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Abstract: This study establishes a compartment model for the categorized COVID-19 risk area. In
this model, the compartments represent administrative regions at different transmission risk levels
instead of individuals in traditional epidemic models. The county-level regions are partitioned into
High-risk (H), Medium-risk (M), and Low-risk (L) areas dynamically according to the current number
of confirmed cases. These risk areas are communicable by the movement of individuals. An LMH
model is established with ordinary differential equations (ODEs). The basic reproduction number
R0 is derived for the transmission of risk areas to determine whether the pandemic is controlled.
The stability of this LHM model is investigated by a Lyapunov function and Poincare–Bendixson
theorem. We prove that the disease-free equilibrium (R0 < 1) is globally asymptotically stable and
the disease will die out. The endemic equilibrium (R0 > 1) is locally and globally asymptotically
stable, and the disease will become endemic. The numerical simulation and data analysis support the
previous theoretical proofs. For the first time, the compartment model is applied to investigate the
dynamics of the transmission of the COVID-19 risk area. This work should be of great value in the
development of precision region-specific containment strategies.

Keywords: COVID-19; LMH epidemic model; Lyapunov function; Dulac criterion; Poincare–Bendixson
theorem; data analysis

1. Introduction

According to the viewpoints of some researchers, the COVID-19 pandemic seems to
be approaching its end [1,2]. The COVID-19 pandemic is becoming endemic as the omicron
variant can infect most populations rapidly. Hence, many governments have already lifted
the stringent containment strategies such as mandatory isolation or quarantine. Public
services have reopened, and travel restrictions have been relaxed. Compared to eliminating
COVID-19 infections, some governments adopted mitigation strategies to minimize COVID-
19 deaths by increasing vaccination rates and protecting the vulnerable [3].

In contrast, to prevent the spread of COVID-19 and minimize the related deaths,
the Chinese government insists on very stringent containment policies [4]. Many accusa-
tions have been raised about the economic compromise and physical or mental sacrifices
due to the intensive restrictions, in particular the “lockdown”. This study provides a
new mathematical interpretation of a major Chinese containment strategy to avoid some
misunderstandings. Based on the confirmed cases within the region, the county-level
administrative divisions (counties or districts) are divided into three risk-related classi-
fications (i.e., High-risk area, Medium-risk area, and Low-risk area). According to the
document “Guidance on scientific prevention and precise control of the COVID-9 epidemic
in a categorized manner” announced by the State Council of China [5], the districts with
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over 50 cumulative cases currently and a cluster of infected cases within 14 days are defined
as High-risk areas. The districts with less than 50 cumulative cases or without a cluster
of infected cases are defined as Medium-risk areas. The districts without confirmed cases
are defined as Low-risk areas. Different containment policies are implemented in the
three types of risk areas. In the High-risk areas, stringent strategies must be adopted to
contain the spreading of COVID-19, and medical resources should be reinforced to save
critically ill patients. However, in the Low-risk areas, social and economic activities are
not affected. Only precautions such as face mask wearing are recommended to prevent
potential COVID-19 transmissions.

Many studies have been carried out on the dynamics of COVID-19 transmission among
populations [6,7]. However, few mathematical models focus on the effects of regional clas-
sification on the epidemic spreading. Often, compartment models established by ordinary
differential equations (ODEs) or partial differential equations (PDEs) are employed to simu-
late the epidemic trends and analyze the effects of containment strategies indirectly [8–10].
In these models, individuals of the populations are divided into several compartments
such as susceptible, infected, or more complex categories [11,12]. The effectiveness of
non-pharmaceutical interventions is manifested by the variations of reproduction numbers,
transmission parameters, and the number of infected cases.

