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Abstract: Fractals are geometric shapes and patterns that can describe the roughness (or irregularity)
present in almost every object in nature. Many fractals may repeat their geometry at smaller or larger
scales. This paper is the second (and last) part of a series of two papers dedicated to an eclectic survey
of fractals describing the infinite complexity and amazing beauty of fractals from historical, theoretical,
mathematical, aesthetical and technological aspects, including their diverse applications in various
fields. In this article, our focus is on engineering, industrial, commercial and futuristic applications of
fractals, whereas in the first part, we discussed the basics of fractals, mathematical description, fractal
dimension and artistic applications. Among many different applications of fractals, fractal landscape
generation (fractal landscapes that can simulate and describe natural terrains and landscapes more
precisely by mathematical models of fractal geometry), fractal antennas (fractal-shaped antennas
that are designed and used in devices which operate on multiple and wider frequency bands) and
fractal image compression (a fractal-based lossy compression method for digital and natural images
which uses inherent self-similarity present in an image) are the most creative, engineering-driven,
industry-oriented, commercial and emerging applications. We consider each of these applications in
detail along with some innovative and future ready applications.

Keywords: fractals; iterated function system; fractal landscapes; fractal antenna; fractal image
compression; fractal batteries; fractal capacitors; fractal solar panels

1. Introduction

Mandelbrot conceived the term ‘Fractal’ (in 1975) from the Latin word fractus, which
means “broken” or “fractured” to describe irregular geometries in mathematics and in
nature. Fractals are geometric objets that may repeat their geometry at smaller (or larger)
scales due to the inherent self-similarity present in the object. Among several examples of
well-known fractals, some classical examples are the Cantor set, the Sierpinski triangle, the
Koch curve, the Mandelbrot set and Julia sets.

Many natural and man-made objects can be characterized using the classical Euclidean
geometry and have integer dimension. However, the random geometry of natural objects
such as a fern leaf, branching in human lungs, flowering head of broccoli, lightening
during a storm, turbulence in a terrestrial body, coastlines, etc. can only be described more
precisely using fractal geometry, and they have a non-integer fractal dimension.

Several hundred research articles are available in the literature covering various aspects
of fractals including their mathematical development, scientific importance, engineering
and industry applications. However, only a few references exists that cover a broader
spectrum of fractals in one place, and most of these are in the form of monographs. Our
prime objective of this survey is to provide a unified review of the work completed (over the
past 5 decades) in the ever-growing field of fractal geometry covering length and breadth
at once that will assist readers from various fields of academic and industry.
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This comprehensive survey is written with the intent of providing a collative review
of recent research, developments, and applications of fractals in a series of two papers. In
Part-I [1], we covered a brief mathematical description of fractals, fractal dimension (which
is usually a non-integer characteristic number attached to every fractal in contrast with
Euclidean dimension) and applications of fractals in arts, tessellations, fashion designing,
and other emerging fields such as econophysics, etc. This article is the second and last part
of this survey with the aim of exploring engineering, industrial and commercial applications
(including recent developments) of fractals in fractal landscapes, fractal antennas, fractal
image compression, fracture mechanics and other evolving future applications of scientific
and engineering research. We will see several fractal innovations which are making a great
impact in modern technologies and will remain open for explorations in the future as well.

The article starts with an introduction to one of the most amazing discoveries in math-
ematics, namely the Mandelbrot set in Section 2. The space of fractals (the mathematical set
where fractals live) and other elementary concepts are introduced in brief to give a flavor
of the mathematics behind fractals to the reader, although the article is easy to follow by
the majority of the scientific community without deeper understanding of mathematics.

Fractals are widely used for rendering landscapes in the computer graphics industry.
The advent of fractal landscapes in computer graphics goes to Mandelbrot, who was the
first to identify the similarity between the trace of fractional Brownian motion over time
and the skyline of jagged mountain peaks [2] and explained the connection between visual
approximation of natural mountains with the two-dimensional Brownian surfaces. This
approach was implemented by Mandelbrot in [3] with the earliest computer graphics
images of such surfaces and for the creation of fractal coastlines. Natural landscapes
contain fractal characteristics and statistically self-similarity or self-affinity. In Section 3, we
consider fractal landscapes, and standard algorithms for generating fractal landscapes are
discussed.

In today’s technology-driven world, antennas form an indispensable part of our life.
They are used in cell phones, TV, radio, radars, WI-FI, IOT, bluetooth devices, and so
on. There has been an incredible demand for the design of antennas that are compact
and multiband or broadband. Properties of fractals can be exploited to achieve these
multiple characteristics in a single antenna. Traditional antenna designs are based on
Euclidean geometries; however, innovative antenna designs have emerged by exploiting
the inherent self-similarity and space-filling properties of fractals. A fractal antenna is a
revolutionary innovation in telecommunications. Fractal-shaped antennas have a large
effective length, small size, and reduced weight with performance parameters, owing to the
special geometry and compact structure of fractal shapes. Section 4 gives a detailed survey
of different types of existing fractal antenna introduced over the last 2–3 decades along
with historical developments and their applications in various communication systems.

Another important application of fractals is found in compressing data (e.g., images,
music, and videos). Images are stored as a collection of bits representing pixels on a
computer, and storing a collection of images requires large memory. This problem can be
addressed using various image compression techniques that exist. Fractal Image Com-
pression (FIC) is a powerful and evolving image compression technique, which is based
on fractal coding that exploits the self-similarity property of an image. FIC is simple
to implement, provides high compression ratios and fast decompression with the only
drawback of slow compression. Barnsley introduced the fractal image compression in
1987, who founded Iterated Systems Inc. (a pioneer company in fractal image compression
technology). In Section 5, we discuss various aspects, algorithms and applications of fractal
compression.

Fracture mechanics is the study of propagation of cracks or failures of the structures in
materials, and it is an important tool to improve the performance and quality of mechanical
components. Mandelbrot was the first to interrelate the crack propagation and other
fracture properties with the fractal geometry. He introduced the method of slit island
analysis on the fracture surface to find fracture dimensions. Characteristics of the fractal
geometry such as self-similarity (or self-affinity), scale invariance and fractal dimension
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have offered great help to analyze irregular or fractional shapes of fracture mechanics.
Section 6 discusses these aspects in more details.

Finally, in Section 7, biological applications of fractals are discussed with particular
emphasis on ophthalmology. Other emerging applications of fractals such as fractal batter-
ies, fractal electromagnets, fractal cooling chips, fractal PCBs, fractal solar panels, fractal
capacitors, and fractals in biometric applications are also given here.

The two-part survey is organized is such a way that a reader will enjoy reading
both parts independently without losing continuity and it will delight the readers with the
applications of fractals in emerging and innovative fields of current and future technologies.

2. Mathematics of Fractals

Figure 1 shows Benoît Mandelbrot’s eponymous set, which is popularly known as the
Mandelbrot set, which is a mathematical fractal. The Mandelbrot set is among the most
complex sets in mathematics and the best-known examples of mathematical visualization,
self-similarities, and delightful patterns that are visible when we zoom on the set.

(a) (b)

Figure 1. The Mandelbrot set: (a) first image (1978) and (b) image generated by Mandelbrot (1980).

R. Brooks and P. Matelski published the first image (Figure 1a) of the Mandelbrot set
in the year 1978. Later, Mandelbrot plotted the true image of the Mandelbrot set on 1 March
1980 (Figure 1b). This set is obtained by plotting the complex numbers c in the simple
(quadratic) polynomial

fc(z) = z2 + c,

whose orbits remain bounded. Generalized Mandelbrot sets can also be plotted by consid-
ering the higher degree polynomials

fc(z) = zn + c, n > 1.

In Figure 2a–d, generalized Mandelbrot sets are displayed for n = 3, 4, 5 and 10.
We refer to [4] for an interesting work on generalized Mandelbrot sets with chaotic fea-
tures obtained by replacing z2 with Möbius transformations, transcendental functions, etc.
Some properties of these generalized sets are also discussed in contrast with the original
Mandelbrot set [4].

(a) (b) (c) (d)

Figure 2. Generalized Mandelbrot Sets for (a) n = 3 (b) n = 4, (c) n = 5 and (d) n = 10.
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The Mandelbrot set has become so popular that this set and its details (the Julia sets
which live on the boundary of the Mandelbrot set) can be seen on cloths, ceramic products,
tiles, hot air balloons, calenders, art prints, postcards, posters, commercials and so on. For
an incredible zoom on the Mandelbrot set, we refer to [5].

2.1. Space of Fractals

Let X be a non-empty set, a function d : X× X → R+ is called a metric or a distance
function on X if it satisfies

(i) d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y, ∀ x, y ∈ X,

(ii) d(x, y) = d(y, x), ∀ x, y ∈ X,

(iii) d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X.

The set X together with the function d is called a metric space, and it is denoted by
(X, d).

A metric space X is said to be complete if every Cauchy sequence is convergent in
X and a subset S ⊆ X is said to be compact if every infinite sequence of points in S
has a convergence subsequence. A complete metric space and its compact subsets are
fundamental tools to describe and understand fractal geometry, which is essentially the
classification, description, analysis and observations of subsets of metric spaces.

Definition 1. Let (X, d) be a complete metric space and H(X) be the set of non-empty compact
subsets of X. For any A, B ∈ H(X), define the distance between A and B by

h(A, B) = max{d(A, B), d(B, A)},

where d(A, B) = supx∈A infy∈B{d(x, y)}.

Then, it is easy to verify that h is a metric on H(X). This metric h is called the
Hausdorff metric onH(X), and the setH(X) is called the space of fractals equipped with
the Hausdorff metric h.

Theorem 1. The space (H(X), h) is a complete metric space.

Proof. See Barnsley [6] (Chapter 2).

Any subset of (H(X), h) is a mathematical fractal, although the Euclidean objects
such as rectangles, parallelograms, spheres and cylinders are not considered as fractals,
since they do not possesses self-similarity, but they are elements of (H(X), h) and can be
considered as (mathematical) fractals if there no confusion is likely to occur.

