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Abstract: The article considers the fractional Poisson process as a mathematical model of deformation
activity in a seismically active region. The dislocation approach is used to describe five modes of the
deformation process. The change in modes is determined by the change in the intensity of the event
stream, the regrouping of dislocations, and the change in and the appearance of stable connections
between dislocations. Modeling of the change of deformation modes is carried out by changing three
parameters of the proposed model. The background mode with independent events is described by a
standard Poisson process. To describe variations from the background mode of seismic activity, when
connections are formed between dislocations, the fractional Poisson process and the Mittag–Leffler
function characterizing it are used. An approximation of the empirical cumulative distribution
function of waiting time of the foreshocks obtained as a result of processing the seismic catalog data
was carried out on the basis of the proposed model. It is shown that the model curves, with an
appropriate choice of the Mittag–Leffler function’s parameters, gives results close to the experimental
ones and can be allowed to characterize the deformation process in the seismically active region
under consideration.

Keywords: fractional Poisson process; Mittag–Leffler function; approximation; non-local effects;
fractional model; relaxation processes; foreshocks

MSC: 60G22

1. Introduction

A large number of studies have been devoted to study the correlations between seismic
events [1–4]. The laws of Gutenberg–Richter and Omori–Utsu, the property of clustering
in aftershock and foreshock sequences, and swarms of earthquakes, among other things,
are well known. [5–7]. A block-hierarchical approach [4], an ETAS model [3,8], methods
for identifying the main energy branches [9–13], and methods for studying complex net-
works [14] have been used to study the correlations and to determine the criteria of seismic
event connectivity, which are considered as a stream of random events in some volume.
The theory of fractals and fractional processes is widely applied in studies of the seismic
process and in the construction of its models. The medium characteristics, the structure of
fault networks [15], and the set of the epicenters of earthquakes [16] have a fractal nature
and are determined by fractional laws [3,14,17]. The result of a large number of constructed
statistical models was the conclusion that there is a correlation between seismic events in
the catalogs under consideration based on the selected criteria [3,6,7,10–12,17–20]. In this
case, the seismic process representation as a stream of independent events and its descrip-
tion by standard Poisson process becomes incorrect [2,19,21]. Correlations between events
in these sequences leads to the appearance of the properties of hereditarity (non-locality
in time, «memory») and non-locality in space. The use of the fractional Poisson process
to describe the process of seismic deformations is a logical continuation of this approach,
which takes into account properties of non-locality [22].
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This article is a continuation of the works [12,13,22]. The fractional Poisson process is
used to describe irreversible deformation changes [22]. The proposed model of the seismic
deformation process includes five modes, each of which is determined by a change in
the values of the fractional Poisson process parameters. To verify of the fractional model
of the deformation process, foreshock sequences constructed on the base of a seismic
catalog data [23] by a statistical model are used [12]. This phase of seismic deformational
process activation is of interest from the point of view of seismic hazard assessment. The
deformations can be considered a sequence of independent random dislocation changes.
The standard Poisson process can serve as a model of such changes. To account for non-
locality effects, the authors propose the use of a fractional Poisson process [22]. The
transition in this investigation to a multiparametric fractional Poisson process expands
the possibilities of describing deformation changes. It is possible to consider not only
exponential, but also power-law correlations between seismic events, which makes it
possible to model both normal and abnormal activation and relaxation processes. The
analytical dependencies compare with the results of catalog data processing obtained on
the base on the criteria of event connectivity.

2. Mathematical Model of the Deformation Process

As noted in reference [22], the critical level of elastic stresses is sustained by the work
of external forces. The result of their actions is a deformation process with a change of the
deformation modes. This process is characterized by the rate of random changes of disloca-
tions, which are determined by the spatial scale and the value of the displacement vector.
This approach describes discontinuities, movements along existing faults, and repackaging
of grains or blocks in a wide range of scales using the theory of dislocation changes.

Each dislocation is defined by spatial-temporal coordinates. The distribution of the set
of dislocation changes in the considered volume over the time is a random process. If the ar-
eas of influence of the dislocations does not intersect, then they are considered independent.
In this case, the process of dislocation repackaging is defined as a random walk process
and is described by a standard Poisson process. If the density of dislocations increases and
their areas of influence overlap, then the dislocations become correlated and a dislocation
cluster is formed. Then, in the spatial-temporal representation, the cluster is described by a
fractional Poisson process. We apply this generalization of the standard Poisson process as
a model for describing irreversible changes in deformation process. The fractional Poisson
process makes it possible to obtain a variety of activation and relaxation processes of three
types: e± t, e± tα

, and t± α. The last type of power law dependence arises due to hereditarity
effects, corresponds to fractal properties and gives the abnormal activation and relaxation
of the process.

