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Abstract: This paper presents a numerical technique to approximate the Rayleigh–Stokes model
for a generalised Maxwell fluid formulated in the Riemann–Liouville sense. The proposed method
consists of two stages. First, the time discretization of the problem is accomplished by using the finite
difference. Second, the space discretization is obtained by means of the predictor–corrector method.
The unconditional stability result and convergence analysis are analysed theoretically. Numerical
examples are provided to verify the feasibility and accuracy of the proposed method.

Keywords: fractional Rayleigh–Stokes problem; predictor–corrector method; finite difference; error
estimation

1. Introduction

Fractional calculus (FC) generalises the classical integer-order calculus [1,2]. In the
last decade, FC has received considerable attention in a variety of scientific areas [3–6]. In
most cases, it is difficult to compute an explicit solution to fractional differential equations,
which has attracted researchers to look for accurate and efficient numerical approaches for
solving these Equations [7–14].

FC has successfully described viscoelastic fluid constitutive relations [15–17]. One
usually starts the process of modelling viscoelastic fluids via fractional derivatives by mod-
ifying a traditional differential equation. This generalisation involves using the Riemann–
Liouville (R–L) fractional derivative operator instead of the standard time derivative. Shen
et al. [18] derived the Rayleigh–Stokes Equation (RSE) for a generalised fluid of the second
grade flowing within a heated edge and over a heated flat plate. The analytic solutions
for the temperature and velocity fields were obtained via the fractional Laplace and the
Fourier sine transforms. Mainardi [19] provided a comprehensive review of the relation-
ship between FC and viscoelastic models, linear viscoelasticity, and wave propagation. Qi
and Xu [20] studied an unsteady flow of fractional Maxwell fluid in a channel. Xue and
Nie [21] addressed the RSE to a heated generalised fluid of the second grade with fractional
derivative flows inside a porous half-space.
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In this paper, we investigate the numerical solution for the time fractional Rayleigh–
Stokes Equation (TFRSE) including the time fractional derivative

∂v(x, y, t)
∂t

= 0D1−γ
t

[
k1

∂2v(x, y, t)
∂x2 + k2

∂2v(x, y, t)
∂y2

]
+ k3

∂2v(x, y, t)
∂x2 + k4

∂2v(x, y, t)
∂y2 + f (x, y, t),

(1)

with initial and boundary conditions (abbreviated as IC and BCs, respectively):

v(x, y, 0) = φ(x, y), 0 ≤ x, y ≤ L, (2)

v(x, 0, t) = ϕ1(x, t), v(x, L, t) = ϕ2(x, t), 0 ≤ t ≤ T, 0 ≤ x ≤ L, (3)

v(0, y, t) = ψ1(y, t), v(L, y, t) = ψ2(y, t), 0 ≤ t ≤ T, 0 ≤ y ≤ L, (4)

where v(x, y, t) represent the velocity field, the coefficients k1, k2, k3 and k4 are positive
constants, 0 < γ < 1, f (x, y, t) is a source term, functions φ, ϕ1, ϕ2, ψ1 and ψ2 are prescribed
and 0D1−γ

t v(x, y, t) is the R–L fractional differential derivative of order 1− γ denoted by

0D1−γ
t v(x, y, t) =

1
Γ(γ)

∂

∂t

t∫
0

v(x, y, η)

(t− η)1−γ
dη. (5)

Some numerical techniques have been used to approximate the TFRSE Equation (1).
Chen et al. [22] formulated an implicit finite difference (FD) algorithm. Wu [23] presented
an implicit numerical approximation scheme. Jiang and Lin [24] proposed a numerical
technique based on the method of reproducing kernel. Mohebbi et al. [25] adopted the
compact FD method (CFDM) and radial basis function (RBF) meshless method (RMM).
Zaky [26] and Shivanian et al. [27] used the Legendre–Tau and the meshless singular
boundary methods, respectively. Hafez et al. [28] applied the Jacobi Spectral Galerkin
method for the distributed TFRSE. Safari and HongGuang [29] adopted the improved
dual reciprocity and singular boundary schemes for the TFRSE, while Golbabai et al. [30]
proposed the local meshless RBF. Khan et al. [31] developed the high-order compact
scheme, whereas Naz et al. [32] advanced a modified implicit scheme for the TFRSE.