2.2. Iterated Function Systems and Attractors

Definition 2. A mapping or a transformation w : X → X on a metric space (X, d) is called a
contraction mapping if

d(w(x), w(y)) ≤ α d(x, y) ∀x, y ∈ X. (1)

for some constant 0 ≤ α < 1. The constant α is called contractivity factor of w.

Definition 3. A finite set of contraction mappings wi : X → X, where X is a metric space equipped
with the metric d having contractivity factors αi, for i = 1, 2, . . . , m is called an iterated function
system (IFS). The number

α = max
1≤i≤m

αi,

is called a contractivity factor of the IFS.
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Theorem 2 (Hutchinson [7]). Let {X, wi : i = 1, 2, . . . , m} be an IFS with contractivity factor α.
Then, the transformation W : H(X)→ H(X) defined by

W(B) =
m⋃

i=1

wi(B), (2)

for all B ∈ H(X) is a contraction mapping onH(X, h(d)) with contractivity factor α.

Therefore, by the contraction mapping theorem, the mapping W has a unique fixed
point A ∈ H(X) given by

A = lim
n→∞

W◦n(B), B ∈ H(X).

Here, W◦m(B) denotes the m-fold forward iterate of W.

Definition 4. The unique fixed point A described in Theorem 2 is called the attractor of the IFS.
Moreover, since A ∈ H(X), therefore, it is a (mathematical) fractal.

The examples of mathematical and natural fractals to be presented in the ensuing
sections of this article are geometrically intricate subsets of Euclidean spaces R2 or R3,
which are elements ofH(X) with X = Rd, d = 2, 3.

3. Fractals in Natural and Artificial Landscapes

A fractal landscape is typically a surface that displays fractal behavior obtained by an
algorithm and mimics the appearance of a natural terrain. Midpoint displacement methods
by Fournier et al. [8], Miller [9], Musgrave [10] and others were introduced as fast landscape
and terrain generation techniques and are standard in fractal geometry. Ken Musgrave
(a student of Mandelbrot) discovered new processes of fractal landscape generation [10].
He worked on Bryce landscape software, which made use of many algorithms (midpoint
displacement algorithm was one of those). The midpoint displacement methods were
modified and improved in [11,12] for natural terrain simulations and to construct self-affine
geometrical objects which are similar to rock fractures.

Examples of natural fractal landscapes are found in geography, mountains, rivers, and
terrains. A natural fractal mountain is shown in Figure 3, and a natural delta formed by a
flowing river and a fractal shape profile of clouds is displayed in Figure 4.

Figure 3. A fractal mountain.

(a) (b)

Figure 4. (a) A fractal river detla, (b) a fractal sky cloud.



Fractal Fract. 2022, 6, 379 6 of 38

F. Kenton Musgrave was the first to generate computer-based realistic landscapes. He
was referred to as “the first true fractal-based artist” by Mandelbrot for his Ph.D. thesis work
on Methods for Realistic Landscape Imaging [10]. Musgrave’s thesis work turned out to be
a comprehensive road map for rendering modern fractal landscapes using computer pro-
grams even today. Musgrave founded the Pandromeda, Inc. and developed the innovative
MojoWorld software (obsolete now), a commercial and fractal-based modeling program for
the creating digital landscapes, space art and science fiction scenes. The MojoWorld was
applied in creating background mattes and terrains on big-budget movies such as Titanic,
The Day After Tomorrow, etc. Figure 5 shows realistic examples of computer-generated
fractal landscapes. Notice the true similarities between Figures 3 and 5.

(a) (b) (c)

Figure 5. Computer-generated examples of (a) a fractal terrain, (b) a fractal woodhill, and (c) a fractal
landscape. (Image source: https://en.wikipedia.org/wiki/Fractal_landscape, accessed on 22 June
2022).

3.1. Generation of Fractal Landscapes

There is a large variety of commercial and academic purpose software that can generate
and allow for editing of fractal landscapes. The list includes Bryce (a feature-packed 3D
modeling and animation package specializing in fractal landscapes), midpoint displacement
algorithm (landscapes generation in many dimensions), diamond-square algorithm [8]
(slightly better algorithm than midpoint displacement algorithm), Terragen (designed and
developed by the Planetside Software for Microsoft Windows and Mac OS X and capable
of generating captivating sceneries and animations of fractal landscapes), L3DT (similar as
the Terragen program with a 2048× 2048 limit) and World Creator (can create terrain, fully
GPU powered), etc. Figure 6a displays a Julia island, and an example of a Mandel River
generated by the software Terragen is shown in Figure 6b, which depicts the details of the
Mandelbrot set.

(a) (b)

Figure 6. (a) Julia island (Image source: https://en.wikipedia.org/wiki/Terragen, accessed on 22
June 2022) and (b) Mandel river (details of the Mandelbrot set) rendered by Terragen Classic. (Image
source: https://en.wikipedia.org/wiki/Fractal-generating_software, accessed on 22 June 2022).

https://en.wikipedia.org/wiki/Fractal_landscape
https://en.wikipedia.org/wiki/Terragen
https://en.wikipedia.org/wiki/Fractal-generating_software
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We now describe some of the above-mentioned fractal rendering algorithms to allow
the reader deeper insight and better understanding on how the fractal landscape generation
algorithms work.

3.2. Midpoint Displacement Algorithm in 1d (1DMD)

The midpoint displacement algorithm is based on the von Koch curve construction.
The credit for its applicability and popularity in computer graphics goes to Fournier, Fussell,
and Carpenter for rendering fractal landscapes and clouds. The algorithm is very simple
and proceeds as follows:

Start with a straight line segment and mark its midpoint. Now, select a random
(bounded) value and displace the midpoint of the line segment by this random value in
the direction perpendicular to the line segment or displace only the y coordinate of the
midpoint (see Figure 7a).

(a) (b)

Figure 7. (a) Strategies to displace the midpoint and (b) Successive iterations of the algorithm (from
left to right). (Image source: https://bitesofcode.wordpress.com/2016/12/23/landscape-generation-
using-midpoint-displacement/, accessed on 22 June 2022).

This will result in two smaller line segments. In the second iteration, repeat this process
to mark and displace the midpoints of each line segment obtained in the first iteration
by a random amount, and this will result in four straight line segments. The process is
continued until the desired level of detail is achieved by reducing the random displacement
in every iteration. For example, if the displacement was reduced by half in the first iteration
and the random displacement value is chosen from the interval [−1, 1], then the range for
the second iteration with two midpoints would be in the interval [−0.5, 0.5], in [−0.25, 0.25]
for the third iteration, and so on. The equation for the midpoint value is given by

F(x) =

(
F
(

x + dx
2

)
+ F

(
x− dx

2

))
2

+ Kr · 2−nH , (3)

where r ∈ [−1, 1] is a random number and K is a constant which controls the amplitude
of the variation. H is the roughness parameter (the factor by which the perturbations are
reduced on each iteration), and n denotes the iteration number. Increasing the value of H
will produce smoother landscapes. Figure 7b displays successive iterations of the algorithm.
The pseudocode for the algorithm is given in Algorithm 1.

By suitably choosing the displacement bounds and the reduction factor H, one can
control the geometry and the roughness of the landscape. Higher values of H result in
smoother landscapes, and lower values result in spiky (sharp) landscapes. Figure 8 depicts
several landscapes with varying H values. Observe the change in the smoothness of the
landscape with the change in H values.

https://bitesofcode.wordpress.com/2016/12/23/landscape-generation-using-midpoint-displacement/
https://bitesofcode.wordpress.com/2016/12/23/landscape-generation-using-midpoint-displacement/


Fractal Fract. 2022, 6, 379 8 of 38

Algorithm 1: Pseudocode for midpoint displacement algorithm.
Pseudocode:
initialize line segment
initialize max_iter, min_len
while iteration < max_iter and segment_length > min_len:

for each segment:
choose random displacement
compute midpoint
displace midpoint
update segments

reduce displacement
iteration+1

(a) (b)

(c) (d)

Figure 8. One-dimensional (1D) landscapes for (a) H = 0.0, (b) H = 0.25, (c) H = 0.50, and (d)
H = 0.75.

In each iteration, the displacement bounds can be reduced by different approaches
(e.g., linear, exponential, logarithmic, etc.) depending upon the choice of landscape being
generated. The two extremes possibilities are no displacement reduction and exponential
displacement reduction (in each iteration) shown in Figure 9 below.
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Figure 9. No displacement reduction (left image), Exponential displacement reduction in one
iteration (right image). (Image source: https://bitesofcode.wordpress.com/2016/12/23/landscape-
generation-using-midpoint-displacement/, accessed on 22 June 202).

Some colored pictures of landscapes generated from the 1D midpoint displacement
algorithm are presented in Figure 10.

Figure 10. Colored landscapes generated from 1DMD.

3.3. Midpoint Displacement Algorithm in 2D (2DMD)

The 2D midpoint displacement algorithm is similar to the 1D algorithm described
above, with the only difference that now, the displacement (height) in the z-direction
is determined over the xy-plane. In most cases, a positive displacement results in the
formation of a mountain, and a negative displacement results in the formation of a valley.
The advantage of using this algorithm is that the landscapes are dynamically generated,
and they will never be the same, as the elevations chosen are random every time.

The roughness of the landscape is controlled in the same way as in a one-dimensional
landscape. Changes in H values show drastic changes in the landscape generated: for
instance, if the value of H is 0, then the landscape is more spiky, and when it is 1, we obtain
smooth landscapes, as seen in surface landscapes generated using 2DMD in Figure 11.