The processes of dislocation change has the same structure at different scale levels of
the deformation process. Therefore, to describe the model, it is sufficient to consider the
deformation process for one selected spatial scale.

The deformation activity is decomposed into five modes or states: s1—the background
mode (background or normal pulsations); s2—the decaying mode (deceleration pulsations);
s3—the activation mode in the phase of foreshocks; s4—the activation mode in the phase of
the main shock; and s5—the relaxation mode in the phase of aftershocks. We describe each
state and the probability of its preservation in the same state or transition to another one
using the concept of a fractional Poisson process and the Mittag–Leffler function with a
power law argument, which defines the relaxation or activation (depending on the sign
change) characteristic of the deformation process,

Eν(−(µt)ν̃) =
∞

∑
k=0

(−(µt)ν̃)k

Γ(1 + νk)
, (1)

where the parameter ν (0 < ν ≤ 1) is the fractional parameter of the Poisson process (the
parameter of the fractional derivative), and the parameter ν̃ is a non-stationarity parameter,
i.e., a power law dependence on the time of the non-stationary event stream if the parameter
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value satisfies the condition 0 < ν̃ < 1. The function Eν(x) gives a description of the
hereditarity effects (when ν decreases, hereditarity of the process increases), and the power
law argument (µt)ν̃ determines the power law change of the dislocation stream intensity.
Function x = e−(µt)ν̃

is the power law exponential one, which obeys a differential equation,

dx
dt

= −xµν̃(µt)ν̃−1

for a process x in which the intensity of the dislocation stream varies locally with time
according to a power law. Together, (µt)ν̃ and Eν(x) define the complicated delayed
relaxation (gives a non-local effect) (Figure 1(II)).

Figure 1. I—the plot of exponential distribution of probability P11(t) (2), II—the plot of probability
distribution P22(t) (3).

Thus, by varying the parameters ν and ν̃, it is possible to obtain different modes of
the deformation process with the predominance of the hereditarity properties («memory»
or non-locality) or locality (power law exponential function of local branching processes),
respectively. The temporal and spatial properties of wave processes with non-exponential
correlations between events are related by dispersion relations (for example, the pulse
duration of acoustic emission is related to the crack size, and the waiting time between
pulses is related to the distances between cracks); therefore, if the process has temporal
nonlocality, then it also has spatial non-locality. When the activation phase of the process
begins, memory effects occur, and with them, the effects of spatial nonlocality of the seismic
events branching occur.

State s1. Within the framework of this approach, the background process of seismic
deformations is a standard Poisson process (a stream of independent events) with an
average intensity µ. Then the probability of remaining in the same state exponentially
depends on the time (Figure 1(I)) and is defined as

P11(t) = e−µt = E1(−µt), (2)

and the transition probability of the process to the next state is given as follows:
P12(t) = 1− e−µt = 1− E1(−µt).

State s2. Variation from the background mode occurs as a result of constantly acting
external forces and leads to a change in rheology. If, in some volume V of space, a local
hardening of the medium occurs at the instant of time t′, then the deformation process slows
down, and the intensity µ of the stream of events decreases and becomes equal to µ̂ (an area
of seismic gap [24], in which a deformation inhomogeneity is formed). Thus, there is an
energy accumulation of adjourned (unfulfilled) events, which are localized in a volume V
and are formed into a cluster. As a consequence of this, the waiting time interval increases
for each following occurring event, which indicates the heredity of the process. Then,
the probability of the remaining the process in the state s2 can be given by the decreasing

fractional Mittag–Leffler function (1) with the following parameters: µ̂t > (Γ(1 + ν))−
1

1+ν̃ ,
0 < ν ≤ 1, and 0 < ν̃ ≤ 1 [25,26]
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P22(t) = Eν(−(µ̂t)ν̃) =
∞

∑
k=0

(−(µ̂t)ν̃)k

Γ(1 + νk)
. (3)

The probability P22(t) (3) at the initial stage decreases faster than the exponential
function (2), and as the time interval increases, it decreases more slowly (Figure 1(II)),
i.e., the process is delayed in time. This indicates the presence of aftereffects or hereditarity
effects in the fractional process due to the clustering of events that did not occurr in the
seismic gap.