Further, systems composed of SDEs or PDEs are established to achieve a better simu-
lation for the realistic scenario, considering the spatial diffusion of the epidemic [13–16].
The parameters of the COVID-19 epidemic model vary with environmental fluctuations
and stochasticity. It is reasonable to consider how environmental noise affects the transmis-
sion of COVID-19 epidemics. Thus, the SDE system adopts white noise to investigate the
effect of stochastic environmental changes on the spreading of COVID-19 in the population.
However, the basic ODE models must be investigated first since they are the framework
and foundation of the SDE models. In the compartment models composed of PDE systems,
the variation of individual compartments depends not only on time, but also on the differ-
ent population densities. The effect of population density on the spread of COVID-19 has
been analyzed. However, specific information related to both time and space is needed.
The amount of data required is relatively large for the analysis, and the solutions are
complicated. Thus, these studies based on PDE systems still remain at an early stage. Based
on the established compartment models, the stability of these epidemic systems [17–21] is
investigated to provide a theoretical foundation for the containment strategies.

In viewing the risk area classification and motivated by dividing individuals into
different groups in a traditional compartment model, we establish an epidemic model to
characterize the variation of COVID-19 risk areas. The regions of the same risk level are
classified into a compartment instead of the individuals. The basic reproduction number
R0 is derived for the “transmission” among risk areas. To the best of our knowledge, no
similar approaches have been established to study the implementation of containment
strategies. Further, local and global stability analyses are carried out for this new system
characterizing the transmission of regions.

The remaining part of this study is structured as follows: Section 2 introduces the
LMH model and parameters. The stability of the disease-free and endemic equilibrium is
investigated in Section 3. Data analysis is carried out in Section 4 to support the proof. We
conclude this study in Section 5.

2. The LMH Model and Equilibrium
2.1. LMH Model Description

As described in the Introduction, three different levels of risk areas are divided based
on the official standard from the disease control department (Figure 1). In this proof-of-
concept model, a system established by ODEs is presented to characterize the dynamic
behavior of the risk areas:
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
dL
dt = −β1ML− β2HL + γM

dM
dt = α(β1M + β2H)L− γM− µM + δH
dH
dt = (1− α)(β1M + β2H)L + µM− δH

(1)

where L, M, and H denote the number of Low-risk, Medium-risk, and High-risk areas
at time t, respectively. β1 represents the transition rate of Low-risk areas to Medium-risk
areas by contacting the Medium-risk areas. The concept of “contact” is assumed to be the
movement of unidentified individual cases between the areas in this model. β2 represents
the transition rate of Low-risk areas to Medium-risk areas by contacting the High-risk areas.
α is the proportion of Low-risk areas transiting to Medium-risk areas, and 1− α represents
transiting to High-risk areas. µ and γ are the transition rates from Medium-risk areas to
High-risk and Low-risk areas. δ is the transition rate from High-risk areas to Medium-risk
areas. In traditional epidemic models, the transition from one compartment to another is
usually uni-directional. However, in this model, the interactions between compartments
are reciprocal processes based on the containment policies, which brings more difficulties
to investigating the stability of the system.

L

M

H

α(
β 1
M
+
β 2
H
)

µγ

δ

(1− α)(β1M + β2H)

Figure 1. Illustration of the dynamic behavior of the LMH model.

Since the number of the total county-level districts is a constant N, we set

x =
L
N

, y =
M
N

, z =
H
N

(2)
dx
dt = −β1yx− β2zx + γy
dy
dt = α(β1y + β2z)x− γy− µy + δz
dz
dt = (1− α)(β1y + β2z)x + µy− δz

(3)

and
x + y + z = 1. (4)

2.2. Reproduction Number and Equilibrium of the Model

Disease-free equilibrium (DFE) is adopted from the traditional epidemic models. In
this scenario dividing regions into different risk level areas, a DFE should illustrate that no
Medium-risk or High-risk areas exist. By setting the derivatives of each compartment as
zero, it can be derived:

ẋ = ẏ = ż = 0. (5)

A DFE of the system (3) always exists at

E0 = (1, 0, 0). (6)
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We also adopt the concept of the reproduction number (R) in this epidemic system.
Here, the basic reproduction number (R0) of System (1) is assumed to be the average
number of uplifting risk areas by contact with a Medium- or High-risk area. R0 is achieved
as the spectral radius of FV−1 ([22]):

F−V : F =

[
αβ1 αβ2

(1− α)β1 (1− α)β2

]
, V =

[
γ + µ −δ
−µ δ

]
(7)

R0 = ρ(FV−1) =
β1

γ
+

β2µ

γδ
+

ηβ2

δ
(8)

where η = 1− α.
The system (1) has a unique DFE at E0 as R0 6 1 and a unique endemic equilibrium