An extension of the 2D midpoint displacement algorithm to three-dimensions was
presented in [13] for generating three-dimensional fractal porous media geometries whose
surface area can also be controlled by adjusting the random component of the midpoint
displacement. They also considered statistical properties for the geometries obtained using
3DMD and showed that the structures generated by 3DMD are more realistic.

https://bitesofcode.wordpress.com/2016/12/23/landscape-generation-using-midpoint-displacement/
https://bitesofcode.wordpress.com/2016/12/23/landscape-generation-using-midpoint-displacement/
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(a) (b)

(c) (d)

Figure 11. Surface landscapes generated by 2DMD for (a) H = 0.0, (b) H = 0.25, (c) H = 0.50, and
(d) H = 1.0.

The grids used with the midpoint displacement algorithm are uniform in all directions,
and typically, they have a size of 2n on all sides, where n is an integer. The variable n
(number of iterations) which is given as an input (by the user) has its own significance.
Increasing the value of n leads to an increase in the resolution of the landscape, as minute
details of fractals will be captured. However, generating fractals with high values of n is
a time-consuming process and requires high computational powers, so it is important to
select an optimal value of n by taking into consideration the time, computational power
and required resolution.

3.4. Diamond Square Algorithm

The diamond square algorithm is a modification of the midpoint displacement method
proposed by Fournier et al. [8] (1982), and its name is borrowed from the 2D midpoint
displacement algorithm. The midpoint displacement method sometimes leaves square-
shaped artifacts in generated terrains. The diamond square algorithm attempts to alleviate
this by alternating calculated values to square and diamond patterned midpoints. The
algorithm starts with a 2D square grid of boxes having 2n squares containing 2n + 1 grid
points. The four corner points of the grid are first set to initial values. The diamond and
square steps are then executed one after the other until all grid points have been assigned
as follows:

• The diamond step: For each square in the array, set the midpoint of that square to be the
average of the four corner points plus a random value.

• The square step: For each diamond in the array, set the midpoint of that diamond to be
the average of the four corner points plus a random value.

Figure 12 shows the algorithmic steps of the algorithm. The magnitude of the random
value should be reduced in each iteration.

Miller [9] analyzed the diamond square algorithm in 1986 and described it as flawed
due to possible perturbations in the rectangular grid. The grid artifacts were resolved by J.P.
Lewis in a generalized algorithm [14]. Some landscapes images generated by the diamond
square algorithm at different H-values are shown in Figure 13.
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(a) (b) (c)

(d) (e)

Figure 12. Diamond square algorithm on a 5× 5 array: (a) Initialize corner grid values, (b) execute
diamond step, (c) execute square step, (d) execute diamond step, (e) execute square step. (Image
source: https://en.wikipedia.org/wiki/Diamond-square_algorithm, accessed on 22 June 2022).

(a) (b)

(c) (d)

Figure 13. Surface landscapes from diamond square algorithm at different values of H: (a) H = 1.0,
(b) H = 0.70, (c) H = 0.64, and (d) H = 0.53.

https://en.wikipedia.org/wiki/Diamond-square_algorithm
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3.5. Summary

According to Musgrave [10], the generation of realistic fractal landscapes or creating
fractal forgeries of nature consists of geometric models, designing efficient algorithms, atmo-
spheric effects (for sense of scale), surface textures, and a global context for embedding the
scenes. In this brief essay on fractal landscapes, we briefed the pioneering work by several
authors including the work of Musgrave on analysis and algorithms that are available
for creating fractal landscapes. The review highlights the potential of fractal geometry to
understand and design fractal landscapes. Fractal landscape generation is evolving rapidly,
and the design of new and fast algorithms is still under development.

4. Fractal Antennas

Antennas are an integral part of any communication system, and they are widely
used in electromagentic devices such as cell phones, TV, radio, radars, electronic devices,
and so on. With the advancement of technology, the world is becoming more dependent
on compact, bluetooth, WI-FI and IOT smart devices. Therefore, the need is to design
antennas for commercial and defence sectors that are compact, light weight, and multiband
or broadband. A natural choice to obtain these antenna characteristics is to exploit the
properties of fractals. Today, many novel and powerful antenna designs have emerged
from modern (fractal) geometry, which are replacing the traditional antenna designs based
on Euclidean geometries.

A fractal antenna is a revolutionary invention in the field of telecommunication. Using
a fractal-shaped antenna as a replacement of a circuit with discrete components has helped
in increasing the effective length and reducing the size and weight of the antenna. At the
same time, the performance parameters have improved, owing to the self-similar geometry
(which maximizes the effective length of an antenna for a given surface area) and compact
structure of fractal shapes. A large number of fractal antenna designs have been proposed
combining fractal geometry with electromagnetic theory, and this has led to an area called
fractal antenna engineering [15].

In this section, we review standard fractal-shaped antennas proposed and simulated
by many researchers in the past two decades, since the pioneering works of Cohen and
Puente [16–19]. The work by Werner et al. [15] summarizes various techniques for compact
(i.e., miniature) fractal antennas designs. We also refer to the recent survey papers [20,21]
for an extensive study of the literature and state of the art summary of fractal antenna
research. The reader may also consider exploring the articles [19,20,22,23] for more detailed
analysis, various types and applications of fractal antennas available in the literature.

4.1. Brief History

Nathan Cohen was the first to built a wire fractal antenna using von Koch curves in
1988 (at Boston University) by setting up a ‘ham’ radio station, and he also designed the
planar fractal arrays using Sierpinski triangles. Cohen co-founded Fractal Antenna Systems
Inc. in 1995 as the first fractal-based commercial antenna solutions, and he also designed
fractal cellular antennas for Motorola phones, which were proven to be 25% more efficient
than the conventional helical antenna. Another company founded by C. Puente and R.
Bonet, namely Fractus S.A. in Barcelona (Spain), is involved in fractal antenna research,
patents and commercialization.

In August 1995, Cohen published the first article on fractal antenna [16], and Puente
carried out early work on fractals as multiband antennas [24]. Therefore, the credit for
demonstrating the potential of fractal antennas as a replacement for traditional antennas is
jointly shared by Cohen and Puente.

Because of their special geometry, fractal antennas are self-loading and often do
not need matching circuitry for multiband or broadband characteristics. This lowers the
fabrication cost and increases the reliability. Exploiting the self-similar fractal designs,
one can fabricate fractal antennas that are compact and wideband. The fractal-shaped
antennas can have multiple resonances (self-similar design works as a virtual network of
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capacitors and inductors), making a single antenna operate on multiple electromagnetic
frequencies. Due to space-filling properties, fractal antennas make better use of the available
volume inside the radian sphere. Therefore, they may radiate more effectively than the
one-dimensional straight wire [18].

4.2. Antenna Parameters

While designing an antenna, one must consider different combinations of antenna
parameters based on the type of application for which the antenna is being fabricated. For
instance, antennas used for television must have higher bandwidths to support higher
data transmission rates. For radio, the antennas’ range and capability to work at multiple
bands is considered more important, and for modern antennas, the size of the antenna
matters a lot, since nanotechnology is the direction in which the world is moving. Thus,
antenna parameters play a vital role in the design, fabrications and applications. Before we
look at some examples of fractal antennas, let us briefly describe some of the key antenna
parameters.

4.2.1. Impedance

Transmission lines are used to feed antennas, and to transmit the maximum available
power or to receive the transmitted power, it is necessary to know the impedance at the
input where the transmission line is to be connected. For optimal power transfer from
the antenna to the receiver or from the transmitter to the antenna, the input impedance
of the transmission line must be same as the input impedance of the antenna. In case of
impedance mismatch, an impedance matching circuit is required.

4.2.2. Return Loss

The return loss compares the power reflected by the antenna to the power that is fed
into the antenna from the transmission line. It is measured in dB, and the relationship
between SWR (Standing Wave Ratio, a measure of impedance matching) and return loss is
given by

Return loss(dB) = 20 log10
SWR

SWR− 1
.

4.2.3. Bandwidth

Bandwidth refers to the range of frequencies over which the antenna can properly
radiate or receive energy. The desired bandwidth is one of the key parameters for an
antenna design. The antenna’s bandwidth is the number of Hz for which the antenna will
exhibit an SWR less than 2:1. The bandwitdh of an antenna is defined by

B = fh − fl ,

where B =Bandwidth, fh =Higher cut-off frequency, fl =Lower cut-off frequency.
The bandwidth can also be described in terms of percentage of the center frequency of the
band

B =
fh − fl

fc
× 100,

where fc is the center frequency in the band. Bandwidth is typically quoted in terms of
VSWR. The bandwidth of an antenna varies according to its type and application.



Fractal Fract. 2022, 6, 379 14 of 38

4.2.4. Directivity

Directivity is the ability to focus the concentration of an antenna’s radiation pattern in
a particular direction when transmitting or to receive energy from a particular direction.
Directivity is denoted by D (expressed in dB) and defined by

D =
Fmax
Fiso

,

where Fmax =maximum signal strength radiated by the antenna, Fiso =maximum signal
strength radiated by the isotropic antenna (an antenna that radiates power equally in all
directions).

4.2.5. Antenna Efficiency

The efficiency of an antenna is the ratio of the power radiated by the antenna to the
power radiated from the antenna.

η =
Pradiated
Pinput

,

where η =antenna efficiency, Pradiated =power radiated, and Pinput =input power to the
antenna.

4.2.6. Antenna Gain

The term antenna gain describes how much power is transmitted in the direction of
peak radiation to that of an isotropic source. An antenna’s gain (G) is a key parameter that
combines an antenna’s radiation efficiency (η) and directivity (D) by the relation:

G = η × D.

The antenna gain is expressed in decibels (dB) by:

GdB = 10 · log10(G)

In principle, a high-gain antenna will radiate most of its power in one direction, and a
low-gain antenna will radiate its power equally in all directions.

4.2.7. Radiation Pattern

The radiation pattern displays the variation of the power radiated by an antenna as a
function of the direction away from the antenna. That is, the antenna’s pattern describes
how the antenna radiates energy out into space (or how it receives energy). A radiation
pattern is “isotropic” if the radiation pattern is the same in all directions. Antennas with
isotropic radiation patterns do not exist in practice, but they are used for benchmarking
with real antennas.