We should note that the parameter ν is defined the fractional dimension of the event
distribution over the time interval [26]. Thus, the medium hardening changes the fractional
order of the process (statistics of events), which detects a delayed relaxation caused by the
effects of hereditarity that arose as a result of hardening.

State s3. The event shortages in the state s2 leads to an increase in elastic stresses,
as a result of which the medium hardening is overcome and the intensity µ̂ of the event
stream increases and takes the value µ̃, and the accumulated additional elastic energy is
released. The result of that is a deformation perturbation that occurs at the instant of time t′

and a transition to the state s3, the phase of foreshocks, which ends with the mainshock
(transition to the state s4). This activation can be considered as an event of a higher scale in
relation to events that were unfulfilled in the seismic gap, and the energy of the deformation
disturbance should correspond to the sum of the energies of the unfulfilled events.

For an analytical description of the state s3, we use the probability of the mainshock
occurrence at the instant of time t∗ (t < t∗), i.e., the probability P34(t) of transition from
state s3 to state s4. We give the probability P34(t) by the increasing Mittag–Leffler fractional
function (1) as follows (Figure 2):

P34(t) = Eν(−[µ̃(t∗ − t)]ν̃) =
∞

∑
k=0

(
− [µ̃(t∗ − t)]ν̃

)k

Γ(1 + νk)
, (4)

where µ̃ – is the average intensity of the event stream in the deformation perturbation,
0 < ν ≤ 1, 0 < ν̃ ≤ 1. In this case, the probability of not changing the state s3 is given by
the expression P33(t) = 1− P34(t) = 1− Eν(−[µ̃(t∗ − t)]ν̃).

Figure 2. The plot of probability distribution P34(t) (4).

Differentiating the expression (4), we obtain the probability density of distribution
of the increasing stream of foreshocks, which can be interpreted as the inverse Omori–
Utsu’s law,

dP34(t)
dt

=
dEν(−[µ̃(t∗ − t)]ν̃)

dt
=

∞

∑
k=0

(−1)k+1µ̃ν̃k(µ̃(t∗ − t))ν̃k−1

Γ(1 + νk)
.

The phase of foreshocks as well as the damping phase preceding it are interesting for
the purpose of earthquake prediction. The energy of stress discharge can be evaluated from
the decay time, and the development rate of a deformation disturbance can be predicted
from the period of foreshocks, which gives the time of a short-term forecast.

State s4. When the function P34(t) reaches a value equal to one, the process goes to the
state s4 of the mainshock with the maximum density of dislocations. The probability P44(t)
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of remaining in the state s4 of the mainshock that occurred at instant of time t∗, for the
values t > t∗, is given by the decreasing Mittag–Leffler fractional function (1):

P44(t) = 1− Eν′(−[µ̃(t− t∗)]ν̃
′
) = 1−

∞

∑
k=0

(
− [µ̃(t− t∗)]ν̃

′)k

Γ(1 + ν′k)
,

where 0 < ν′ ≤ 1, 0 < ν̃′ ≤ 1.
State s5. As a result of the mainshock, the medium weakens (rheology changes), which

leads to a gradual decrease in the density of dislocations and the event stream intensity µ̃,
which takes the value µ̃′. The process is inverse to the phase of foreshocks; consequently,
the phase of aftershocks can be defined similarly to the state s3. The probability P45(t)
of transition to state s5, the aftershock phase, is defined as the probability of the non-
preservation mainshock (Figure 3).

P45(t) = 1− P44(t) = Eν′(−[µ̃′(t− t∗)]ν̃
′
) =

∞

∑
k=0

(
− [µ̃′(t− t∗)]ν̃

′)k

Γ(1 + ν′k)
. (5)

Figure 3. The plot of probability distribution P45(t) (5).

Differentiating expression (5), we obtain the density of decreasing the stream of
aftershocks, i.e., Omori–Utsu’s law,

dP45(t)
dt

=
dEν′(−[µ̃′(t− t∗)]ν̃

′
)

dt
=

∞

∑
k=0

(−1)kµ̃′ν̃′k(µ̃′(t− t∗))ν̃′k−1

Γ(1 + ν′k)
.