(EE) at E∗ as R0 > 1. By solving (5), E∗ (x∗, y∗, z∗) can be derived when R0 > 1:

x∗ =
1

R0
, y∗ =

δ

γη + µ + δ

R0 − 1
R0

, z∗ =
γη + µ

δ
y∗. (9)

In the following section, the global stability of the DFE and EE is discussed. The
biologically feasible domain for (x, y, z) is

Ω =
{
(x, y, z) ∈ R3

+ : x + y + z = 1
}

(10)

3. Global Stability of the DFE

Theorem 1. The DFE E0 of System (3) is globally asymptotically stable if R0 6 1.

Proof. A Lyapunov function is established by the following:

L0 =
β1

γ
y +

β2µ

δγ
y +

β2

δ
z +

β1

γ
z +

β2µ

δγ
z (11)

The derivative of the Lyapunov function L0 can be derived

dL0

dt
= β1y(

β1

γ
x +

β2α

δ
x +

β2µ

δγ
x− 1) + β2z(

β1

γ
x +

β2α

δ
x +

β2µ

δγ
x− 1)

= (β1y + β2z)(xR0 − 1) 6 0
(12)

If R0 < 1, the equality dL0
dt = 0 implies that y = z = 0 and yields x = 1. Thus,

the invariant set on which dL0
dt only contains the point E0.

If R0 = 1, the equality dL0
dt = 0 implies that x = 1. Thus, y = 0 and z = 0. As derived

previously, each of the cases indicates that the DEF E0 is the only invariant set on {(x, y, z) ∈
Ω : dL0

dt = 0}.
Therefore, when R0 < 1 or R0 = 1, the largest invariant set on {(x, y, z) ∈ Ω : dL0

dt = 0}
always consists of the singleton E0 = (1, 0, 0). By LaSalle’s invariant principle, the DFE is
globally asymptotically stable in Ω if R0 6 1

4. Local and Global Stability of the EE

In this section, we applied Dulac’s criterion and the Poincare–Bendixson theorem to
analyze the global stability of the EE of the system (3). At first, we set

x = 1− y− z. (13)

The system (3) can be converted to{
ẏ = −αβ1y2 − (αβ1 + αβ2)yz− αβ2z2 + (αβ1 − γ− µ)y + (αβ2 + δ)z

ż = −ηβ1y2 − (ηβ1 + αβ2)yz− ηβ2z2 + (ηβ1 + µ)y + (ηβ2 − δ)z
(14)
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Theorem 2. The EE E∗ of system (14) is locally asymptotically stable if R0 > 1.

Proof. The Jacobian matrix for System (14) determined at E∗ is

J(E∗) =
[

αA− γ− µ αB + δ
ηA + µ ηB− δ

]
(15)

where η = 1− α, A = β1x∗ − γ
y∗
x∗ , B = β2x∗ − γ

y∗
x∗ . The characteristic equation of J(E∗) is

given by

λ2 + (δ− B + γ + µ− Aα + Bα)λ− Aδ− Bγ− Bµ + δγ + Bαγ = 0 (16)

Due to

δ + γ + µ− Aα− ηB =
1

β1δ + β2µ + ηβ2γ
C +

γδ

γη + µ + δ
(R0 − 1) (17)

and
− Aδ− Bγ− Bµ + δγ + Bαγ = δγ(R0 − 1), (18)

where
C = β1δ2 + β1δµ + ηβ1δγ + β2µδ + β2µ2 + β2µγ + ηβ2γµ + ηβ2γ2. (19)

Thus, the real part of the two roots of the above equation is negative if R0 > 1. Hence,
the EE E∗ is locally asymptotically stable if R0 > 1.

Then, we shall prove the global stability of the EE E∗ whenever it exists, using the
Dulac criterion and the Poincare–Bendixson theorem.

Theorem 3. If R0 > 1, the unique EE E∗ of System (14) is globally asymptotically stable in the
interior of Ω.