4.2.8. Polarization

The polarization of an antenna is defined as the direction of the electromagnetic fields
produced by the antenna as energy radiates away from it, with respect to the surface of
the earth, and it is determined by the structure of the antenna and its orientation. These
directional fields determine the direction in which the energy moves away from or is
received by an antenna.

There are several categories of polarization, and within each type, there are several
sub categories such as linear polarization (horizontal, vertical and slant), circular polar-
ization (right-hand circular and left-hand circular), elliptical polarization, omnidirectional
polarization, etc.
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4.2.9. Types of Antennas

Antennas are classified in many categories based on their physical structure, function-
ality and types of applications. Well-known examples of antennas including their types
and application areas are

1. Wire antennas (e.g., dipole antenna, monopole antenna, helix antenna, loop antenna),
used in personal applications, buildings, ships, automobiles, space crafts, etc.

2. Aperture antennas (e.g., waveguide (opening), Horn antenna), used in flush-mounted
applications, aircrafts, spacecrafts, etc.

3. Reflector antennas (e.g., parabolic reflectors, corner reflectors) used in microwave
communication, satellite tracking, radio astronomy.

4. Lens antennas (e.g., convex–plane, concave–plane, convex–convex, concave–concave
lenses), used for very high-frequency applications.

5. Microstrip antennas (e.g., circular-shaped, rectangular-shaped metallic patch above
the ground plane), used in aircrafts, spacecrafts, satellites, missiles, cars, mobile
phones, etc.

6. Array antennas (e.g., Yagi-Uda antenna, microstrip patch array, aperture array, slotted
wave guide array), used for very high-gain applications.

4.2.10. Substrate

Low-profile antennas are needed for high-performance aircrafts, spacecrafts, satellites,
missile applications, GSM, GPS and remote sensing applications where size, performance,
weight, cost, ease of installation, and aerodynamic profile are constraints. All these re-
quirements may be met using a microstrip antenna (MSA). An MSA (also called patch
antenna) is a two-dimensional flat structure consisting of a very thin metallic strip placed
on a ground plane with a dielectric material in between; this dielectric material is called the
substrate.

The performance and radiation properties of an antenna can be improved by properly
selecting the thickness (h) and permittivity (εr) of the substrate. In patch antennas, the
smaller permittivity of the substrate yields better radiation. Several dielectric substrates
are proposed in the literature for fabricating microstrip patch antennas. Table 1 lists some
commonly used substrate materials in the design of fractal antennas along with their
dielectric constants.

Table 1. Commonly used substrate materials in fractal antennas.

S. No. Name of the Substrate Dielectric Constant (εr)

1. Bakelite 4.8

2. Duroid 6010 10.7

3. Nylon fabric 3.6

4. Roger 4350 3.48

5. RT-Duroid 2.2

6. Foam 1.05

7. Taconic TLC 3.2

8. FR-4 4.4

4.3. Standard Fractal Antennas

The first application of fractal antennas was in the form of wire antennas proposed by
Cohen in a series of papers [16,17] based on fractalization of the geometry of a standard
dipole or loop antenna. Almost at the same time, Puente and his collaborators [18,19,24]
proposed Koch fractal monopole antennas with improved electrical performance over
conventional linear monopole antennas.
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Cohen observed that fractal Minkowski loops exhibit low resonant frequency relative
to their electric size. Puente found that in Koch fractal antennas, the resonant frequency
goes low or toward larger wavelengths with increase in iteration number. Thus, fractal-
shaped antennas at higher iterations resonate at low frequencies due to increased length as
compared to the antennas of the lower iterations (having smaller length).

Today, most of the wireless devices operate in multiple bands of frequencies. Thus,
the design of a multiband antenna is a natural choice for present and future devices. We
now provide a brief overview of some popular fractal-shaped antennas, which are proven
to be very useful in developing novel, innovative designs for multiband fractal antennas.
To keep the presentation shorter, we provide plots for multiband behavior only for the
Sierpinski gasket antenna, and we encourage the reader to consider references mentioned
here for details on the design, performance and applications of fractal antennas.

4.3.1. Sierpinski Gasket

Figure 14 shows the first five stages in the construction of the Sierpinski gasket antenna
(named after the Polish mathematician Sierpinski.

Figure 14. Sierpinski gasket antenna through five stages of growth.

The Sierpinski gasket is obtained by continuing the iterations to infinity. From an
antenna engineering perspective, the colored (filled) triangular regions represent a metallic
conductor, whereas the white (hollow) triangular regions represent areas where the metal
has been removed. The self-similar geometry of Sierpinski gaskets allows for fabricating
multiband fractal antenna elements.

The Sierpinski gasket antennas resemble a bow-tie antenna, and one antenna can
perform similar to multiple bow-tie antennas, since the iterated Sierpinski gasket consists
of many Sierpinski gaskets at different scales, which can be seen by looking at Figure 15a. A
fabricated Sierpinski gasket antenna is shown in Figure 15b, and the lengths of the largest
side of the antenna are shown in Figure 15c at various scales.

(a) (b) (c)

Figure 15. Resemblance of Sierpinski gasket antenna to bow-tie antenna. (a) Three stages of Sier-
pinski antenna, (b) Fabricated Sierpinski antenna, (c) Length scales of Sierpinski antenna. (Im-
age source: https://www.emcos.com/wp-content/uploads/2014/01/Application_Note_Fractal_
Antennas_Simulation_Sierpinski_Gasket.pdf, accessed on 22 June 2022).

The multiband performance of this Sierpinski antenna is visible in Figure 16, where
some plots are given between the S11 parameter (which gives the amount of power reflected
from the antenna) and the frequency. S11 = 0 signifies that all the power is reflected, so the
negative sharp down peaks are considered as the resonating frequencies.

https://www.emcos.com/wp-content/uploads/2014/01/Application_Note_Fractal_Antennas_Simulation_Sierpinski_Gasket.pdf
https://www.emcos.com/wp-content/uploads/2014/01/Application_Note_Fractal_Antennas_Simulation_Sierpinski_Gasket.pdf
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(a) (b)

Figure 16. S11 plots for Sierpinski gasket antenna (a) all iterations (b) 4th iteration. (Im-
age source: https://www.emcos.com/wp-content/uploads/2014/01/Application_Note_Fractal_
Antennas_Simulation_Sierpinski_Gasket.pdf, accessed on 22 June 2022).

The simulated characteristics of the Sierpinski gasket monopole antenna were shown
to be matching with the analytical results in [25]. Moreover, the antenna resonates at
multiple frequencies, making the Sierpinski gasket antenna a multiband antenna. Vertical
and horizontal polarization plots for the 4th frequency band are shown in Figure 17.

(a) (b)

Figure 17. Fourth frequency band: (a) Vertical polarization and (b) Horizontal polarization. (Im-
age source: https://www.emcos.com/wp-content/uploads/2014/01/Application_Note_Fractal_
Antennas_Simulation_Sierpinski_Gasket.pdf, accessed on 22 June 2022).

The simulations and plots in Figures 16 and 17 are drawn using the EMCoS An-
tenna VLab environment, which is a software for electromagnetics, data visualization and
simulation.

Simulations for other type of fractal antennas can be completed in a similar way using
any EM simulation software (e.g., HFSS, CST Studio, EMCoS, COMSOL, etc.), and the
details are available in many references cited throughout this section; therefore, we shall
omit simulation details for other antennas to keep the presentation short.

4.3.2. Koch Curve

Figure 18 shows the first four iterations in the construction of the Koch curve monopole
antenna, which became the first small size fractal antenna that improved bandwidth,
resonance frequency, and radiation patterns of classical antennas in 1998. The von Koch
curve is obtained by subdividing a line segment into three parts.

https://www.emcos.com/wp-content/uploads/2014/01/Application_Note_Fractal_Antennas_Simulation_Sierpinski_Gasket.pdf
https://www.emcos.com/wp-content/uploads/2014/01/Application_Note_Fractal_Antennas_Simulation_Sierpinski_Gasket.pdf
https://www.emcos.com/wp-content/uploads/2014/01/Application_Note_Fractal_Antennas_Simulation_Sierpinski_Gasket.pdf
https://www.emcos.com/wp-content/uploads/2014/01/Application_Note_Fractal_Antennas_Simulation_Sierpinski_Gasket.pdf
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Figure 18. Four stages of Koch fractal.

The middle part is then replaced by adding two sides of an equilateral triangle having
the length equal to the length of the segment being removed. This results in four line
segments. Repeating this process for each of the four segments and taking the limit
constitutes the Koch curve.

Puente et al. [19] studied the von Koch fractal as a monopole wire antenna. They
considered five different iterations of the von Koch antenna, having an overall height

h = 6 cm, and a total length of L = h×
(

4
3

)5
= 25.3 cm (see [19] for complete analysis and

simulation reults). In general, the length of the Koch curve can be determined by formula

Ln =
(

4
3

)n
(Ln is the length of the Koch curve at the nth iteration). Since 4

3 > 1, therefore,
as n→ ∞, the length of the Koch curve will tend to infinity. So, theoretically, we can design
an antenna of desired length in a given area using the Koch curve.

4.3.3. Koch Snowflake

Another popular fractal-shaped antenna is the Koch snowflake. To construct a Koch
snowflake, start with a filled equilateral triangle and construct a von Koch curve on each
side of the triangle to obtain the geometry (iteratively), as shown in Figure 19, where the
first three stages in the construction of a Koch snowflake are shown.

Figure 19. Four stages of the Snowflake fractal.

4.3.4. Minkowski Island Fractal Antenna

The construction of a Minkowski island fractal antenna is shown in Figure 20. Start
with a filled square (called initiator). Then, replace each of the four sides of the initiator
with the generator (shown at the bottom of Figure 20) and replace the four sides of the
square with the generator and keep iterating. The result of this process is the Minkowski
island fractal with intricate fundamental structure, which is nowhere differentiable.