3. Statistical Model of the Foreshock Mode
3.1. Algorithm for Constructing Sequences of Foreshocks

We use the criteria defined in works [12,13] to construct a statistical model. Two events
are correlated if they satisfy the spatial criterion, which is determined by the medium
inhomogeneity [27], the temporal criterion derived from Gutenberg–Richter’s law, and the
energy criterion, according to which the events preceding the mainshock have less energy
(magnitude or energy class). The construction of a sequence of correlated seismic events
forming a cluster is determined by the proximity of preceding events to the initiated one
based on the introduced criteria.

The identification of preceding events as a foreshock is carried out according to the
following algorithm. The spatial-temporal area of the mainshock preparation is determined
by the spatial Rd and temporal Rt scales, depending on the energy class of the event being
prepared [12,13]. The preceding earthquake is considered a foreshock and is included in
the sequence (cluster) if the following conditions are satisfied:

1. The time interval between the mainshock and the preceding event does not exceed
the time scale Rt: ∆t = (tj − ti) ≤ Rt;

2. The distance between the mainshock and the preceding event does not exceed the
spatial scale Rd: ∆d = |rj − ri| ≤ Rd, where r is the radius-vector before the event;

3. The energy class of the preceding event is less than the class K of the mainshock.
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If an event is marked as a foreshock, then the same algorithm is applied to it, i.e., we
make the transition to a lower energy level and find foreshocks for this event, etc. Thus, we
proceed down the levels.

The algorithm works if the events (foreshocks) of lower energy get into the spatial-
temporal area of the event under consideration. Otherwise, the algorithm returns to one
energy level higher. This procedure continues until the initial event (mainshock) is reached.
Then the algorithm continues to work until the related events (foreshocks) of lower energy
are exhausted.

3.2. Method for Constructing an Empirical Cumulative Foreshock Waiting Time Distribution
Function P∗(τ) for the Mainshock with a Given Energy

We consider that the mainshock with energy K occurred at instant of time t∗. Then,
the argument τ of the empirical cumulative distribution function (eCDF) P∗(τ) of foreshock
waiting time that occurred at instant of time t, where t < t∗, is defined as

τ = t− t∗, τ < 0. (6)

To construct the eCDF P∗(τ) of the foreshock waiting time depending on the time
before the mainshock with an energy K, the method of epoch superposition was used. All
events included in the obtained foreshock clusters for the mainshock of energy class K
were distributed along the time axis with a step of one day. If the interval contains less
than five events, then it is combined with the adjacent time interval [28]. The eCDF P∗(τ)
is the function of the relative frequency of foreshock occurrence depending on the time τ
between it, and the mainshock was compiled on the basis of the statistics obtained. These
functions were computed both for the sample that included all classes of foreshocks and
for foreshocks of a certain class K f (i.e., we ranged the foreshocks by energy scales).

3.3. Processing the Data of the Catalog

The earthquake catalog of the Kamchatka Branch of the Geophysical Survey of Rus-
sia Academy of Sciences for the period from 1 January 1962 to 31 December 2002 for
the Kuril-Kamchatka island arc subduction zone was used for research (area 46◦–62◦ N,
158◦–174◦ E) [23]. The sample size was n = 79, 282, and the catalog contained events of
energy classes 4.1–16.1. The statistics of the earthquake number depending on their energy
classes showed that the sample for earthquakes with energies less than a class of 8.5 and
more than a class of 15 is not representative. In this regard, events, which have classes less
than 8.5, were not used in the research.

The parameter µ̃ of the approximating Mittag–Leffler function (4) determined the average
density of the event stream in the deformation perturbation. This parameter was estimated
using Gutenberg–Richter’s statistics obtained from the results of processing the catalog in
consideration. When the values of the energy classes of events increases from 8.5 to 12.9,
the estimated values of the intensity varied within the limits ∼ 10−1 ÷ 10−3, respectively.

In order to construct and investigate the eCDF P∗(τ) of foreshock waiting time,
the mainshocks of the classes 12.0–12.9 (approximately corresponding to the values of
5–5.5 of Richter’s magnitude) were considered. Such a choice was determined by the sam-
ple sizes of events of these classes (more than 50 events), a sufficiently large spatial-temporal
area of earthquake preparation, and the sizes of foreshock samples when decomposing
them by energies. For the higher-energy earthquakes, the samples sizes were smaller;
for example, for the 13.0 class, there was only 32 events. The events of classes 8.5–10 are
registered most frequently; therefore, they have the greatest impact on the form of the
eCDF of foreshock waiting time.