This paper introduces a numerical method for the TFRSE and is organized as follows.
Section 2 describes an algorithm to approximate the time fractional derivative of the TFRSE
Equation (1). Section 3 accomplishes the space discretization with the help of the predictor–
corrector method. Section 4 studies the unconditional stability result and convergence
analysis of the proposed strategy by using Fourier analysis. Section 5 reports the numerical
examples of the TFRSE and verifies the efficiency of the proposed scheme. Finally, Section 6
provides a concise conclusion.

2. The Time Discretization

Let us define tk = kτ, where τ = T
N represents the time step size for k = 0, 1, 2, . . . , N.

We suppose that the solution u(x, y, t) has a continuous partial derivative ∂u(x,y,t)
∂t for

t ≥ 0, and that the R–L fractional derivative 0D1−γ
t u(x, y, t) can be evaluated using the

Grünwald–Letnikov (G–L) formulation [33], described as

0D1−γ
t u(x, y, t) =

1
τ1−γ

[t/τ]

∑
j=0

λ
(1−γ)
j u(x, y, t− jτ) +O(τq), 0 < γ < 1, 0 < q < 1, (6)

so that λ
(1−γ)
j correspond to the coefficients of the generating function

λ(z, 1− γ) =
∞

∑
j=0

λ
(1−γ)
j zj,
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where the coefficients λ
(1−γ)
0 = 1 and λ

(1−γ)
j = (−1)j

(
1− γ

j

)
are the normalized G–L

weights. The coefficients can be obtained recursively as:

λ
(1−γ)
0 = 1, λ

(1−γ)
j =

(
1− 2− γ

j

)
λ
(1−γ)
j−1 , j ≥ 1.

The λ
1−γ
j have some useful properties, as given by Lemma 1 ([33]).

Lemma 1. The coefficients λ
1−γ
j introduced in Equation (6) satisfy

1. λ
(1−γ)
j < 0, j = 1, 2, . . . .

2.
∞
∑

j=0
λ
(1−γ)
j = 0, ∀n ∈ N, −

n
∑

j=0
λ
(1−γ)
j < 1 and

n−1
∑

j=0
λ
(1−γ)
j > 0.

3.
∞
∑

j=n
λ
(1−γ)
j ≥ 1

n1−γΓ(γ)
·

Let us consider the following notations:[
0D1−γ

t v(x, y, t)
]

t=tk
= τγ−1

k

∑
l=0

λlv(x, y, tk−l) +O(τ), (7)

∂v(x, y, tk)

∂t
=

v(x, y, tk)− v(x, y, tk−1)

τ
+O(τ). (8)

Now, we can formulate the semi-time discretization scheme for Equation (1) by means
of the aforementioned relations

v(x, y, tk)− v(x, y, tk−1)

τ
= τγ−1

k

∑
l=0

λl

(
k1

∂2v(x, y, tk−l)

∂x2 + k2
∂2v(x, y, tk−l)

∂y2

)
+

(
k3

∂2v(x, y, tk−l)

∂x2 + k4
∂2v(x, y, tk−l)

∂y2

)
+ f (x, y, tk). (9)

3. The Space Discretization

Let Ω = {(xi, yj)| 1 ≤ i ≤ M1, 1 ≤ j ≤ M2} with xi = ihx, yj = jhy, so that hx = L
M1

,
hy = L

M2
represent the space steps in the x and y directions, respectively, and also M1

and M2 denote the total number of space steps in the x and y directions, respectively.
Discretizing Equation (1) at the above grid points (xi, xj, tk) and by using

∂2v(xi, yj, tk)

∂x2 =
δ2

xv(xi, yj, tk)

h2
x

+O(h2
x), (10)

∂2v(xi, yj, tk)

∂y2 =
δ2

yv(xi, yj, tk)

h2
y

+O(h2
y), (11)

where
δ2

xv(xi, yj, tk) = v(xi−1, yj, tk)− 2v(xi, yj, tk) + v(xi+1, yj, tk),

δ2
yv(xi, yj, tk) = v(xi, yj−1, tk)− 2v(xi, yj, tk) + v(xi, yj+1, tk),

we obtain the following corrector formula as
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vk
i,j =