Figure 20. Four stages of the Minkowski fractal.

The Koch snowflake and Minkowski island fractal antennas have been extensively
used to create new designs for miniaturized loops as well as microstrip patch antennas.
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4.3.5. Hilbert Curve Antenna

The Hilbert fractal antenna is another type of wire antenna made from a space-filling
curve and falls into the broad category of space-filling fractal antennas. The first four
iterations in the construction of the Hilbert curve are shown in Figure 21. The Hilbert curve
has properties such as self-avoidance (no intersection points), self-similarity, space filling
and simplicity.

Figure 21. Four stages of the Hilbert fractal.

The space-filling properties of the Hilbert curve and related curves (e.g., Peano curves)
make them suitable candidates for the design of fractal antennas.

4.3.6. Sierpinski Carpet or Fractal Pifa

An inverted-F antenna is another type of antenna first proposed by Ronold King
at Harvard in 1958 for use in wireless communications. King’s antenna was also a wire
antenna and was designed for military use. It consists of a monopole antenna running
parallel to a ground plane and grounded at one end.

Today, many cell phones comes with a Planar Inverted-F Antenna (in short PIFA),
which are small, low profile, and sensitive to both horizontal and vertical polarized radio
waves (see [19]), but the drawback is that PIFA are narrowband.

To overcome this difficulty, the fractal-shaped PIFA shown in Figure 22a has been
designed, and the results are promising. A Fractal PIFA works similar to a traditional PIFA
except that its design is a fractal based on a 2D Cantor array. A perfect fractal PIFA would
be obtained by iterating the Cantor array an infinite number of times, but for practical
design, two to three iterations are enough. A fractal PIFA mounted on a candy bar phone is
also shown in Figure 22b, and a double PIFA is presented in Figure 22c.

(a)

(b) (c)

Figure 22. PIFA Antennas, (a) Three stages of Cantor fractal PIFA, (b) F-PIFA mounted on the candy
bar phone, (c) Double-PIFA antenna.
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4.3.7. Fractal Tree Antenna

Fractal trees antenna are used to fabricate miniaturized dipole antennas, and a number
of new design of fractal tree antennas have evolved. An example of a ternary (three-branch)
fractal tree is shown in Figure 23b, which looks like an analogue of the Sierpinski gasket of
Figure 14. In fact, the ternary fractal tree shown in Figure 23a can be interpreted as a wire
equivalent model of the Stage 4 Sierpinski gasket of Figure 14.

(a) (b) (c)

Figure 23. Fractal Tree Antennas: (a) Fractal tree, (b) A Stage 4 ternary fractal tree (Image source:
Werner and Ganguly [15]), and (c) A prototype Tri-band fractal ternary tree monopole antenna used
in miniaturized dipole antennas (Image source: http://cearl.ee.psu.edu/projects/project2-1-1.html,
accessed on 22 June 2022).

We refer to the early papers by Werner [26] and Petko and Werner [27] for new designs
and a variety of 2D and 3D multiband fractal tree antennas based on Koch curve and fractal
trees, which are also reconfigurable (i.e., tunable) and exploit the self-similar branching
structure of 3D fractal trees.

4.3.8. Other Innovative Fractal Antenna Designs

A multiband Cantor fractal monopole antenna covering GSM, DCS, PCS, UMTS, and
WLAN applications was presented in [28].

A complementary stacked patch antenna based on Sierpinski fractal was introduced
in [29], which enhanced antenna performances, retaining the basic characteristics of the
Sierpinski antenna. A design procedure for custom made fractal antennas using artificial
neural networks and the particle swarm optimization (PSO) was presented in [30]. A com-
pact multiband E-shape fractal patch antenna was proposed in [31] multiband applications
to achieve size reduction and increase the operating bands. This antenna operates on
LTE/WWAN (GSM850/900/1800/1900/UMTS/LTE2300/2500) bands.

At present, many fractals are being used as antennas, and several patents are also
registered on new discoveries. Some of the fractal antennas used in mobile phones are
shown below in Figure 24. A microstrip patch antenna with edges in the shape of a
Minkowski island fractal is shown in Figure 24a, which is used in iphones. The Sierpinski
fractal carpet shown in Figure 24b was designed by the Spanish company FRACTUS as a
built-in antenna for a GSM 900/1800 mobile handset.

(a) (b)

Figure 24. Some commercial antennas used in mobile phones and other applications, (a) Microstrip
patch antenna, (b) Sierpinski triangle antenna.

http://cearl.ee.psu.edu/projects/project2-1-1.html
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Table 2 gives a summary of the literature for some standard fractal antennas and their
modifications where antenna size(s), band utility, gain and applications are shown. It is
clear from the table that the focus of designs is on multibandness with higher gain and
effective bandwidth utility. Notice that reducing the dimensions of the designed antenna
helps in miniaturization.

Table 2. Summary of the performance of some fractal antennas.

Antenna Type
(Ref. No.)

Dimension
(mm2)

No. of
Bands Bands (GHz) Gain (dB) Applications

Modified Sierpinski
Gasket [32] 27× 29 1 3.16–9 9.00

WLAN, WiMAX, public safety
band, point to point high-speed
applications for high data rates

Modified Sierpinski
Gasket [33] 30× 34.64 2 12.2–13.4

21–30
21.20
8.00

Broadband satellite receivers,
mobile space research activities,
active sensors, passive sensors

Modified Sierpinski
Carpet [34] 29.44× 38.04 6

4.285
5.455
6.265
6.805
8.02
9.145

−

Radio telecommunication in
C-band, space communications in
X-band and satellite
communication

Modified Sierpinski
Carpet [35] 30× 30 6

2.23
4.75
5.23
6.61
6.79
9.58

15.27 (max)
S (2–4 GHz) band, C (4–8 GHz)
band Weather radar and satellite
applications, etc.

Koch Snowflake [36] 28.8 mm
(diameter) 1

3.34–4.52
2.2–3.4
1.45–4.1

3.30 (max) Wideband applications

Koch Snowflake [37]
60 mm (length of
equal sides)
70 mm (base)

5

11.44
13.178
15.482
19.902
23.529

− X-band, Ku-band and K-band

Minkowski Fractal [38] 27.5× 25 1 1.575 0.369 Satellite Receiver

Hilbert Curve [39] 49× 52 4

0.876
1.225
1.850
2.400

−

WSN Europe
GPS-L1
GSM1800
Wi-Fi

Hilbert Curve [40] 56× 39.4 2 12.5–37.5
0.4–1.4 3.35 HF/UHF dual band operation

Koch Curve Fractal
Defected Ground
Structure [41]

1994.02 1 1.492–1.518 5.41 L-band

Dual-Reverse-Arrow
Fractal [42]

46.4 mm (side
length of
triangle)

1 2.4 2.5 ISM Applications

Sierpinski Carpet and
Minkowski Hybrid [43] 40× 40 2 3.5

5.8 4.50 WiMAX
LTE

Hetero Triangle Linked
Hybrid Web Fractal [44]

12 mm
(diameter) 1 1.945–20 7.17 (max)

3G, LTE, ISM, Bluetooth, Wi-Fi,
WLAN, WiMAX, Satellites
(Ku-Band), etc.
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4.4. Fractal Metamaterials

Metamaterials are synthetic electromagentic materials having properties not found
in standard conducting materials. These artificial composites inherit their properties from
internal micro and nanostructures rather than the chemical composition as compared with
natural materials.

Figure 25 shows the first manufactured fractal metamaterial invented by fractenna.com
(which also holds a patent on this discovery). Fractal metamaterials can achieve wideband
and multiband performance in the fields of cloaking, shielding, absorption and conveyance,
whereas conventional metamaterial technology is limited to narrow passbands. This
wideband/multiband performance is the key to employ fractal metamaterials in commercial
and government applications. The field of fractal metamaterials is in the developmental
stages, and their applications are still emerging.

Figure 25. The first manufactured fractal metamaterial. (Image source: https://www.fractenna.com/,
accessed on 22 June 2022).

4.5. Commercialization of Fractal Antennas

(1) www.fractenna.com, accessed on 22 June 2022
Dr. Cohen co-founded Fractal Antenna Systems, Inc. in the year 1995 to deliver the

world’s first fractal-based commercial antenna solutions (see Figure 26). Over the last
25 years, the company has deepened the theory of fractal antennas and deployed fractal
antennas in a vast range of commercial and government applications. The company is also
working on the capabilities and benefits of fractal metamaterials.

Figure 26. The first manufactured fractal antenna sheets (1995). Image source: https://www.
fractenna.com/, accessed on 22 June 2022.

(2) www.fractus.com, accessed on 22 June 2022
Fractus is an early pioneer in the design and development of fractal antennas for

smartphones, tablets, wireless and IOT devices. It was founded by fractal antenna pioneers
Dr. Carles Puente and Ruben Bonet in 1999 and is leading the world market for its research,
innovations and commercialization of multiband and miniature fractal antennas. The
company holds the recognition of the world’s first application for a patent on fractal and
MultiFractal antennas.

(3) Fractus Antennas S.L. (www.fractusantennas.com), accessed on 22 June 2022
Founded in 2015, Fractus Antennas SL is actively involved in designing, manufactur-

ing and commercializing miniature chip antennas for smartphones, short-range wireless
and connected IoT devices. The company has received many patents for novel antenna

https://www.fractenna.com/
www.fractenna.com
 https://www.fractenna.com/
 https://www.fractenna.com/
www.fractus.com
www.fractusantennas.com
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designs. The recently developed Virtual Antenna™ Technology (2019) by Fractus SL is so
unique that each antenna can be used for any application such as GSM (2G, 3G, 4G, 5G),
GPRS, GPS, Bluetooth, WI-FI, RFID, NB-IOT, NBLTE and many more.