It should be noted that despite the large size of the catalog and the sizes of the foreshock
samples for the mainshocks of a given energy (1000–4000 foreshocks), when constructing
distributions with gradation of the foreshock energies, the sizes of the samples did not
exceed 200–300 events.
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4. Results and Discussion

Figure 4 plots the eCDF P∗(τ) on a logarithmic scale, showing the foreshock frequency
of all classes depending on the time τ before the mainshock. The function argument τ is the
time increment (6) measured in days before the mainshock. The value τ = 0 corresponds to
the mainshock. Plots obtained on a logarithmic scale are nonlinear, but there are parts close
to linear. There is no linearity in the double logarithmic scale. The dependencies obtained
show that the statistical distributions are closer to an exponential law than a power one.

Figure 4. The plots of eCDF P∗(τ) of foreshock waiting time for the mainshocks of energy classes
12.0, 12.3, 12.6, 12.7, and 12.9 on a logarithmic scale.

The Table 1 shows the main characteristics of foreshock samples for mainshock classes
12.0, 12.3, 12.7, and 12.9. It should be noted, that an increase in the class of the mainshock
leads to an increase in the sample size of foreshocks because the spatial-temporal area of
earthquake preparation is increased. However, at the same time, the decrease in sample
sizes of the mainshocks reduces the event occurrence frequency on the considered time
intervals. In addition, the number of events in the intervals is decreased when the time
to the mainshock is increased, i.e., in the distribution tail. The event frequency in the
distribution tail is increased with an increase in the sample size, which accordingly leads to
a decrease in the values of the parameters ν and/or ν̃.

Table 1. Characteristics of foreshock sequences.

Mainshock Class, K Sample Size of
Mainshocks

Sample Size of All
Foreshocks Foreshock Class, K f

Sample Size of
Foreshocks

12.0 116 963 8.5 88
8.9 71

12.3 95 1245 8.5 107
9.1 75

12.7 63 2390 8.6 174
9.0 140

12.9 62 3875 8.5 322
8.8 262
9.0 236
9.8 137

Based on the constructed model of deformation process modes, the eCDF P∗(τ) of
foreshock waiting time for earthquakes (mainshocks) of energy classes 12.0, 12.3, 12.7, and
12.9 were approximated by the Mittag–Leffler function (4), where the notation (6) is ac-
cepted, and by an exponential function for comparison. The least-squares method was used
for the approximation of the eCDF P∗(τ) of the foreshock waiting time. The representation
of the Mittag–Leffler function (4) includes the 201 terms of the series (k = 0 . . . 200). Then,
we took the values of the parameters ν, ν′, µ̃ from the specified intervals in increments of
0.01 for ν and ν′ and in an increment of 0.001 for µ̃. When the values of ν = ν′ = 1, we
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obtained an exponential function. The values of the parameters at which the sum of the
squared deviations of the Mittag–Leffler function from the sample values were minimal
were used for approximation. The results are shown in Table 2 and in Figures 5 and 6.
The comparison of the approximation results by the Mittag–Leffler function and the expo-
nential function showed the better accuracy of the Mittag-Leffler function (Table 2). The
approximation error for the Mittag-Leffler function is units of percent. As a rule, it is much
smaller than the approximation error of the exponential function, except in cases where the
exponential function is the best approximation (ν = ν′ = 1).

The value of the average density µ̃ of the event stream in a deformation perturbation
is of the order of 10−2 when the empirical laws P∗(τ) are approximated by the function (4).
This coincides with the estimate obtained from the catalog. It is necessary to note that eCDF
has its best approximation by the Mittag–Leffler function with close or equal values of the
parameters ν and ν̃. This possibly indicates the relationship of non-local processes in time
(hereditarity) and in space. In addition, if the energy class of the mainshock (Figure 5) is
decreased, then the parameter values ν, ν̃ are decreased, and the value µ̃ is increased. We
observe the opposite situation when the class of the mainshock is increased (Figure 6).

Table 2. Characteristics of approximating functions.