Proof. We first rule out periodic orbits in Ωo using Dulac’s criterion [23,24]. We construct a
Dulac function:

Φ(y, z) =
1
yz

, y > 0, z > 0. (20)

The right-hand side of Equation (14) is represented by P(y, z) and Q(y, z). We have

∂Φ(y, z)P(y, z)
∂y

= −αβ1
1
z
+ αβ2

z
y2 − (αβ2 + δ)

1
y2 (21)

∂Φ(y, z)Q(y, z)
∂z

= ηβ1
y
z2 − ηβ2

1
y
− (ηβ1 + µ)

1
z2 (22)

and

∂Φ(y, z)P(y, z)
∂y

+
∂Φ(y, z)Q(y, z)

∂z

= −αβ1
1
z
+ αβ2

z
y2 − (αβ2 + δ)

1
y2 + ηβ1

y
z2 − ηβ2

1
y
− (ηβ1 + µ)

1
z2

= −αβ1
1
z
+ αβ2

z− 1
y2 − δ

1
y2 + ηβ1

y− 1
z2 − ηβ2

1
y
− µ

1
z2

< 0,

(23)

for all y > 0, z > 0. Thus, System (14) does not have a limit cycle in Ωo. According
to Theorem 2, if R0 > 1 holds, then E∗ is locally asymptotically stable. By applying the
classical Poincare–Bendixson theorem [23], the unique EE E∗ is globally asymptotically
stable in Ω.
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5. Data Analysis

In this section, we conduct numerical simulations and real-world data application
using this model. As demonstrated in Figure 2a, it can be noted that when R0 < 1
(R0 = 0.47), the proportions of Medium-risk (y) or High-risk (z) areas gradually approach
0 within half a year. The proportion of Low-risk areas (x) rises towards 1, indicating all
areas will turn into Low-risk areas.

In the case R0 > 1 (R0 = 2.37; Figure 2b), the proportion of Low-risk areas x reaches
0.43 along with time (blue line); the proportion of Medium-risk areas y approaches 0.48
(orange line); the proportion of High-risk areas z reaches 0.09 (yellow line). The proportions
of Medium- and High-risk areas approach stable non-zero values, illustrating that Medium-
and High-risk areas will remain persistent.

Figure 2. Numerical simulation of this model. (a) The dynamic trend of the proportion of Low-,
Medium-, and High-risk areas at R0 = 0.47. The Medium- and High-risk areas gradually diminish.
(b) The dynamic trend of the proportion of Low-, Medium-, and High-risk areas at R0 = 2.37.
The proportion of the Medium-risk areas approaches 0.48, and the proportion of the High-risk areas
approaches 0.09.

Further, the phase portraits of (y, z) lines are plotted in Figure 3 for R0 < 1(R0 = 0.47)
and R0 > 1(R0 = 2.37). The horizontal axis denotes y, and the vertical axis denotes z.
For any trajectories in Figure 3a, the (y, z) converges to (0, 0). All the Medium- or High-risk
areas will turn into Low-risk areas regardless of the initial conditions. The DFE point (1,0,0)
is stable, as we proved in the previous section. On the other hand, at R0 = 2.37, shown
in Figure 3b, (y,z) trajectories approach the point (0.48,0.09). Hence, the High-risk and
Medium-risk areas will persist and remain stable. As we proved, the solution of the system
is an endemic equilibrium at R0 > 1.

In addition, the real data in China were used to perform the simulation of the model
(Figure 4). The High- and Medium-risk areas since 1 March 2022 for 60 days were collected
from the Chinese National Council App [25]. The data were fit with the established LMH
model using a nonlinear equation solver in MATLAB. The data are the variation of the
proportion of Medium- and High-risk areas along with time. The yellow star dots represent
the real proportion of Medium-risk areas, and the violet cross symbols represent the
proportion of real High-risk areas. The lines are the data-fitting results of the LHM model.
The blue line represents the numerical proportion of Medium-risk areas, and the red line
is the proportion of High-risk areas. R0 for the transmission of risk areas was determined
to be 3.01 by the real data analysis. Since R0 > 1, the High- or Medium-risk areas should
persist, as proven in the previous section, which calls for a more effective containment
policy if the goal is to achieve a disease-free equilibrium. Otherwise, if maintaining
R0 > 1, the containment strategies could be optimized to improve the efficiency of medical
resources’ utilization at an endemic equilibrium and protect the vulnerable.
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Figure 3. Two-dimensional phase diagrams of (y, z) trajectories. (a) Every (y, z) line at different initial
conditions approaches the origin with R0 = 0.47. The diminishing of the Medium- and High-risk
areas illustrates the effective control of COVID-19. (b) The (y, z) lines converge to a non-zero point
(0.48, 0.09) at R0 = 2.37, which agrees with the previous proof of a stable endemic equilibrium when
R0 > 1.