4.6. Summary

Fractal antennas are a replacement for traditional wideband/multiband antennas that
are smaller and lighter, require less circuitry, have fewer radiative elements to resonate at
multiple frequencies and provide higher gains. Antennas with fractal shapes have many
possible applications ranging from dual-mode phones to location services such as GPS,
satellites, etc. Fractal-shaped antennas can lower the radar cross-section (RCS), which
can be exploited in military applications where the RCS is an extremely important design
parameter.

In the future, fractal antennas will play a much bigger role in the developing tech-
nologies for wireless communications which require compact, wideband and multiband
antennas. Examples include wireless devices such as cell phones, tablets, wearable devices,
smart homes, smart cities, airplanes, and IoT devices. The design of a high-performance
wideband antenna is critical to IoT and wireless connectivity, and the fractal antenna
engineering is enabling the changes that are required.

5. Fractals in Image Compression

The need for mass information storage and retrieval is growing rapidly with the
advancement of the data and information age. On a computer, images are stored as a
collection of bits representing pixels. Storing a single image or a collection of images on a
computer may require large memory. This problem can be addressed using various image
compression techniques. Storing images in less memory leads to a direct reduction in cost.
This is where image compression plays an important role. Another useful feature of image
compression is rapid data transfer, since less data need less time to transfer.

The Discrete Cosine Transform Algorithm is one of the most popular image com-
pression methods, which is used in JPEG (still images), MPEG (motion video images),
H.26x digital audio (such as Dolby Digital, MP3, AAC), and television (SDTV, HDTV)
compression algorithms.

Fractal image compression is a fractal-based compression technique that makes use
of the self-similarity present in an image for fractal coding. It is simple to implement,
easy to execute and yields high compression ratios and quick decompression. Fractal
image compression (FIC) was introduced by M. Barnsley, who started a company based
on FIC technology. However, it was Arnaud Jacquin (a doctoral student of Barnsley) who
published a fractal image compression algorithm for the first time.

5.1. History of Fractal Image Compression

After Mandelbrot’s pioneering work [2], John Hutchinson introduced the iterated
function theory in 1981 as an answer to the search of an underlying mathematical frame-
work for fractal geometry. Later, M. Barnsley, another leading researcher in developing a
mathematical framework for fractal geometry, wrote the famous book Fractals Everywhere.
In this book, Barnsley described Iterated Functions Systems (IFS) and a very useful result
known as the Collage Theorem, which became a fundamental result for fractal image com-
pression. For example, the Pythagorean tree in the Figure 27 can be generated using the
two-dimensional IFS
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Iterated function systems produce attractors (fractals), which are fixed points of a contrac-
tion mapping defined using the IFS, and the collage theorem does the reverse; i.e., for a
given initial image, find an IFS whose attractor is as close as possible to the given image.

Figure 27. Pythagorean tree constructed using IFS in Equations (4)–(6).

Michael Barnsley suggested that storing images (for instance, the fractal tree shown
in Figure 27) as a set of transformations given in Equations (4)–(6) may lead to image
compression. IFS is a set of transformations from which the image of an attractor can
be obtained. Barnsley did it in reverse by generating an IFS of the image which maps
onto itself by making use of the collage theorem [6]. This leads to the compression of
images. Barnsley observed many affine redundancies in real-life images and noticed that
memory can be saved if we store suitable IFS. He was granted a patent and co-founded
Iterated Systems Incorporation along with Alan Sloan. Barnsley published his results in the
January 1988 issue of the BYTE magazine. This article exhibit several images compressed
in excess of 10,000:1. The images were named as “Black Forest”, “Monterey Coast” and
“Bolivian Girl”, but they were all manually constructed. Barnsley’s patent is referred to as
the “graduate student algorithm.”

In March 1988, Arnaud Jacquin found a modified scheme for representing images
called Partitioned Iterated Function Systems (PIFS) that made the graduate student algorithm
obsolete. In 1991, Barnsley gave another algorithm that can automatically convert an image
into a PIFS, compressing the image in the process, and he received another patent for this.
All contemporary fractal image compression algorithms are based on Jacquin’s algorithm,
and attempts to improve it have continued to date.

5.2. Mathematics of Images

Mathematically, an image is expressed as a function z = f (x, y), where z is the
grayscale. We define the distance between two images f (x, y) and g(x, y) by the metric

dmax( f , g) = max
(x,y)∈P

| f (x, y)− g(x, y)|, (7)

where f and g are values of the level of gray pixel (for grayscale image), P is the space of
images, and x, y are the coordinates of any pixel. It is clear from (7) that the dmax metric
searches for the point (x, y) at which the two images f and g differ the most and assigns
this as the distance between f and g. Another useful metric used in image compression is
the root mean square (rms) metric (more useful for practical calculations) defined by

drms( f , g) =
√∫

P
( f (x, y)− g(x, y))2dxdy. (8)

Grayscale images are representations of subsets of the plane. An image is represented
as a collection of pixels, and an image containing m · n pixels can be regarded as a vector in
r = m× n dimensional space. Typically, the space is R2, and the usual norm on R2 is the
2-norm (also called the Euclidean norm or the L2 norm), which is defined by

||x||2 =
√
|x1|2 + |x2|2, (9)
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which induces the rms metric,

drms(x, y) = ||x− y||2.

Thus, if x = (x1, . . . , xr) and y = (y1, · · · , yr) are images, then the L2 norm or rms
distance (gap) between them is given by

drms(x, y) = ||x− y||2 =

√
r

∑
i=1

(xi − yi)
2. (10)

Fidelity (a measure of the correctness of the reconstructed image) of an image is
computed using the root mean square error (erms), the signal to noise ratio (SNR) and the
peak signal to noise ratio (PSNR) of the image. Let I(x, y) and A(x, y), respectively, denote
the gray levels on the original and the reconstructed image (attractor), respectively; then,

erms =

√√√√ m

∑
x=1

n

∑
y=1

(e(x, y))2, e(x, y) = (I(x, y)− A(x, y)), (11)

SNR =

m

∑
x=1

n

∑
y=1

(A(x, y))2

m

∑
x=1

n

∑
y=1

(e(x, y))2
, PSNRrms = 20 log10

(
2p − 1
erms

)
, (12)

where p is the number of bits per pixel used for definition of the gray level.

5.3. Self-Similarity in Target Images

In general, a typical image does not show exact self-similarity, which is seen in math-
ematical fractals. However, it still contains a type of self-similarity in the sense that the
entire image may not be self-similar, but parts of the image are self-similar with properly
transformed parts of itself. For example, Figure 28 shows some parts of the Lena image
that are self-similar at different scales.

A portion of the reflection of the hat in the mirror is similar to a smaller part of her hat,
and a part of her shoulder overlaps a smaller region that is almost identical. Studies [2,45,46]
suggest that most of the natural images contain this kind of self-similarity. The search for
the resemblance (self-similarity) is the base of fractal compression algorithms.

Figure 28. Self-similarity in the Lena image.

5.4. Classical Approach

Imagine a Multiple Reduction Copying Machine (MRCM) shown in Figure 29. A
MRCM (with multiple lens arrangements) is just like a regular copying machine except that
it will scale the original image (to be copied) by half and print it three times on the copy.
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Figure 29. A Multiple Reduction Copying Machine (MRCM) with sample outputs. Reprinted with
permission from [47]. Copyright 1997 Springer.

Figure 30 shows a few iterations of feeding an input (a Mandelbrot image) to the
machine, and on repeated back feeding the output as input, the final image (attractor) is
the Sierpinksi triangle.

Figure 30. The first 4 copies of an input image generated by the MRCM of Figure 29.

Clearly, any initial image will shrink to a point on repeated iterations due to size
reduction in every iteration on the photocopying machine. Therefore, the shape of the final
image (attractor) is determined by the position and the orientation of the image and not by
its initial size.

In fractal image compression, to encode an image f , we need to find the transforma-
tions w1, w2, . . . , wn such that f is the attractor of the map W =

⋃n
i=1 wi. Thus, we partition

the image into pieces, find the transformations wi, and acquire the original image f again
by applying the transformations wi.

The final output from the photocopying machine is determined by the way in which
an input image is transformed by the transformations wi when running the machine in a
feedback loop. Theretofore, the transformations must be contractive; that is, each of these
transformations must bring any two points of the input image closer in the output. In
practice, it is sufficient to choose affine transformations of the form

wi

(
x1
x2

)
=

(
ai bi
ci di

)(
x1
x2

)
+

(
ei
fi

)
, i = 1, 2, · · · , n. (13)

Each transformation can rotate, scale (shrink) and translate an input image. Each wi is
a contraction mapping as long as the determinant of the transformation is strictly less than
one, and the IFS will converge to the attractor A starting with any image A0. Indeed, we
have

A = lim
n→∞

Wn(A0), with W(A) =
N⋃

i=1

wi(A). (14)

In Figure 30, the final image obtained on repeated application of the transformation W
possesses geometric self-similarity, and that is why IFSs are always expected to generate
fractal images.

5.5. Contemporary Approach

The basic idea of partitioned iterated function system (PIFS) is as follows: if finding
self-similarity between an image as a whole and its parts is impractical, then finding
self-similarity between larger and smaller parts of the image is more reasonable. Using
Jacquin’s approach, this can be done by partitioning the original image at different scales
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into larger parts called domain blocks and small parts called range blocks. The idea of the
PIFS is illustrated in Figure 31, where some mappings from domain blocks to range blocks
are shown. The range blocks are disjoint and partition the image uniformly. The domain
blocks may overlap and need not contain every pixel of the original image. The goal of the
compression process is to find a closely matching pre-image (i.e., a domain block for every
range block). The size of the domain pool (determined by the number of domain blocks) is
important for the encoding purpose. In general, a larger domain pool implies better fidelity
of the mappings between the domain blocks and the range blocks. However, this also leads
to more comparisons, which slow down the encoding. A scheme for classifying the domain
and range blocks can be found in [46,48].