1
τ

[
vk−1

i,j + µ1

k

∑
l=1

λlδ
2
xvk−l

i,j + µ2

k

∑
l=1

λlδ
2
yvk−l

i,j + (µ1 + µ3)(vk
i+1,j + vk

i−1,j)

+(µ2 + µ4)(vk
i,j+1 + vk

i,j−1) + τ f k
i,j

]
, (12)

1 ≤ i ≤ K1 − 1, 1 ≤ j ≤ K2 − 1, 1 ≤ k ≤ N.

such that
τ = 1 + 2(µ1 + µ2 + µ3 + µ4),

µ1 = k1
τγ

h2
x

, µ2 = k2
τγ

h2
y

, µ3 = k3
τ

h2
x

, µ4 = k4
τ

h2
y

, (13)

with f k
i,j representing the value of function f at (xi, yj, tk). The truncation error [22] is ob-

tained as

R = O(h2
x + h2

y)τ
γ

k

∑
l=0

λl +O(τh2
x + τh2

y + τ2), (14)

and the predictor formula is denoted by

vk
i,j = vk−1

i,j − εvk−1
i,j , (15)

1 ≤ i ≤ K1 − 1, 1 ≤ j ≤ K2 − 1, 1 ≤ k ≤ N,

with the IC and BCs

v0
i,j = φ(xi, yj), i = 0, 1, . . . , K1, j = 0, 1, . . . , K2, (16)

vk
i,0 = ϕ1(xi, tk), vk

i,K2
= ϕ2(xi, tk), i = 1, 2, . . . , K1 − 1, k = 1, 2, . . . , N, (17)

vk
0,j = ψ1(yj, tk), vk

K1,j = ψ2(yj, tk), j = 1, 2, . . . , K2 − 1, k = 1, 2, . . . , N, (18)

respectively. We can adopt the following iterative procedure to approximate Equation (1)
with Equations (2)–(4).

P: Predict some value [vk
i,j]

0 for vk
i,j with

[vk
i,j]

0 = vk−1
i,j − εvk−1

i,j

1 ≤ i ≤ K1 − 1, 1 ≤ j ≤ K2 − 1, 1 ≤ k ≤ N,

where ε is a very small number.
E: Evaluate the implicit part in Equation (12) with [vk

i,j]
0.

C: Correct [vk
i,j]

0 to obtain a new [vk
i,j]

1 for vk
i,j with

[vk
i,j]

1 =
1
τ

[
vk−1

i,j + µ1

k

∑
l=1

λlδ
2
xvk−l

i,j + µ2

k

∑
l=1

λlδ
2
yvk−l

i,j + (µ1 + µ3)([vk
i+1,j]

0 + [vk
i−1,j]

0)

+(µ2 + µ4)([vk
i,j+1]

0 + [vk
i,j−1]

0) + τ f k
i,j

]
,

1 ≤ i ≤ K1 − 1, 1 ≤ j ≤ K2 − 1, 1 ≤ k ≤ N.

E: Evaluate the implicit part in Equation (12) with [vk
i,j]

1.

C: Correct [vk
i,j]

1 with
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[vk
i,j]

2 =
1
τ

[
vk−1

i,j + µ1

k

∑
l=1

λlδ
2
xvk−l

i,j + µ2

k

∑
l=1

λlδ
2
yvk−l

i,j + (µ1 + µ3)([vk
i+1,j]

1 + [vk
i−1,j]

1)

+(µ2 + µ4)([vk
i,j+1]

1 + [vk
i,j−1]

1) + τ f k
i,j

]
,

1 ≤ i ≤ K1 − 1, 1 ≤ j ≤ K2 − 1, 1 ≤ k ≤ N.

...
The sequence of operations

PECECECEC. . .

determines vk
i,j for a sequence of values as

[vk
i,j]

0, [vk
i,j]

1, [vk
i,j]

2, . . .