Figure 4. The simulation of the risk area transmission since 1 March 2022 in China. The stars
and crosses represent the real Medium-risk and High-risk areas. The lines represent numerical
Medium-risk and High-risk areas fit with the model.

6. Discussion and Conclusions

In this work, we bring a novel approach to directly simulate the dynamics of risk
area variation, as classified by the Chinese containment strategy. In this model, the same
level of risk areas are denoted as one compartment, and the communication between the
compartments is bi-directional. By using a similar idea as the epidemic compartment
model, an LMH model was established to characterize the dynamic transition of areas with
different levels of risk. The concept of the basic reproduction number was adopted for
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the transmission from Low-risk areas to Medium- or High-risk areas. We also determined
two equilibria, DFE and EE. The stability analysis was carried out for the two equilibria.
By constructing a Lyapunov function, the DFE was proven to be globally asymptotically
stable for R0 < 1. Using the Dulac criterion and the Poincare–Bendixson theorem, the global
stability of the EE was obtained for R0 > 1. After the proof, the Medium- or High-risk
areas will decrease to 0 with R0 < 1, but persist with R0 > 1 in the numerical simulation.
The stability of the two equilibria was also demonstrated by the convergence of trajectories
in the phase portraits.

By this investigation, the application of the compartment model was extended for
the epidemic transmission simulation for the first time to our knowledge. For health-
care policymakers, the division of risk areas with different control measures can facilitate
the scheduling and optimization of medical resources under the assistance of this model.
The data-driven model of risk regions should be used to adjust and predict the parameters
related to epidemic containment. The containment strategy can be optimized for different
levels of risk areas according to the spreading rate. Furthermore, the definition of High-,
Medium-, and Low-risk regions can be adjusted according to the changes in risk regions
with sufficient data and feedback from the calculated results. It is also possible to add more
compartments to the model and change the parameters of the dynamical system for more
precise control of High-risk areas spreading. Furthermore, the data and reference infor-
mation obtained from the current epidemic modeling work should be informative for the
next pandemic. Existing compartment models predict and control epidemic development
among populations in an entire region. This current risk area transmission model is unique.
It focuses on the development of the risk region, which can later be applied for adopting
specific containment strategies according to the risk level. As for the case when this model
should not be applied, first, local healthcare policymakers using the model should have
the capacity to schedule and allocate medical resources (e.g., testing, vaccination, medical
personnel, supplies, etc.). Furthermore, their willingness to deploy medical resources is
essential. The authorities should not use the model without the capacity to allocate medical
resources or insist on optimizing containment strategies.

As an initial investigation, this work suffers from some limitations. This ODE-based
model can be used to analyze the dynamic change in the number of High-risk areas. In the
following studies, PDEs can be applied to predict the spatial variation of High-risk areas.
Furthermore, it should be noted that the risk area segregation becomes smaller and more
precise. The current model is only for the initial validation and proof of concept. It can offer
theoretical guidance for the analysis of a region-specific strategy in COVID-19 containment.
This model is unique in analyzing the “transmission” of risk areas using a three-dimensional
system. If the number of compartment groups is reduced, the model will become simpler, but
the model’s accuracy may be sacrificed or it may not be able to provide guidance on specific
containment strategies precisely for different areas. On the other hand, if adopting more risk
region groupings, the model will become more complex, and the system’s dynamics will change
accordingly. The theoretical proof and simulation driven by real-world data should be more
challenging to investigate. Under a more effective and complex model, policymakers could
optimize the containment strategies for different regions more precisely and allocate medical
resources more efficiently under a more effective complex model. The risk areas should be
smaller in an optimized model for precise control of a pandemic in future investigations.
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