(a) (b)

Figure 31. Self-similarity in Partitioned Iterated Function System, (a) Domain (left) and Range (right)
blocks, (b) Domain–range pair self-similarity at three scales. Reprinted with permission from [47].
Copyright 1997 Springer.

5.6. Partitioned Iterated Function System

Jacquin extended the definition of an IFS to Partitioned Iterated Function Systems
(PIFS) [48] in an attempt to ease the IFS computations. Theoretically, each image has a
unique fixed point, but it is not feasible to find a unique fixed point for a whole image in
practice. Thus, as an alternative, the image should be partitioned into several parts, and
the fixed points for each part should be obtained through different transformations. We
will use only affine transformations to illustrate a PIFS for simplicity, although the PIFS
is independent of the type of transformations used. There are two spatial dimensions x
and y, and the gray level adds a third dimension to the IFS so that the modified affine
transformation wi for PIFS becomes

wi

x
y
z

 =

ai bi 0
ci di 0
0 0 si

x
y
z

+

ei
fi
oi

. (15)

To achieve convergence, the intensity value of a pixel must be scaled and offset, i.e.,

z′ = siz + oi. (16)

Here, x and y are the spatial locations of a pixel, while z is the gray-level intensity of
the pixel at location (x, y). Coefficients ai, bi, ci, di, ei and fi control skewing, stretching,
rotation, scaling, and translation, while the coefficients si and oi determine the contrast and
brightness of the transformation, respectively, which allow the affine transformation to
map grayscale domain blocks to grayscale range blocks accurately (see Figure 31b for three
examples).

To speed up the compression and bring it under control, Jacquin constrained Equation
(15) so that the domain blocks are always squares and equal to two times the size of range
blocks. For instance, if the range blocks are (say) 8× 8 pixels in size, then the domain blocks
are chosen to be of the size of 16× 16 pixels, which reduces the number of domain blocks
to a large extent, and the search time is reduced during compression.
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Thus, the image can be represented as a union of maps w1, w2, . . . , wN , such that
wi : Di → R̂i. That is, the application of wi to a region of the image Di produces R̂i, which
is a result that approximates another region of the image, Ri. Minimizing the error between
R̂i and Ri will minimize the error between the original image and the approximation. In
practice, the RMS metric is used to find the “best” transform to map Di to Ri.

5.7. The Encoding

To encode a given image f , our aim is to find transformations w1, w2, . . . , wn such that
f is the fixed point of the map W. In other words, we decompose f into parts, apply the
transformations wi, and recover the original image f .

Fractal coding can produce a high compression ratio, which makes it one of the main
advantages in compressing images. In Jacquin’s algorithm, the aim is to minimize the
Hausdorff distance (i.e., greatest pixel-to-pixel difference) between a candidate domain
block and a specific range block.

The optimal scaling parameters can be computed algebraically if the root mean square
error measure is used. To see this, assume that the domain block Dxy has been reduced to
the size of the range block Rxy. Then, the mean square error between the blocks is

erms =
1
n2

n

∑
x=1

n

∑
y=1

(
siDxy − Rxy

)2. (17)

setting the derivative equal to zero

∂erms
∂si

=
2
n2

n

∑
x=1

n

∑
y=1

(
siDxy − Rxy

)
Dxy = 0, (18)

we obtain

si =

n

∑
x=1

n

∑
y=1

RxyDxy

n

∑
x=1

n

∑
y=1

(Dxy)
2

. (19)

Figure 32 displays the flowchart of the encoding process.

Figure 32. Encoding process.

Consider, for example, an image of size 128× 128 pixels such that each pixel is of
256 gray levels. The image is partitioned into 8× 8 blocks of non-overlapping range blocks
and 16× 16 overlapping domains blocks. For each range block Ri, a search is done through
the entire set of domain blocks D to find the domain block which matches best with Ri.
The position of the range, the best matching domain block, and transformation wi, which
minimizes the distance between domain and range blocks, are stored. This process is
repeated until we have found the best matching block for the domain–range pair. This
method of partition is a fixed range size partition method.

Table 3 shows the results of this process on the compression and reconstruction of
13 images using the classical approach [45,49].
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Table 3. Performance of the Barnsley’s algorithm [45] on various images.

Image Name Time
Time Average

erms SNRrms PSNR (dB)

Lena 1.000200294 7.61672 13.3478 30.4954
Peppers 1.000266348 7.5512 11.9571 30.5705
Mandril 1.000238648 13.168 1 8.919 25.7403

LAX 1.00021521 17.4734 4.9517 23.2832
Cameraman 1.000095885 14.0104 8.1885 25.2018

Columbia 1.000159809 16.3936 5.3475 23.8373
Goldhill 1.000138501 6.79771 13.4355 31.4836
Couple 1.000006392 13.6817 8.3402 25.408
Plane 0.999230786 13.2835 7.5457 25.6646

Women 1.000091624 11.0847 10.2303 27.2363
Milk 1.000093755 9.6735 8.4824 28.4191
Man 1.000025569 11.7124 9.3384 26.7579
Lake 0.999232916 15.8357 2.9538 24.138

Average 1.000000 12.1756 8.69527 26.7874

All images are of size 128× 128 pixels (=16384 pixels) and 256 gray level. The range
blocks are 4× 4 pixels, and the domain blocks are 8× 8 pixels. Therefore, the number of

blocks to be encoded is
(

128
4

)2
= 1024. For the purpose of comparing image quality on the

reconstruction of these 13 pictures, we refer to [49].

5.8. Decompression Process

The decoding process involves repeatedly applying the transform until it converges
to an image, which closely approximates the original image. The decompression starts by
setting the image buffer to a uniform mid-gray value, which is used as the seed image,
and the pixels of each range block in the transform list are evaluated during the iteration.
The result of the first iteration is used as input for the second stage of iteration. Usually,
the original image is recognizable in just two iterations, and typically, the decompression
process will converge in four or five iterations (when 8-bit precision is used per pixel). The
decompression process for two encoded grayscale images of a ‘Bird’ and a ‘Cameraman’ is
shown in Figure 33.

(a) (b)

(c) (d)

Figure 33. Decompression process for Bird and Cameraman (Reprinted with permission from [47].
Copyright 1997 Springer), (a) Seed for Bird (left) and seed for Cameraman (right), (b) 2 iterations of
Bird IFS (left), 2 iterations of Cameraman IFS (right), (c) 4 iterations of Bird IFS (left), 4 iterations of
Cameraman IFS (right), (d) 6 iterations of Bird IFS (left), 6 iterations of Cameraman IFS (right).
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The choice of seed image has no impact on the outcome, since the IFS in Equation (14)
describes the same attractor regardless of the starting image. This fact is well observed
in Figure 33, where the Cameraman image is used as the seed image for Bird, and the
Bird image is used as the seed image for Cameraman (see Figure 33a). One can notice the
defects in Figure 33b which result from choosing a ‘wrong’ initial image that ultimately
disappear with increasing iterations. The choice of seed can affect the decompression time,
though, and it can be verified by starting with an all-black seed or an all-white seed image.
However, for practical purposes, a mid-gray or a low-resolution version of the original
image is preferred as the seed. See Figure 34 for a comparison of convergence using various
seed images.

Figure 34. Convergence speed for various seed images. Reprinted with permission from [47]. Copy-
right 1997 Springer.

5.9. Partitioning Schemes

Partitioning of an input image is an important aspect of fractal image compression.
Image partitioning refers to dividing the image into sections that are more appropriate for
the application to work on.

In the classical approach of Jacquin [48], the image is partitioned into a fixed size
square range blocks and domain blocks in which the size of domain blocks is twice the
size of the range blocks. Several other flexible partitioning methods have evolved over the
years, which allow for a higher compression ratio and shorter encoding times. Fisher [46]
introduced the quadtree, HV Partitioning and Triangular partitioning schemes shown in
Figure 35. We also refer to the review paper by Wohlberg and Jager [50] for the details on
various partitioning schemes studied in the literature. Among all partitioning schemes, the
quadtree partitioning is the most widely used technique.
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(a)

(b)

(c)

Figure 35. Some popular partitioning schemes, (a) Quadtree partitioning, (b) HV partitioning,
(c) Triangular partitioning.

5.10. Summary of Fractal Image Compression

Fractal image compression is a promising, block-based, lossy and asymmetrical com-
pression method. The images generated by fractal coding are resolution/scale independent,
i.e., the image can be decoded at any resolution. Magnifying an image reveals additional
detail, and after every iteration, details on the decoded image are sharper than before.
This feature of fractal image compression is unique. Figure 36 shows magnification of the
original image of Lena’s eye (on the left). On the right is the same part of the fractal image
rendered at the same scale. Sometimes, magnified fractal encoded images often look better
than magnified original images due to reasonable interpolation.

(a) (b)

Figure 36. Resolution independence: (a) Original image enlarged 4 times, (b) Decoded image
enlarged 4 times
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Another main advantage of FIC is that it is easy to automate. Decompression is
quick, and fractal compression can achieve high compression ratios while maintaining
image quality, and at higher compression, it is relatively superior to JPEG and wavelet
compressions. Fractal compression is also useful in multimedia applications. Fractal
compression methods are probably best suitable for archival applications, such as digital
encyclopedias, where encoding is done only once. The greatest challenge for the coding
community is how to precisely measure and quantify signal-to-noise ratio, root mean
square error, etc.

Fractal image compression is still under development. Many research groups world-
wide are developing new algorithms to shorten the encoding time. We refer the reader
to [45,46,48,49,51] for more detailed literature on the theoretical concepts, existing methods,
algorithms and experimental results on fractal image compression.

6. Fractals in Fracture Mechanics

Fracture mechanics is the study of the propagation of cracks in materials, and it is an
important tool to improve the performance of mechanical components. The phenomenon
of fracture is to divide an object or material into two or different pieces on applying physical
stress (see Figure 37 for different types of fracture modes). Thus, there exists a crack on
the surface irregularly which penetrates into the body, too. All these physical appearances
such as crack length, area, etc. cannot be described easily using Euclidean geometry. The
fractal geometry equipped with self-similarity (or self-affinity), scale invariance and fractal
dimension offers great help to analyze irregular or fractional shapes of fracture mechanics.