An appropriate stop condition is∣∣∣∣∣[vk
i,j]

n+1 − [vk
i,j]

n

∣∣∣∣∣ < ε, n = 0, 1, 2, . . .

where n is the number of iterations. Hence, the relation Equation (12) can be rewritten in
following form:

[vk
i,j]

P = vk−1
i,j − εvk−1

i,j

[vk
i,j]

C =
1
τ

[
vk−1

i,j + µ1

k

∑
l=1

λlδ
2
xvk−l

i,j + µ2

k

∑
l=1

λlδ
2
yvk−l

i,j + (µ1 + µ3)([vk
i+1,j]

P + [vk
i−1,j]

P)

+ (µ2 + µ4)([vk
i,j+1]

P − [vk
i,j−1]

P) + τ f k
i,j

]
,

(19)

1 ≤ i ≤ K1 − 1, 1 ≤ j ≤ K2 − 1, 1 ≤ k ≤ N,

with the IC and BCs Equations (16)–(18).

4. Theoretical Analysis of the Proposed Method
4.1. Stability Analysis

We now examine the stability of the proposed method Equation (19) by using Fourier
analysis. Let vk

i,j and v̄k
i,j be the exact and the approximated solutions for [vk

i,j]
C in

Equation (19). Then, the error can be defined as:

Ek
i,j = vk

i,j − v̄k
i,j.

We can obtain for corrector formula

Ek
i,j =

1
τ

[
Ek−1

i,j + µ1

k

∑
l=1

λlδ
2
xEk−l

i,j + µ2

k

∑
l=1

λlδ
2
yEk−l

i,j + (µ1 + µ3)(Ek
i+1,j + Ek

i−1,j)

+ (µ2 + µ4)(Ek
i,j+1 + Ek

i,j−1)

]
. (20)

Let us introduce the following function:

Ek(x, y) =

{
Ek

i,j (x, y) ∈ Ω1,

0 (x, y) ∈ Ω2,
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such that

Ω1 =

{
(x, y)

∣∣∣∣∣xi− 1
2
< x ≤ xi+ 1

2
, yj− 1

2
< y ≤ yj+ 1

2

}
,

Ω2 =

{
(x, y)

∣∣∣∣∣0 ≤ x ≤ hx

2
or L− hx

2
< x ≤ L or 0 ≤ y ≤

hy

2
or L−

hy

2
< y ≤ L

}
.

Then, Ek(x, y) can be approximated by using the Fourier series as

Ek(x, y) =
+∞

∑
l1=−∞

+∞

∑
l2=−∞

ζk(l1, l2)e2π I (l1x+l2y)
L 1 ≤ k ≤ N,

where

ζk(l1, l2) =
1
L2

L∫
0

L∫
0

Ek(x, y)e−2π I l1x+l2y
L dxdy, I =

√
−1.

Applying Parseval equality for k = 0, 1, . . . , N

||Ek||2 =

[
K1−1

∑
i=1

K2−1

∑
j=1

hxhy|Ek
i,j|2
] 1

2

=

[
∞

∑
l1=−∞

∞

∑
l2=−∞

|ζk(l1, l2)|2
] 1

2

. (21)

Suppose that the difference Equation (20) has the following solution

Ek
i,j = ζkeI(σ1ihx+σ2 jhy), (22)

where σ1 = 2πl1
L and σ2 = 2πl2

L · Substituting Equation (22) into Equation (20) and simplify-
ing leads to

ζk =
1
τ

[
ζk−1 − ψ

k

∑
l=1

λlζk−l + φζk

]
, (23)

such that

ψ = 4µ1 sin2 σ1hx

2
+ 4µ2 sin2 σ2hy

2
,

φ = 2(µ1 + µ3)(1− 2 sin2 σ1hx

2
) + 2(µ2 + µ4)(1− 2 sin2 σ2hy

2
).

Now, we investigate the stability of the method Equation (19).

Theorem 1. The predictor–corrector method Equation (19) is stable if and only if φ ≥ 0.

Proof. The proof will be obtained by using mathematical induction. For k = 1, we get

|ζ1| =
1
τ
|[1− ψ(γ− 1) + φ]||ζ0| ≤

1
τ
[1− ψ|(γ− 1)|+ φ]|ζ0| ≤ |ζ0|. (24)

Assume that
|ζk| ≤ |ζ0|, k = 1, 2, . . . , N − 1. (25)
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Then, by using [Lemma 2 in [25]], we arrive at

|ζk| =
∣∣∣∣∣ 1τ
[

ζk−1 − ψ
k

∑
l=1

λlζk−l + φζk

]∣∣∣∣∣,
≤ 1

τ

[
1− ψ

∣∣∣∣∣ k

∑
l=1

λl

∣∣∣∣∣+ φ

]
|ζ0|,

=
1
τ

[
1 + ψ

k

∑
l=1

λl + φ

]
|ζ0|,

≤ 1
τ
(1− ψ + φ)|ζ0|,

≤ |ζ0|.

