + w6 = 1,
wi ≥ 0, i = 1, . . . , 6.

Author Contributions: B.E.: Conceptualization and software G.A.: formal analysis and writing. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The author would like to thank the anonymous referees for their valuable
comments and suggestions which have helped to greatly improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bialas, W.; Karwan, M. On two-level optimization. IEEE Trans. Autom. Control. 1982, 27, 211–214. [CrossRef]
2. Dempe, S. Foundation of Bilevel Programming; Kluwer Academic: London, UK, 2002.
3. Gumus, H.; Flouda, A. Global Optimization of Nonlinear Bilevel Programming Problems. J. Glob. Optim. 2001, 20, 1–31.

[CrossRef]
4. Muu, D.; Quy, N. A Global Optimization Method for Solving Convex Quadratic Bilevel Programming Problems. J. Glob. Optim.

2003, 26, 199–219. [CrossRef]
5. Abo-Elnaga, Y.; El-Shorbagy, M. Multi-Sine Cosine Algorithm for Solving Nonlinear Bilevel Programming Problems. Int. J.

Comput. Intell. Syst. 2020, 13, 421–432. [CrossRef]
6. Abo-Elnaga, Y.; Nasr, S. Modified Evolutionary Algorithm and Chaotic Search for Bilevel Programming Problems. Symmetry

2020, 12, 727. [CrossRef]
7. Falk, J.; Liu, J. On bilevel programming, Part I: General nonlinear cases. Math. Program. 1995, 70, 47–72. [CrossRef]
8. Ma, L.; Wang, G. A Solving Algorithm for Nonlinear Bilevel Programing Problems Based on Human Evolutionary Model.

Algorithms 2020, 13, 260. [CrossRef]
9. Savard, G.; Gauvin, J. The steepest descent direction for the nonlinear bilevel programming problem. Oper. Res. Lett. 1994, 15,

265–272. [CrossRef]
10. Edmunds, T.; Bard, J. Algorithms for nonlinear bilevel mathematical programs. IEEE Trans. Syst. Man Cybern. 1991, 21, 83–89.

[CrossRef]
11. El-Sobky, B.; Ashry, G. An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem. AIMS Math.

2022, 7, 5534–5562. [CrossRef]
12. Chen, J. The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem.

J. Glob. Optim. 2006, 36, 565–580. [CrossRef]
13. Chen, J. On some NCP-functions based on the generalized Fischer–Burmeister function. Asia-Pac. J. Oper. Res. 2007, 24, 401–420.

[CrossRef]
14. Chen, J.; Pan, S. A family of NCP-functions and a descent method for the nonlinear complementarity problem. Comput. Optim.

Appl. 2008, 40, 389–404. [CrossRef]

http://doi.org/10.1109/TAC.1982.1102880
http://dx.doi.org/10.1023/A:1011268113791
http://dx.doi.org/10.1023/A:1023047900333
http://dx.doi.org/10.2991/ijcis.d.200411.001
http://dx.doi.org/10.3390/sym12050767
http://dx.doi.org/10.1007/BF01585928
http://dx.doi.org/10.3390/a13100260
http://dx.doi.org/10.1016/0167-6377(94)90086-8
http://dx.doi.org/10.1109/21.101139
http://dx.doi.org/10.3934/math.2022307
http://dx.doi.org/10.1007/s10898-006-9027-y
http://dx.doi.org/10.1142/S0217595907001292
http://dx.doi.org/10.1007/s10589-007-9086-0

Fractal Fract. 2022, 6, 412 29 of 29

15. Facchinei, F.; Jiang, H.; Qi, L. A smoothing method for mathematical programming with equilibrium constraints. Math. Program.
1999, 85, 107–134. [CrossRef]

16. Byrd, R.; Hribar, M.; Nocedal, J. An interior point algorithm for largescale nonlinear programming. SIAM J. Optim. 1999, 9,
877–900. [CrossRef]

17. Byrd, R.; Gilbert, J.; Nocedal, J. A trust region method based on interior point techniques for nonlinear programming. Math.
Program. 2000, 89, 149–185. [CrossRef]

18. Bazaraa, M.; Sherali, H.; Shetty, C. Nonlinear Programming Theory and Algorithms; John Wiley and Sons: Hoboken, NJ, USA, 2006.
19. Curtis, F.E.; Schenk, O.; Wachter, A. An interior-point algorithm for large-scale nonlinear optimization with inexact step

computations. Siam J. Sci. Comput. 2010, 32, 3447–3475. [CrossRef]
20. Esmaeili, H.; Kimiaei, M. An efficient implementation of a trust-region method for box constrained optimization. J. Appl. Math.

Comput. 2015, 48, 495–517. [CrossRef]
21. El-Sobky, B. A Multiplier active-set trust-region algorithm for solving constrained optimization problem. Appl. Math. Comput.

2012, 219, 127–157. [CrossRef]
22. El-Sobky, B. An active-set interior-point trust-region algorithm. Pac. J. Optim. 2018, 14, 125–159. [CrossRef]
23. El-Sobky, B.; Abotahoun, A. An active-set algorithm and a trust-region approach in constrained minimax problem. Comput. Appl.

Math. 2018, 37, 2605–2631. [CrossRef]
24. El-Sobky, B.; Abotahoun, A. A trust-region Algorithm for Solving Mini-Max Problem. J. Comput. Math. 2018, 36, 881–902.
25. El-Sobky, B.; Abouel-Naga, Y. A penalty method with trust-region mechanism for nonlinear bilevel optimization problem.