Figure 37. The three fracture modes. (Image source: https://en.wikipedia.org/wiki/Fracture_
mechanics, accessed on 22 June 2022).

Mandelbrot was the first to interrelate the crack propagation and other fracture prop-
erties of materials with the fractal geometry [52]. He introduced a method called slit island
analysis on the fracture surface to find fracture dimensions, which is shown to be a measure
of toughness in metals. Mandelbrot characterized the structure of a surface by the fractal
dimension, D, as a scaling factor. As D increases from 0 to 1, the irregularities of the
surface become more significant, and shape becomes predominantly less meaningful. He
experimented through fractured steel specimen plated with electroless nickel and proposed
the “slit island analysis” method to calculate the fractal dimension.

The quantitative analysis of fracture surfaces in brittle alumina and glass ceramic
materials using fractal geometry was considered by Mecholsky et al. [53] by calculating
the fractal dimension of crack surfaces using slit island analysis (SIA) and fracture profile
analysis (FPA) methods. They proved that the fractal dimension increases with increase in
fracture toughness, in general.

Fractal geometries are often characterized by a scaling (power) law:

NrD = 1. (20)

where N is the number of segments, r is the similarity ratio (or reduction factor), and D is
the fractal dimension.

Equation (20) describes how many new features will appear by a magnification factor
r for a given fractal dimnesion. For example, if r = 1

4 and D = 1.5, then the number of

https://en.wikipedia.org/wiki/Fracture_mechanics
https://en.wikipedia.org/wiki/Fracture_mechanics
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features will be N = 8. The number of features would increase to N ≈ 11 at the same scale
with D = 1.75. Thus, the higher fractal dimension leads to more features or structures.

The toughness of a fracture surface is measured in terms of difficulty in the crack
growth, and researchers have attempted to relate the fracture toughness and surface energy
with the fractal dimension. In this connection, Mecholsky et al. [54] discovered the following
formula relating fractal dimension with the fracture toughness

KIC = E(a0D∗)
1
2 . (21)

Here, E is the modulus of elasticity of the material, a0 is the lattice parameter, D∗ =
D− d with d as the Euclidean dimension in the projection of fracture. Mu and Lung [55] pro-
posed an alternate equation which is a power law relation connecting the fractal dimension
with surface energy.

Zhang [56] studied the fracture of rocks under the effect of high temperature consider-
ing the fractal dimension as a crucial factor. Fractal dimension and the rockburst tendency
index can predict the failure of the rocks, and variations in rockburst tendency laws were
been obtained. The relation between fractal dimension and rockburst tendency can be
explained by a quadratic expression

Keff = A(d f − d̄ f )
2 + B.

Here, Ke f f is the effective burst energy index, A and B are rock material constants, d f
is the fractal dimension of the fracture surface and d̄ f is the fractal dimension threshold,
and there is a directly proportional correlativity between rockburst index and the fractal
dimension when d f ≤ d̄ f and inverse proportionality correlation when d f > d̄ f . This is
how mechanical properties such as energy dissipation energy release rates related with the
fractal dimension of the fractured surface during the rock failure mechanism, and that will
reflect in the degree of rockburst tendency.

After the pioneering work of Mandelbrot et al. [52], fractal geometry has been applied
to the fractality of cracked surfaces, fracture mechanics and material science problems
by several authors, and we refer to the papers [54,56–58] for further details, analysis and
determination of the fractal dimension of microcrack structures and fracture surfaces.

7. Other Fractal Applications and Innovations

Fractals in ophthalmology: The human retina shown in Figure 38 exhibits fractal
structure properties in its vascular network, so fractal geometry is the right tool for model-
ing such a complex structure [59]. The damage of the blood vessels of the retina in diabetic
people is known as diabetic retinopathy.

The examination of fundus of the eye is a classical old technique for screening di-
abetic retinopathy and takes more time. In recent times, the technique of taking digital
photographs of the fundus is used, which are transmitted to a central database for testing.
Fractal analysis is the best method in processing this data with more accurate results as
compared to other methods where the fractal dimension is the prominent tool for analysis.
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Figure 38. Human retina. Image by: Paul van der Meer. (Image source: https://fractalfoundation.
org/OFC/OFC-1-3.html, accessed on 22 June 2022).

Fractals are also important in other life science studies and biological fields. They
are now used to predict or analyze the growth patterns of bacteria, the pattern of nerve
dendrites, pathology, study of cancer, wildlife and landscape ecology, etc. The expository
article by G.A. Losa [60] is a rich source of information on the extension of fractal geometry
for the life sciences to understand complex functional properties, morphological, and
structural features characterizing cells and tissues. The reader may also refer to [61] and
references therein for further study. In most of these studies, fractal dimension is a key tool
for analysis.

Fractal Capacitors: Wearable and implantable electronic devices are common nowa-
days and are expected to dominate the future soon. However, these devices suffer the
problem of inadequate power supply limited by the size of these gadgets. Microsupercapac-
itors (MSCs) are emerging miniaturized high-power microelectrochemical energy-storage
devices that can circumvent this difficulty, as they are capable of delivering high power
density, fast charge and discharge, and a superior lifetime (millions of cycles). In a recent
study, Hota et al. [62] fabricated integrated MSCs using three different fractal designs—
namely, Hilbert, Peano, and Moore (they used anhydrous RuO2 thin-film electrodes as
prototypes)—and proved that fractal-shaped electrode designs is a viable solution to im-
prove the performance of MSCs. It is shown that among the three proposed designs,
the Moore design shows the best performance. Many more MSCs may be fabricated by
exploiting the self-similarity and scale invariance of fractals.

Fractal Batteries: Fractal structures have proven to be advantageous in electrochemi-
cal energy conversion systems, since fractals maximize the electrochemically active surface
area while minimizing the energy loss in the network. Fractals can be used in the “frac-
talization” of battery electrodes to increase power density and reduce dendrite formation.
The fractalization technique can be applied to any electrode material (e.g., C, Si, MgX, etc.).
In this connection, we refer to [63], wherein the theoretical analysis of fractal type elec-
trodes for lithium-ion batteries is presented along with simulation results. More recently,
Thekkekara and Gu [64] proposed bio-inspired fractal electrode designs for solar energy
storage using space-filling properties of fractal curves from the Peano family.

Fractal Electromagnets: The techniques of fractal geometries can be used to fabricate
fractal electromagnets to increase the magnetic flux for a given size, or, alternatively, shrink
the size for a given flux. This size reduction permits embedding electromagnets and
solenoids in places where it was almost impossible until now.

Fractal PCBs: Fractals are being applied on printed circuit boards (PCBs) to reduce
corrosion possibilities by fabricating fractal-shaped PCBs. Fractal PCBs can be applied to
any trace or joints of contact with a high-voltage differential to reduce the risk of corrosion.
Less corrosion delivers high reliability in electrical components, resulting in reduced
overall cost.

Fractal in Cooling Devices: Fractal-shaped smart cooling devices such as cooling
chips, PC coolers, fractal microchannel heat sink, etc. are now becoming popular, which

https://fractalfoundation.org/OFC/OFC-1-3.html
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are based on fractal geometry. A cooling circuit for a computer chip printed in the form of
a fractal branching pattern is shown in Figure 39a. The liquid nitrogen passes across the
surface through this device to keep the chip cool.

(a) (b)

Figure 39. (a) Computer chip cooling circuit, (b) A fractal solar panel [65].

Fractal Solar Panels: A group of researchers from the University of Oregon [65] have
recently proposed a new electrode design based on the H-tree fractal tree structure (see
Figure 39b) for fractal-patterned rooftop solar panels that combines the aesthetic advantages
of the technology with the efficiency of busbar design. These modern electrode patterns
are expected to emerge into the mainstream electrodes that would be adopted for a wider
range of applications, especially engineering and design.

Fractals in Biometric Applications: Fingerprints are the simplest and most reliable
biometric features that are widely used for identification purposes. Fingerprints exhibit
self-similarity at multiple scales, and a fingerprint database can be classified using fractal
dimension, but a fingerprint cannot be identified with fractal dimension uniquely. In [66],
a novel Fingerprint Fractal Identification System (FFIS) was presented for identifying a
fingerprint uniquely using fractal geometry and game theoretic techniques.

8. Conclusions

This article presents a comprehensive survey of fractals with focus on their appli-
cations in innovative and emerging research fields. With this extensive survey, we have
tried to demonstrate the importance of fractals in engineering, industry and commercial
applications by considering fractals in the design of fractal antennas, image processing,
landscape generation, and fracture mechanics. Some future-ready applications of fractals
are also discussed toward the end. In Part I of this survey of fractals [1], we considered the
mathematics of fractals using iterated function systems, attractors, fractal dimensions, etc.
and their appearance in fractal arts, ceramic products, fractal clothing and in fractal tilings.

Fractals have been studied in mathematics, computer science, engineering, physics,
chemistry, biology, geology, social science, economics, technology, art, architecture and
many other areas. Fractals have deep relevance in chaos theory because the graphs of most
chaotic processes are fractals. The field of fractals has enormous potential to expand and
take hold into many evolving areas of research, and even a voluminous book would be
inadequate to discuss all of these in one place.

In summary, fractal geometry is the language of nature, and Benoît Mandelbrot has
given us a new science which is applicable almost everywhere with an mind-opening effect
on everyone who has come across it. This new language is changing our scientific world
rapidly with sustainable solutions.

We close with a remark by Mandelbrot from the book The Fractalist. Memoirs of a
Scientific Maverick, which is an inspirational collection of his own reflections and thoughts.

“Within the sciences of nature, I was a pioneer in the study of familiar shapes, like
mountains, coastlines, clouds, turbulent eddies, galaxy clusters, trees, the weather, and
others beyond counting”.
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