K K f

Approximating
Function

P(τ)
Smin

Approximation
Error ε, %

Stream
Density µ, µ̃

ν ν̃

12.0 8.5 eµτ 0.113 12.56 0.055
Eν(−(µ̃τ)ν̃) 0.031 7.33 0.074 0.81 0.85

12.0 8.9 eµτ 0.183 17.27 0.046
Eν(−(µ̃τ)ν̃) 0.011 7.14 0.061 1 0.61

12.3 8.5 eµτ 0.064 11.1 0.042
Eν(−(µ̃τ)ν̃) 0.006 5.03 0.05 0.96 0.8

12.3 9.1 eµτ 0.033 9.97 0.039
Eν(−(µ̃τ)ν̃) 0.003 3.55 0.044 0.97 0.84

12.7 8.6 eµτ 0.057 7.27 0.0196
Eν(−(µ̃τ)ν̃) 0.033 6.84 0.021 1 0.94

12.7 9.0 eµτ 0.069 9.35 0.02
Eν(−(µ̃τ)ν̃) 0.01 6.58 0.023 0.95 0.85

12.9 8.5 eµτ 0.023 3.9 0.017
Eν(−(µ̃τ)ν̃) 0.004 3.6 0.018 0.99 0.93

12.9 8.8 eµτ 0.013 2.94 0.018
Eν(−(µ̃τ)ν̃) 0.008 3.91 0.019 1 0.95

12.9 9.0 eµτ 0.022 6.54 0.017
Eν(−(µ̃τ)ν̃) 0.022 6.54 0.017 1 1

12.9 9.8 eµτ 0.054 9.23 0.017
Eν(−(µ̃τ)ν̃) 0.006 2.72 0.019 0.99 0.87
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(a) e0.055τ , E0.81(−(0.074τ)0.85) (b) e0.046τ , E1(−(0.061τ)0.61)

(c) e0.042τ , E0.96(−(0.05τ)0.8) (d) e0.039τ , E0.97(−(0.0441τ)0.84)

Figure 5. Approximation of the eCDF P∗(τ) of waiting time of foreshocks (class K f ) for the mainshock
(class K) by the Mittag–Leffler function Eν(−(µ̃τ)ν̃) (4) and exponential function eµτ .

(a) e0.0196τ , E1(−(0.021τ)0.94) (b) e0.019τ , E0.95(−(0.023τ)0.85)

(c) e0.017, E0.99(−(0.018τ)0.93)
(d) e0.018, E1(−(0.019τ)0.95)

Figure 6. Cont.
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(e) e0.017 = E1(−0.017τ) (f) e0.017, E0.99(−(0.019τ)0.87)

Figure 6. Approximation of the eCDF P∗(τ) of waiting time of foreshocks (class K f ) for the mainshock
(class K) by the Mittag–Leffler function Eν(−(µ̃τ)ν̃) (4) and exponential function eµτ .

5. Conclusions

In this paper, the fractional Poisson process is used to describe irreversible deforma-
tion changes. The deformation process is considered from a probabilistic point of view as
a transition from one state (or mode) to another. The fractional Mittag–Leffler function,
which takes into account the properties of non-locality (i.e., history of the process), were
used to describe the modes of the deformation process. The proposed model is a logical
continuation and extension of the Poisson process model with independent events. In addi-
tion, the fractional parameters ν and ν̃ are determined by the medium parameters, which
makes possible a more complete description of its properties.

At the present time, the regularities in the sequences of aftershocks are well researched.
In this article, based on the criteria related to the energy and characteristics of the medium
of the earthquake preparation area, sequences of foreshocks (clusters) are constructed.
The eCDFs of the foreshock waiting time depending on the time before the mainshock
are obtained.

The variation of the fractional parameters ν, ν̃ and the scale factor µ̃ of the Mittag–
Leffler function makes possibility to approximate eCDF P∗(τ) with it. The approximation
of statistical results using the Mittag–Leffler function showed that the accuracy of the
approximation by this function is higher than the approximation using the exponential
function. The best approximation of the eCDF P∗(τ) was obtained for close values of the
parameters ν and ν̃ of the Mittag–Leffler function. There are differences in the behavior
of foreshocks for weak and strong mainshocks. This can be interpreted as a difference
in the memory effects of events of different energies. It should be noted that due to the
small amounts of data, seismology is not statistically sufficient to strictly solve the problem
of choosing a deformation model in favor of the fractional Poisson process. However, it
remains preferable due to its universal nature.

This model can be useful in the study of induced seismicity, in which the patterns are
most likely the same as in natural seismicity. Induced seismicity has an important applied
value associated with the injection of fluid into wells during oil refining [29–31].
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