Using the Parseval equality Equation (21), the error in the solution of the difference
Equation (23) satisfies

||Ek||2 ≤ ||E0||2 , k = 1, 2, . . . , N.

The proof of the theorem is completed.

4.2. Convergence Analysis

Let us define the truncation error in the proposed method to satisfy the following form

Rk
i,j =v(xi, yj, tk)− v(xi, yj, tk−1)− µ1

k

∑
l=0

λlδ
2
xv(xi, yj, tk−l)− µ2

k

∑
l=0

λlδ
2
yv(xi, yj, tk−l)

−µ3δ2
xv(xi, yj, tk)− µ4δ2

xv(xi, yj, tk)− τ f (xi, yj, tk), (26)

1 ≤ i ≤ K1 − 1, 1 ≤ j ≤ K2 − 1, 1 ≤ k ≤ N.

From Lemma 3 in [25], we have

Rk
i,j = O(τh2

x + τh2
y + τ2),

or

|Rk
i,j| ≤ C1(τh2

x + τh2
y + τ2). (27)

1 ≤ i ≤ K1 − 1, 1 ≤ j ≤ K2 − 1, 1 ≤ k ≤ N,

where C1 ∈ R+. Subtracting Equation (12) from Equation (26), we get

ek
i,j =

1
τ

[
ek−1

i,j + µ1

k

∑
l=1

λlδ
2
xek−l

i,j + µ2

k

∑
l=1

λlδ
2
yek−l

i,j + (µ1 + µ3)(ek
i+1,j + ek

i−1,j)

+ (µ2 + µ4)(ek
i,j+1 + ek

i,j−1) + Rk
i,j

]
, (28)

where ek
i,j = v(xi, yj, tk)− vk

i,j, and

ek
0,j = ek

K1,j = 0, ek
i,0 = ek

i,K2
= 0, e0

i,j = 0,

1 ≤ i ≤ K1, 1 ≤ j ≤ K2, 1 ≤ k ≤ N.

Let us consider the following two functions:

ek(x, y) =

{
ek

i,j, (x, y) ∈ Ω1,

0, (x, y) ∈ Ω2,
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and

Rk(x, y) =

{
Rk

i,j, (x, y) ∈ Ω1,

0, (x, y) ∈ Ω2.

Then, ek
i,j and Rk

i,j can by approximated by the Fourier series

ek(x, y) =
+∞

∑
l1=−∞

+∞

∑
l2=−∞

αk(l1, l2)e2π I (l1x+l2y)
L 0 ≤ k ≤ N,

Rk(x, y) =
+∞

∑
l1=−∞

+∞

∑
l2=−∞

βk(l1, l2)e2π I (l1x+l2y)
L 0 ≤ k ≤ N,

in which

αk(l1, l2) =
1
L2

∫ L

0

L∫
0

ek(x, y)e−2π I l1x+l2y
L dxdy

and

βk(l1, l2) =
1
L2

L∫
0

L∫
0

Rk(x, y)e−2π I l1x+l2y
L dxdy.

Moreover, we can obtain the values of ||ek||2 and ||Rk||2 for k = 0, 1, . . . , N as

||ek||2 =

[
K1−1

∑
i=1

K2−1

∑
j=1

hxhy|ek
i,j|2
] 1

2

=

[
∞

∑
l1=−∞

∞

∑
l2=−∞

|αk(l1, l2)|2
] 1

2

, (29)

and

||Rk||2 =

[
K1−1

∑
i=1

K2−1

∑
j=1

hxhy|Rk
i,j|2
] 1

2

=

[
∞

∑
l1=−∞

∞

∑
l2=−∞

|βk(l1, l2)|2
] 1

2

. (30)