J. Comput. Appl. Math. 2018, 340, 360–374. [CrossRef]
26. El-Sobky, B.; Abo-Elnaga, Y.; Mousa, A.; El-Shorbagy, A. trust-region based penalty barrier algorithm for constrained nonlinear

programming problems: An application of design of minimum cost canal sections. Mathematics 2021, 9, 1551. [CrossRef]
27. Kouri, D.; Heinkenschloss, M.; Ridzal, D.; van Waanders, B. A trust-region Algorithm with Adaptive Stochastic Collocation for

PDE Optimization under Uncertainty. SIAM J. Sci. Comput. 2020, 35, 1847–1879. [CrossRef]
28. Li, N.; Xue, D.; Sun, W.; Wang, J. A stochastic trust-region method for unconstrained optimization problems. Math. Probl. Eng.

2019, 2019, 8095054. [CrossRef]
29. Niu, L.; Yuan, Y. A new trust region algorithm for nonlinear constrained optimization. J. Comput. Math. 2020, 28, 72–86.
30. Wang, X.; Yuan, Y. A trust region method based on a new affine scaling technique for simple bounded optimization. Optim.

Methods Softw. 2013, 28, 871–888. [CrossRef]
31. Wang, X.; Yuan, Y. An augmented Lagrangian trust region method for equality constrained optimization, Optim. Methods Softw.

2015, 30, 559–582. [CrossRef]
32. Zeng, M.; Ni, Q. A new trust region method for nonlinear equations involving fractional mode. Pac. J. Optim. 2019, 15, 317–329.
33. Byrd, R. Robust trust-region methods for nonlinearly constrained optimization. In Proceedings of the Second SIAM Conference

on Optimization, Houston, TX, USA, 18–20 May 1987 .
34. Omojokun, E. Trust-Region Strategies for Optimization with Nonlinear Equality and Inequality Constraints. Ph.D. Thesis,

Department of Computer Science, University of Colorado, Boulder, CO, USA, 1989.
35. El-Sobky, B.; Abouel-Naga, Y. Multi-objective optimal load flow problem with interior-point trust-region strategy. Electr. Power

Syst. Res. 2017, 148, 127–135. [CrossRef]
36. Dennis, J.; El-Alem, M.; Williamson, K. A trust-region approach to nonlinear systems of equalities and inequalities. SIAM J.

Optim. 1999, 9, 291–315. [CrossRef]
37. Dennis, J.; Heinkenschloss, M.; Vicente, L. trust-region interior-point SQP algorithms for a class of nonlinear programming

problems. SIAM J. Control. Optim. 1998, 36, 1750–1794. [CrossRef]
38. Bard, J.F. Convex two-level optimization. Math. Program. 1988, 40, 15–27. [CrossRef]
39. Oduguwa, V.; Roy, R. Bi-level optimization using genetic algorithm. In Proceedings of the IEEE international Conference

Artificial Intelligence Systems, Divnomorskoe, Russia, 5–10 September 2002; pp. 123–128.
40. Shimizu, K.; Aiyoshi, E. A new computational method for Stackelberg and min-max problems by use of a penalty method. IEEE

Trans. Autom. Control 1981, 26, 460–466. [CrossRef]
41. Li, H.; Jiao, Y.; Zhang, L. Orthogonal genetic algorithm for solving quadratic bilevel programming problems. J. Syst. Eng. Electron.

2010, 21, 763–770. [CrossRef]
42. Wang, Y.; Jiao, Y.; Li, H. An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-

Handling scheme. IEEE Trans. Syst. Man Cybern. Part C 2005, 35, 221–232. [CrossRef]

http://dx.doi.org/10.1007/s10107990015a
http://dx.doi.org/10.1137/S1052623497325107
http://dx.doi.org/10.1007/PL00011391
http://dx.doi.org/10.1137/090747634
http://dx.doi.org/10.1007/s12190-014-0815-0
http://dx.doi.org/10.1016/j.amc.2012.06.072
http://dx.doi.org/10.1016/j.joems.2016.04.003
http://dx.doi.org/10.1007/s40314-017-0468-3
http://dx.doi.org/10.1016/j.cam.2018.03.004
http://dx.doi.org/10.3390/math9131551
http://dx.doi.org/10.1137/120892362
http://dx.doi.org/10.1155/2019/8095054
http://dx.doi.org/10.1080/10556788.2011.622378
http://dx.doi.org/10.1080/10556788.2014.940947
http://dx.doi.org/10.1016/j.epsr.2017.03.014
http://dx.doi.org/10.1137/S1052623494276208
http://dx.doi.org/10.1137/S036012995279031
http://dx.doi.org/10.1007/BF01580720
http://dx.doi.org/10.1109/TAC.1981.1102607
http://dx.doi.org/10.3969/j.issn.1004-4132.2010.05.008
http://dx.doi.org/10.1109/TSMCC.2004.841908

	Introduction
	Active-Set with Trust-Region Technique
	A Trust-Region Technique
	Fischer–Burmeister Active-Set Trust-Region Algorithm

	Global Convergence Analysis
	A Standard Assumptions
	Main Lemmas
	Convergence When the Positive Parameter rk
	Global Convergence When rk Is Bounded
	 Main Results for Global Convergence

	Numerical Results and Comparisons
	Conclusions
	References