Suppose that ek
i,j and Rk

i,j have the following form

ek
i,j = αkeI(σ1ihx+σ2 jhy), Rk

i,j = βkeI(σ1ihx+σ2 jhy), (31)

where
σ1 =

2πl1
L

, σ2 =
2πl2

L
·

Substituting Equation (31) into Equation (28) gives

αk =
1
τ

[
αk−1 − ψ

k

∑
l=1

λlαk−l + φαk + βk

]
, (32)

where τ, ψ and φ are as defined before. By virtue of the relations Equations (27) and (30),
we get

||Rk||2 ≤
√

K1hx

√
K2hyC1(τh2

x + τh2
y + τ2),

= C1L(τh2
x + τh2

y + τ2). (33)

Based on [22], it holds that

|βk| ≡ |βk(l1, l2)| ≤ C2|β1| ≡ C2|β1(l1, l2)| k = 1, 2, . . . , N, (34)

where C2 ∈ R+ .
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Proposition 1. Let αk denote the solutions of Equation (32). Then, we have

|αk| ≤ C2k|β1|, 1 ≤ k ≤ N,

where C2 ∈ R+.

Proof. The principle of mathematical induction is applied by considering e0 = 0, which
leads to

α0 ≡ α0(l1, l2) = 0.

For k = 1, we obtain

|α1| ≤ |
1
τ
||β1| ≤ |β1| ≤ C2|β1|.

Let us assume that
|αn| ≤ nC2|β1| 1 ≤ n ≤ k− 1.

Then, based on Lemma in [25], we can conclude that

|αk| ≤
1
τ

[
(k− 1)− ψ(k− 1)

k

∑
l=1
|λl |+ φ(k− 1) + 1

]
C2|β1|,

≤ 1
τ

[
k− ψ(k− 1) + φ(k− 1)

]
C2|β1|,

≤ kC2|β1|,

which completes the proof.

Theorem 2. The predictor–corrector method Equation (19) is convergent with the order
O(h2

x + h2
y + τ).

Proof. By considering Proposition 1 and using relations Equations (32) and (33), we can obtain

||ek||2 ≤ kC2||R1||2 ≤ kC1C2L(τh2
x + τh2

y + τ),

and noticing that kτ ≤ T, then

||ek||2 ≤ C(h2
x + h2

y + τ),

in which
C = C1C2TL,

and this completes the proof.

5. Results and Discussion

This section presents two numerical examples for illustrating the stability and accuracy
of the proposed method with several values of hx, hy, τ and γ. For this aim, we compute
the following maximum-norm error L∞:

L∞ = max
1≤j≤N−1

|v(xj, T)−V(xj, T)|,

where v and V are the approximate and exact solutions, respectively. In addition, we
evaluate the computational order in the time direction for the proposed method as:

Cτ =
log( E1

E2
)

log( τ1
τ2
)

,
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where E1 and E2 represent the errors corresponding to time step with sizes τ1 and τ2,
respectively.

Example 1. Let us consider the following TFRSE:

∂v(x, y, t)
∂t

= 0D1−γ
t

(
∂2v(x, y, t)

∂x2 +
∂2v(x, y, t)

∂y2

)
+

∂2v(x, y, t)
∂x2 +

∂2v(x, y, t)
∂y2 + f (x, y, t), (x, y) ∈ Ω = [0, 1]2.

The IC and BCs as well as f (x, y, t) are determined from an exact solution v(x, y, t) =
exp (x + y)t1+γ.

The proposed method is implemented for solving this problem when the total time
T = 1 with various values of hx, hy, τ and γ. Table 1 presents the maximum absolute
errors L∞, time convergence orders Cτ and execution times (in seconds) for hx = hy = 1

8 ,
γ ∈ {0.55, 0.85} and various values of τ. We see that the obtained computational orders
Cτ in time direction are close to the theoretical convergence rate, that is, O(τ). Table 2 lists
the maximum absolute errors L∞ in the solution for γ ∈ {0.5, 0.75}, and several values of
hx = hy and τ. Table 3 compares the maximum absolute errors L∞ in the solution with
those resulting from the method described in [25] for hx = hy = 1

16 , γ = 0.15 and various
values of τ. Table 4 makes the comparison of L∞ errors in the solution with those resulting
from the method in [25] for different values of hx = hy, γ = 0.2, and τ. Table 5 compares
the maximum absolute errors L∞ in the solution and execution times (in seconds) with
those obtained with other schemes [22,25] for hx = hy = 1

4 , τ = 1
900 and different values of

γ. Figure 1 shows the approximate solution and the associated computational error L∞ of
the proposed method with γ = 0.85, K1 = K2 = 16, and N = 256.

Table 1. The maximum absolute errors L∞, time convergence orders Cτ and execution times (in
seconds) of Example 1 for hx = hy = 1

8 and γ ∈ {0.55, 0.85} and different values of τ.

τ γ = 0.55 γ = 0.85

n L∞ Cτ
CPU

Time (s) n L∞ Cτ
CPU

Time (s)

1/8 65 6.3090× 10−3 − 0.1285 47 9.3000× 10−3 − 0.1689
1/10 63 5.3982× 10−3 0.69871 0.1493 47 8.9975× 10−3 0.14819 0.1093
1/16 65 3.7302× 10−3 0.78639 0.1558 48 4.8582× 10−3 1.31122 1.7073
1/40 66 1.6951× 10−3 0.86077 0.5390 44 2.3980× 10−3 0.77053 0.6569
1/64 64 1.1170× 10−3 0.88743 6.5077 40 1.5138× 10−3 0.97874 1.3609

1/128 70 5.6189× 10−4 0.99127 11.508 32 7.6491× 10−4 0.98481 2.1372

Table 2. The maximum absolute errors L∞ in the solution of Example 1 for γ ∈ {0.5, 0.75}, and
different values of hx = hy and τ.

hx τ γ = 0.5 γ = 0.75

n L∞ n L∞

1/4 1/4 8 7.9397× 10−3 7 1.6266× 10−2

1/10 1/64 117 1.2258× 10−3 80 1.5186× 10−3

1/16 1/128 419 6.7026× 10−5 200 7.8371× 10−4

1/8 1/210 387 9.6004× 10−4 40 8.2789× 10−4
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Table 3. The maximum absolute errors L∞ of Example 1 for hx = hy = 1
16 , γ = 0.15 and different

values of τ.

τ Proposed Method RMM [25] CFDM [25]

n L∞ L∞ L∞

1/10 672 4.7049× 10−3 6.8422× 10−3 4.3318× 10−3

1/20 775 2.4089× 10−3 4.9548× 10−3 2.2982× 10−3

1/30 791 1.6230× 10−3 3.3632× 10−3 1.5709× 10−3

Table 4. The maximum absolute errors L∞ and execution times (in seconds) of Example 1 for γ = 0.2,
and different values of hx = hy and τ.

hx τ Proposed Method CFDM [25]

n L∞ CPU Time (s) L∞ CPU Time (s)

1/4 1/50 13 8.8037× 10−4 0.8212 9.6999× 10−4 0.0470
1/8 1/128 116 2.0750× 10−4 0.9606 3.8649× 10−4 0.5000
1/18 1/28 900 1.7396× 10−3 6.3644 1.7554× 10−3 0.0460

Table 5. The maximum absolute errors L∞ of Example 1 for hx = hy = 1
4 and τ = 1

900 and different
values of γ.

γ Proposed Method RMM [25] CFDM [25]

n L∞ L∞ L∞

0.7 5 8.3469× 10−4 5.8055× 10−4 1.8231× 10−3

0.8 4 7.0423× 10−4 7.3493× 10−4 1.8250× 10−3

0.9 4 9.8265× 10−4 9.0422× 10−4 1.8265× 10−3

Figure 1. Approximate solution v(x, y, T) and the associated computational error L∞ of the proposed
method with γ = 0.85 and K1 = K2 = 16 and N = 256, n = 263 (left and right panels, respectively).
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Example 2. Consider the following TFRSE:

∂v(x, y, t)
∂t

= 0D1−γ
t

(
∂2v(x, y, t)

∂x2 +
∂2v(x, y, t)

∂y2

)
+

∂2v(x, y, t)
∂x2 +

∂2v(x, y, t)
∂y2 + f (x, y, t), (x, y) ∈ Ω = [0, 1]2.

The IC and BCs as well as source term f (x, y, t) are achieved from an exact solution
v(x, y, t) = exp (x + y)t2.

The proposed method is adopted for solving this problem when the total time T = 1
with various values of hx, hy, τ and γ. Table 6 reports the maximum absolute errors L∞ and
time convergence orders Cτ for hx = hy = 1

8 , γ ∈ {0.65, 0.95} and various values of τ. As
shown in Table 6, the computational orders Cτ agree with the theoretical convergence order.
Table 7 compares the maximum absolute errors L∞ in the solution for γ ∈ {0.35, 0.75}
and several values of hx = hy and τ. Table 8 lists the maximum absolute errors L∞ in the
solution for γ = 0.2 and several values of hx = hy and τ. Table 9 makes the comparison
of the maximum absolute errors L∞ in the solution and execution times (in seconds) with
those obtained with other schemes [22,25] for hx = hy = 1

4 and τ = 1
256 and various values

of γ. Figure 2 depicts the approximate solution and the associated computational error L∞
of proposed method with γ = 0.95, K1 = K2 = 16, and N = 256.

Figure 2. Approximate solution v(x, y, T) and the associated computational error L∞ of the proposed
method with γ = 0.95 and K1 = K2 = 16 and N = 256, n = 263 (left and right panels, respectively).

Table 6. The maximum absolute errors L∞ and time convergence orders Cτ of Example 2 for
hx = hy = 1

8 , γ ∈ {0.65, 0.95} and different values of τ.

τ γ = 0.55 γ = 0.85

n L∞ Cτ n L∞ Cτ

1/10 54 6.7051× 10−3 - 117 9.9156× 10−3 −
1/40 57 1.5503× 10−3 1.0563 34 8.5430× 10−3 0.1075
1/90 52 6.9213× 10−4 0.9944 31 1.0942× 10−3 2.5342

1/190 45 3.3634× 10−4 0.9658 22 5.1960× 10−4 0.9967
1/1200 21 7.7520× 10−5 0.7963 25 8.3012× 10−5 0.9951
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Table 7. The maximum absolute errors L∞ of Example 2 for γ ∈ {0.35, 0.75} and different values of
hx = hy and τ.

hx τ γ = 0.35 γ = 0.75

n L∞ n L∞

1/4 1/8 160 9.9757× 10−3 8 8.0374× 10−3

1/8 1/8 151 3.8090× 10−3 73 7.0374× 10−3

1/16 1/8 486 4.4059× 10−3 290 3.0374× 10−3

1/8 1/64 88 3.1647× 10−4 46 1.1573× 10−3

1/12 1/64 283 3.1281× 10−4 116 1.1583× 10−3

1/4 1/12 11 7.5942× 10−4 7 4.8539× 10−4

1/15 1/128 947 1.6066× 10−5 160 1.8297× 10−4

1/8 1/30 95 6.4711× 10−4 51 2.4751× 10−3

1/60 1/16 740 1.9589× 10−3 243 2.8112× 10−3

Table 8. The maximum absolute errors L∞ of Example 2 for γ = 0.2, and several values of hx = hy

and τ.

hx τ
Proposed
Method

Implicit
Method [25]

n L∞ L∞

1/4 1/50 9 7.0500× 10−4 2.0154× 10−3

1/8 1/128 84 8.8460× 10−5 1.3776× 10−4

1/16 1/32 55 2.0142× 10−3 2.1391× 10−3

Table 9. The maximum absolute errors L∞ and execution times (in seconds) of Example 2 for
hx = hy = 1

4 and τ = 1
256 and different values of γ.

γ
Proposed
Method

Implicit
Method [25]

n L∞ CPU Time (s) L∞ CPU Time (s)

0.18 8 9.2879× 10−4 1.4274 3.2350× 10−3 0.5373
0.35 6 4.9674× 10−4 1.5169 3.2306× 10−3 0.5397
0.70 3 7.8135× 10−4 1.5070 3.2302× 10−3 0.5719
0.80 4 2.3660× 10−3 1.4007 3.2368× 10−3 0.5651
0.90 3 3.0465× 10−3 1.3906 3.2457× 10−3 0.5102

6. Concluding Remarks

We adopted the predictor–corrector method for approximating the TFRSE. First, the
time discretization of the problem was accomplished by using the finite difference. Second,
the space discretization was obtained with the help of the predictor–corrector method.
The convergence and unconditional stability properties of the approach were discussed
theoretically. Numerical experiments compared the results obtained with the proposed
method and those produced using existing alternative schemes. The superiority of the new
approach was thus verified and illustrated.
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